From Nonhydrocarbon Feed Patents (Class 585/469)
  • Publication number: 20120171103
    Abstract: The invention relates to a method of modifying electrical properties of carbon nanotubes by subjecting a composition of carbon nanotubes to one or more radical initiator(s). The invention also relates to an electronic component such as field-effect transistor comprising a carbon nanotube obtained using the method of the invention. The invention also relates to the use of the modified carbon nanotubes in conductive and high-strength nanotube/polymer composites, transparent electrodes, sensors and nanoelectromechanical devices, additives for batteries, radiation sources, semiconductor devices (e.g. transistors) or interconnects.
    Type: Application
    Filed: June 28, 2010
    Publication date: July 5, 2012
    Applicant: NANYANG TECHNOLOGICAL UNIVERSITY
    Inventors: Jianwen Zhao, Lain-Jong Li, Peng Chen, Bee Eng Mary Chan
  • Patent number: 8207385
    Abstract: A process is disclosed for fluid catalytic cracking of oxygenated hydrocarbon compounds such as glycerol and bio-oil. In the process the oxygenated hydrocarbon compounds are contacted with a fluid cracking catalyst material for a period of less than 3 seconds. In a preferred process a crude-oil derived material, such as VGO, is also contacted with the catalyst.
    Type: Grant
    Filed: August 15, 2007
    Date of Patent: June 26, 2012
    Assignee: KiOR, Inc.
    Inventors: Paul O'Connor, George W. Huber, Avelino Corma Camos, Laurent Louis Sauvanaud
  • Publication number: 20120153271
    Abstract: A leaving substituent-containing compound including a partial structure represented by the following General Formula (I): where a pair of X1 and X2 or a pair of Y1 and Y2 each represent a hydrogen atom; the other pair each represent a group selected from the group consisting of a halogen atom and a substituted or unsubstituted acyloxy group having one or more carbon atoms; a pair of the acyloxy groups represented by the pair of X1 and X2 or the pair of Y1 and Y2 may be identical or different, or may be bonded together to form a ring; R1 to R4 each represent a hydrogen atom or a substituent; and Q1 and Q2 each represent a hydrogen atom, a halogen atom or a monovalent organic group, and may be bonded together to form a ring.
    Type: Application
    Filed: September 9, 2010
    Publication date: June 21, 2012
    Inventors: Daisuke Goto, Satoshi Yamamoto, Toshiya Sagisaka, Takuji Kato, Takashi Okada, Masato Shinoda, Shinji Matsumoto, Masataka Mohri, Keiichiro Yutani
  • Patent number: 8198495
    Abstract: Processes and systems for synthesizing alkyl bromides to hydrocarbon products, such as high molecular weight hydrocarbons, olefins or mixtures thereof, wherein one or more streams of alkyl bromides may be synthesized in sequential or concurrent stages at different temperatures. The catalyst used in the synthesis stages may be the same or different and at least in one instance is chosen to form hydrocarbon products having a significant C6+ paraffin content. The stages may be conducted in one or more reactors and the catalyst may be deployed in fixed beds or fluidized beds.
    Type: Grant
    Filed: March 2, 2010
    Date of Patent: June 12, 2012
    Assignee: Marathon GTF Technology, Ltd.
    Inventors: John J. Waycuilis, William J. Turner
  • Publication number: 20120115714
    Abstract: The present invention provides the catalyst precursor that has excellent safety and stability, has high stable activity retention rate, can be recycled, increases yield resulted from a reaction, and is easily processed into various forms. The catalyst precursor comprises a structure in which the entire structure is composed of gold or a gold-based alloy and the surface of the structure is modified with elemental sulfur, or at least the surface of the structure is composed of gold or a gold-based alloy and the surface of the structure is modified with elemental sulfur, and a catalytic metal compound supported on the structure, wherein the catalyst precursor has peaks derived from the catalytic metal compound and also sulfur as analyzed by photoelectron spectroscopy, and wherein the peak derived from sulfur is of the sulfur 1s orbital observed within a range of 2470 eV±2 eV in terms of the peak top position.
    Type: Application
    Filed: July 16, 2010
    Publication date: May 10, 2012
    Applicant: FURUYA METAL CO., LTD.
    Inventors: Mitsuhiro Arisawa, Satoshi Shuto, Naoyuki Hoshiya
  • Publication number: 20120116138
    Abstract: Disclosed herein are methods and systems for upgrading (for example, removing heteroatoms, metals, or metalloids) an oil composition derived or extracted from a biomass. The upgraded oil composition can be used to make a desired product, for example, a fuel product.
    Type: Application
    Filed: April 21, 2010
    Publication date: May 10, 2012
    Applicant: SAPPHIRE ENERGY, INC
    Inventors: Brian L. Goodall, Alex M. Aravanis, Graig A. Behnke, Richard J. Cranford, Daniel J. Sajkowski
  • Publication number: 20120116050
    Abstract: The present invention relates to novel pyrene-based polymers, methods of preparing the same and uses thereof, in particular for electroluminescent devices. The novel polymers of the invention have the following general formula (I): wherein R1, R2, R3, R4, R5, R6, R7 and R8 are independently of each other hydrogen, halogen, in particular F, SiR100R101R102, or an organic substituent, or R6 and R7, R3 and R4, and/or any of the substituents R1, R2, R3, R4, R5, R6, R7 and/or R8, which are adjacent to each other, together form an aromatic, or heteroaromatic ring, or ring system, which can optionally be substituted, n1 and n2 are 0, 1, or 2, R100, R101 and R102 are independently of each other C1-C18 alkyl, substituted or unsubstituted C6-C18 aryl, and Ar1 and Ar2 are each independently of each other a substituted or unsubstituted arylene or heteroarylene group.
    Type: Application
    Filed: April 20, 2010
    Publication date: May 10, 2012
    Applicants: Technische Universitaet Graz, Max-Planck-gesellschaft zur Foerderung der Wissenschaften e.V.
    Inventors: Klaus Muellen, Teresa Figueira-Duarte, Pablo Gabriel Del Rosso, Emil J.W. List, Roman Trattnig
  • Publication number: 20120108819
    Abstract: Described are N-heterocyclic carbene complexes of the formula I, where n is 0 or 1, M is a metal atom containing group, R1 is selected from hydrogen alkyl, cycloalkyl, heterocycloalkyl, aryl and hetaryl, R2 is selected from hydrogen, alkyl, cycloalkyl, heterocycloalkyl, aryl and hetaryl, wherein R1 and R2 do not both stand for hydrogen. Furthermore, also described are methods for their preparation and their use as catalysts employed in a C—C, C—O, C—N or C—H bond formation reaction.
    Type: Application
    Filed: October 28, 2011
    Publication date: May 3, 2012
    Applicant: BASF SE
    Inventors: A. Stephen K. Hashmi, Christian Lothschütz
  • Publication number: 20120101311
    Abstract: Processes for converting a methane or a methane containing natural gas to a monohalogenated methane and other downstream basic commodity chemicals going through methanesulfonyl halide as a key intermediate, whereby following its formation, the methanesulfonyl halide is allowed to decompose under a substantially anhydrous condition, preferably in the presence of a catalyst complex, and whereby in addition to the monohalogenated halide, a hydrogen halide and a sulfur dioxide are also formed in the overall conversion, both of which may be recycled back to the beginning of the processes. Additionally, compositions utilizing such a key intermediate for the same purposes are also disclosed.
    Type: Application
    Filed: October 21, 2011
    Publication date: April 26, 2012
    Inventor: Yongchun Tang
  • Publication number: 20120088885
    Abstract: The invention relates to a device for continuously carrying out chemical reactions. The device comprises a microwave generator, a microwave applicator accommodating a microwave-transparent tube, and an isothermal reaction section which is arranged such that the material to be reacted is guided inside the microwave-transparent tube through a microwave applicator which is used as the heating zone and in which it is heated to reaction temperature by means of microwaves that are emitted from the microwave generator into the microwave applicator. The material to be reacted, which is heated and optionally under pressure, is transferred from the microwave applicator to an isothermal reaction zone once it has left the heating zone, said reaction zone being arranged downstream of the heating zone, and is cooled once it has left the isothermal reaction zone.
    Type: Application
    Filed: June 9, 2010
    Publication date: April 12, 2012
    Applicant: CLARIANT FINANCE (BVI) LIMITED
    Inventors: Matthias Krull, Roman Morschhaeuser
  • Publication number: 20120088945
    Abstract: A process for co-production of renewable diesel fuel range hydrocarbons and gasoline fuel range hydrocarbons from biomass-derived oils and fatty materials (e.g. triglycerides, diglycerides, monoglycerides, and free fatty acids) and biomass-derived polyol (e.g. sorbitol, xylitol, trehalose, sucrose, and sugar alcohol), respectively, in a same refinery hydrotreater with or without co-feeding of diesel fuel range hydrocarbons.
    Type: Application
    Filed: September 7, 2011
    Publication date: April 12, 2012
    Applicant: CONOCOPHILLIPS COMPANY
    Inventors: Jianhua YAO, Edward L. SUGHRUE, II
  • Patent number: 8148587
    Abstract: The present invention provides a method for producing Lower olefin from the feed of methanol or/and dimethyl ether, characterized in that methanol or/and dimethyl ether are divided proportionally to be fed at 3 reaction zones; and the desired distribution of the olefin product is obtained by modulating the feeding ratio among the 3 reaction zones and the reaction conditions in each reaction zone.
    Type: Grant
    Filed: July 27, 2007
    Date of Patent: April 3, 2012
    Assignee: Dalian Institute of Chemical Physics, Chinese Academy of Sciences
    Inventors: Yue Qi, Zhongmin Liu, Zhihui Lv, Hua Wang, Changqing He, Lei Xu, Jinling Zhang, Xiangao Wang
  • Patent number: 8143466
    Abstract: A process for the reduction of benzene in a gasoline stream, the process including: feeding a gasoline fraction including benzene and C6+ hydrocarbons and at least one of an alcohol and an ether to a catalytic distillation column comprising at least one reaction zone containing an alkylation catalyst, wherein the at least one reaction zone is above a gasoline fraction feed location; concurrently in the catalytic distillation column: separating the C6 hydrocarbons from C7+ hydrocarbons, wherein the C6 hydrocarbons and benzene distill upward into the at least one reaction zone; contacting benzene and the at least one of an alcohol and an ether in the at least one reaction zone in the presence of the alkylation catalyst to convert at least a portion of the benzene and alcohol/ether to an alkylate; recovering an overheads fraction including C6 hydrocarbons, any unreacted alcohol and ether, and water; and recovering a bottoms fraction including C7+ hydrocarbons and the alkylate.
    Type: Grant
    Filed: February 10, 2009
    Date of Patent: March 27, 2012
    Assignee: Catalytic Distillation Technologies
    Inventors: Mitchell E. Loescher, Gary G. Podrebarac, Quoc T. Phan
  • Publication number: 20120065445
    Abstract: This invention, which involves “the synthetic method of 9, 9?-biantnthracine”, belongs to the field of synthetic technology of organic electroluminesent materials. Synthetic method of 9, 9?-bianthracine is to add anthraquinone as raw material and zinc as reducing agent in glacial acetic acid solution, then batch addition of hydrochloric acid at 70-120°, maintain the temperature unchanged and react, then 9, 9?-bianthracine is achieved. This invention uses one-step method to synthesize 9, 9?-bianthracine, which reduces not only cost but also generation of side products, in addition, the products obtained need no purification and can be directly used to synthesize related similar compounds, therefore, it is very suitable for large-scale industrial production.
    Type: Application
    Filed: May 5, 2010
    Publication date: March 15, 2012
    Inventors: Lifei Cai, Lei Dai, Hongyu Zhao
  • Patent number: 8134035
    Abstract: Provided is a method of preparing asymmetric anthracene derivative, more particularly, a method for high-yield production of an anthracene derivative in which an alkyl group, a cycloalkyl group, a heterocycloalkyl group, an aryl group or a heteroaryl group is introduced at position 2 of anthracene, and an aryl group or a heteroaryl group is introduced at each of positions 9 and 10 of the anthracene.
    Type: Grant
    Filed: May 14, 2009
    Date of Patent: March 13, 2012
    Assignee: Doosan Corporation
    Inventors: Tae-Hyung Kim, Kyoung-Soo Kim
  • Publication number: 20120059191
    Abstract: There is provided a substance having much higher catalytic activity for a Suzuki-Miyaura coupling reaction than conventional heterogenous catalysts. The present invention provides a zeolite-palladium complex including USY-zeolite and Pd supported on the USY-zeolite, the Pd having a Pd—Pd coordination number of 4 or less and an oxidation number of 0.5 or less.
    Type: Application
    Filed: February 23, 2010
    Publication date: March 8, 2012
    Inventors: Kazu Okumura, Miki Niwa, Hirosuke Matsui, Yoshinori Enmi, Takuya Tomiyama, Shizuyo Okuda
  • Patent number: 8129575
    Abstract: A process is disclosed for fluid catalytic cracking of oxygenated hydrocarbon compounds such as glycerol and bio-oil. In the process the oxygenated hydrocarbon compounds are contacted with a fluid cracking catalyst material for a period of less than 3 seconds. In a preferred process a crude-oil derived material, such as VGO, is also contacted with the catalyst.
    Type: Grant
    Filed: August 15, 2007
    Date of Patent: March 6, 2012
    Assignee: KiOR, Inc.
    Inventors: Paul O'Connor, George W. Huber, Avelino Corma Camos, Laurent Louis Sauvanaud
  • Publication number: 20120046471
    Abstract: This invention relates to a process for preparing functionalized aryl, heteroaryl, cycloalkenyl, or alkenyl compounds, by a transition-metal-catalyzed cross-coupling reaction of a substituted or unsubstituted aryl-X, heteroaryl-X, cycloalkenyl-X or alkenyl-X compound with an alkyl, alkenyl, cycloalkyl or cycloalkenyl halide, where X is a halide, diazonium, tosylate (p-toluenesulphonate), mesylate (methanesulphonate) or triflate (trifluoromethanesulphonate) leaving group.
    Type: Application
    Filed: September 14, 2011
    Publication date: February 23, 2012
    Applicant: SALTIGO GMBH
    Inventors: Mark Sundermeier, Matthias Gotta, Axel Jacobi von Wangelin, Waldermar Maximilian Czaplik
  • Patent number: 8093438
    Abstract: A process of producing a 1,1-diaryl alkane comprising a condensation reaction of an aromatic compound having at least one aromatic hydrogen with an acetal, in the presence of a perfluorinated sulfonic acid in polymeric form as catalyst.
    Type: Grant
    Filed: January 10, 2011
    Date of Patent: January 10, 2012
    Assignee: Evonik Degussa GmbH
    Inventors: Jeffrey Howard Dimmit, Mike Douglas Cagle
  • Publication number: 20120004477
    Abstract: Hydrocarbon feeds can be hydrotreated in a continuous gas-phase environment and then dewaxed in a liquid-continuous reactor. The liquid-continuous reactor can advantageously be operated in a manner that avoids the need for a hydrogen recycle loop. A contaminant gas can be added to the hydrogen input for the liquid-continuous reactor to modify the hydrogen consumption in the reactor.
    Type: Application
    Filed: June 24, 2011
    Publication date: January 5, 2012
    Applicant: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Richard C. Dougherty, Michael A. Hayes, Benjamin S. Umansky, William E. Lewis
  • Publication number: 20120004471
    Abstract: According to a process of the invention, a ketone, an aromatic compound and hydrogen as starting materials are reacted together in a single reaction step to produce an alkylaromatic compound in high yield. A process for producing phenols in the invention includes a step of performing the above alkylation process and does not increase the number of steps compared to the conventional cumene process. The process for producing alkylated aromatic compounds includes reacting an aromatic compound such as benzene, a ketone such as acetone and hydrogen in the presence of a solid acid substance, preferably a zeolite, and a silver-containing catalyst.
    Type: Application
    Filed: March 12, 2010
    Publication date: January 5, 2012
    Inventors: Tsuneyuki Ohkubo, Shinobu Aoki, Masayasu Ishibashi, Masao Imai, Terunori Fujita, Kenji Fujiwara
  • Patent number: 8075642
    Abstract: Disclosed is a method for preparing liquid fuel and chemical intermediates from biomass-derived oxygenated hydrocarbons. The method includes the steps of reacting in a single reactor an aqueous solution of a biomass-derived, water-soluble oxygenated hydrocarbon reactant, in the presence of a catalyst comprising a metal selected from the group consisting of Cr, Mn, Fe, Co, Ni, Cu, Mo, Tc, Ru, Rh, Pd, Ag, W, Re, Os, Ir, Pt, and Au, at a temperature, and a pressure, and for a time sufficient to yield a self-separating, three-phase product stream comprising a vapor phase, an organic phase containing linear and/or cyclic mono-oxygenated hydrocarbons, and an aqueous phase.
    Type: Grant
    Filed: April 14, 2008
    Date of Patent: December 13, 2011
    Assignee: Wisconsin Alumni Research Foundation
    Inventors: James A. Dumesic, Dante A. Simonetti, Edward L. Kunkes
  • Patent number: 8052938
    Abstract: The present invention provides a reactor system having: (1) a first reactor receiving an oxygenate component and a hydrocarbon component and capable of converting the oxygenate component into a light olefin and the hydrocarbon component into alkyl aromatic compounds; (2) a separator system for providing a first product stream containing a C3 olefin, a second stream containing a C7 aromatic, and a third stream containing C8 aromatic compounds; (3) a first line connecting the separator to the inlet of the first reactor for conveying the second stream to the first reactor; (4) a second line in fluid communication with the separator system for conveying the C3 olefin to a propylene recovery unit, and (4) a third line in fluid communication with the separator system for conveying the C8 aromatic compounds to a xylene recovery unit.
    Type: Grant
    Filed: October 12, 2010
    Date of Patent: November 8, 2011
    Assignee: UOP LLC
    Inventors: Andrea G. Bozzano, Timur V. Voskoboynikov, Tom N. Kalnes, Paul T. Barger, Gavin P. Towler, Bryan K. Glover
  • Publication number: 20110270008
    Abstract: This invention relates to a process for pretreating a zeolite catalyst, specifically a zeolite which has been modified with phosphorus. The catalyst may be used in a process for alkylation of aromatics, specifically toluene methylation. The pretreatment is first to contact the catalyst with the process reactants used in a process for alkylation of aromatics for at least two hours at conditions to produce an alkylated aromatic product and then with a gaseous stream containing oxygen at a temperature and for a time until there is no oxygen consumption. The zeolite may be a MFI zeolite. This pretreatment procedure for a phosphorus-modified zeolite catalyst produces a catalyst which has increased run time, i.e., decreased deactivation rate, compared to a fresh catalyst, even after successive regenerations.
    Type: Application
    Filed: July 11, 2011
    Publication date: November 3, 2011
    Applicant: SAUDI BASIC INDUSTRIES CORPORATION
    Inventors: Ashim Kumar Ghosh, Mohammad Shafiei, Manuel Castelan, Pamela Harvey, Neeta Kulkarni
  • Publication number: 20110263879
    Abstract: A zwitterionic phosphonium salt of Formula I: wherein n is 0 or 1; R is H or SO3; R? is selected from the group consisting of C1-C10 alkyl, C2-C10 alkenyl, C2-C10 alkynyl, C3-C10 cycloalkyl, phenyl, substituted phenyl, benzyl and C1-C10 alkoxy-carbonyl; R? is CX3 when n is O; and X is selected from the group consisting of F, Cl, Br and I. The zwitterionic phosphonium salts are useful reagents for the preparation of alkenes and acetals from the corresponding aldehyde.
    Type: Application
    Filed: July 29, 2009
    Publication date: October 27, 2011
    Applicant: THE HONG KONG POLYTECHNIC UNIVERSITY
    Inventors: Tak-Hang Chan, Congde Huo, Xun He
  • Publication number: 20110257453
    Abstract: A method for the oxidative coupling of hydrocarbons includes providing an oxidative catalyst inside a reactor and carrying out the oxidative coupling reaction under a set of reaction conditions. The reactor surfaces that contact the reactants and products do not provide a significant detrimental catalyzing effect. In an embodiment the reactor contains an inert lining or a portion of the reactor inner surface is treated to reduce the detrimental catalytic effects. In an embodiment the reactor contains a lining that includes an oxidative catalyst.
    Type: Application
    Filed: April 20, 2010
    Publication date: October 20, 2011
    Applicant: Fina Technology, Inc.
    Inventors: Sivadinarayana Chinta, Joseph Thorman
  • Publication number: 20110245444
    Abstract: A method for processing biomass comprising heating an aqueous slurry comprising biomass, water and a phosphate catalyst in a pressure vessel at a temperature of about 150° C. to about 500° C. to produce a mixture comprising a dispersion of an organic phase and an aqueous phase.
    Type: Application
    Filed: September 11, 2009
    Publication date: October 6, 2011
    Applicant: AQUAFLOW BIONOMIC CORPORATION LIMITED
    Inventors: Ian James Miller, Rhys Antony Batchelor
  • Patent number: 8030532
    Abstract: A method for the production of styrene comprising reacting toluene and syngas in one or more reactors is disclosed.
    Type: Grant
    Filed: February 24, 2011
    Date of Patent: October 4, 2011
    Assignee: Fina Technology, Inc
    Inventors: Joseph Pelati, James R. Butler
  • Publication number: 20110230641
    Abstract: Embodiments of this disclosure, among others, encompass methods for generating alkenes under mild thermolytic conditions that can provide almost total conversion of a precursor compound to an alkene without isomerization or the need to chromatographically purify the final product By selectively blocking the amino and carboxy groups of the de?vatized amino acid, the methods of the disclosure provide for the synthesis of a peptide having the vinylglycine moiety at either the carboxy or the amino terminus of the peptide The mild conditions for the thermolytic removal of an o-NO2-phenyl substituted aryl group ensure that there is minimal if any damage to thermally sensitive conjugates such as a peptide bearing the vinylglycine The methods of the present disclosure have practical applications for the preparation of unsaturated compounds under mild, thermolytic conditions.
    Type: Application
    Filed: November 17, 2009
    Publication date: September 22, 2011
    Inventors: Timothy Edward Long, Sravan Kumar Patel
  • Publication number: 20110230694
    Abstract: The present invention is a method for producing an aromatic compound by substituting the sulfonic acid group in a sulfonic acid aromatic-ester with a hydrogen atom in the presence of a platinum group metal catalyst, wherein an alkali metal carboxylate and/or an ammonium formate are made to coexist in the system. According to the present invention, an aromatic compound where the sulfonic acid group in a sulfonic acid aromatic-ester is substituted with a hydrogen atom, can be produced efficiently with good operability without using metal magnesium.
    Type: Application
    Filed: August 1, 2008
    Publication date: September 22, 2011
    Applicant: UBE Industries, Ltd.
    Inventors: Koji Abe, Yoshihiro Ushigoe, Yuichi Kotou, Ken Ikuno, Takashi Hosomi, Toyoaki Ihara
  • Patent number: 8007762
    Abstract: The invention relates to Group 1 metal/silica gel compositions comprising silica gel and an alkali metal or alloy, wherein Group 1 metals or alloys are absorbed into the silica gel pores. The invention relates to producing hydrogen gas comprising contacting a Group 1 metal/silica gel composition with water, and further relates to an alkali metal reduction of an organic compound, the improvement comprising contacting the organic compound with a Group 1 metal/silica gel composition. In these embodiments, the Group 1 metal/silica gel composition reacts with dry O2. The invention also relates to producing hydrogen gas comprising contacting a Group 1 metal/silica gel composition with water, and further relates to an alkali metal reduction of an organic compound, the improvement comprising contacting the organic compound with a Group 1 metal/silica gel composition. In these embodiments, the Group 1 metal/silica gel composition produced does not react with dry O2.
    Type: Grant
    Filed: March 12, 2010
    Date of Patent: August 30, 2011
    Assignees: SiGNa Chemistry, Inc., Board of Trustees of Michigan State University
    Inventors: Michael Lefenfeld, James L. Dye
  • Patent number: 8008535
    Abstract: A process for converting gaseous alkanes to olefins and higher molecular weight hydrocarbons wherein a gaseous feed containing alkanes is reacted with a dry bromine vapor to form alkyl bromides and hydrobromic acid vapor. The mixture of alkyl bromides and hydrobromic acid are then reacted over a synthetic crystalline alumino-silicate catalyst, such as an X or Y type zeolite, at a temperature of from about 250° C. to about 500° C. so as to form olefins, higher molecular weight hydrocarbons and hydrobromic acid vapor. Various methods are disclosed to remove the hydrobromic acid vapor from the olefins and higher molecular weight hydrocarbons and to generate bromine from the hydrobromic acid for use in the process.
    Type: Grant
    Filed: April 30, 2008
    Date of Patent: August 30, 2011
    Assignee: Marathon GTF Technology, Ltd.
    Inventor: John J. Waycuilis
  • Publication number: 20110207983
    Abstract: A process for the manufacture of large crystal size synthetic porous crystalline molecular sieve requires an aqueous reaction mixture that is organic structure directing agent-free, has a H2O/MOH molar ratio (M is an alkali metal) of 75 or less, a source of X2O3 (X is a trivalent element) and a source of YO2 (Y is a tetravalent element). The source of X2O3 and YO2 is an amorphous material containing both X2O3 and YO2 and having a YO2/X2O3 molar ratio of 15 to 40. The resultant highly crystalline novel materials have crystals with at least one dimension greater than 1 ?m, such as greater than 3 ?m.
    Type: Application
    Filed: January 19, 2009
    Publication date: August 25, 2011
    Inventors: Wieslaw Jerzy Roth, Carrie L. Kennedy, Thomas Yorke
  • Patent number: 8003833
    Abstract: The present invention addresses the processing of waste and low-value products to produce useful materials in reliable purities and compositions, at acceptable cost, without producing malodorous emissions, and with high energy efficiency. In particular, the invention comprises a multi-stage process that converts various feedstocks such as offal, animal manures, municipal sewage sludge, tires, and plastics, that otherwise have little commercial value, to useful materials including gas, oil, specialty chemicals, and carbon solids. The process subjects the feedstock to heat and pressure, separates out various components, then further applies heat and pressure to one or more of those components. Various materials produced at different points in the process may be recycled and used to play other roles within the process. The invention further comprises an apparatus for performing a multi-stage process of converting waste products into useful materials, and at least one oil product that arises from the process.
    Type: Grant
    Filed: November 18, 2003
    Date of Patent: August 23, 2011
    Assignee: AB-CWT, LLC
    Inventors: Brian S. Appel, Terry N. Adams, Michael J. Roberts, William F. Lange, James H. Freiss, Craig Timothy Einfeldt, Michael Charles Carnesi
  • Publication number: 20110201864
    Abstract: The dual-zeolite catalyst for production of ethylbenzene is formed by mixing at least two different zeolites selected from mordenite, beta, ZSM-5, ZSM-11, ZSM-12, ZSM-22, ZSM-23, MFI topology zeolite, NES topology zeolite, EU-1, SAPO-5, SAPO-34, SAPO-11 and MAPO-36 zeolites and an inactive alumina binder. The two zeolites have different topology and possess dissimilar and unique physical and chemical characteristics, including particle size, surface area, pore size and acidity. The preferred amount of the two zeolites may range from 10 to 90 wt % of the total catalyst amount in the final dried and calcined form, preferably the zeolites are in equal parts by weight.
    Type: Application
    Filed: February 18, 2010
    Publication date: August 18, 2011
    Inventors: Sulaiman S. Al-Khattaf, Taiwo Odedairo
  • Publication number: 20110201846
    Abstract: It is an object of the present invention to provide a method for producing an alkylated aromatic compound and a method for producing cumene that can greatly reduce the amount of solid acid substance, and a method for producing phenol including a step of producing cumene by the method for producing cumene.
    Type: Application
    Filed: October 22, 2009
    Publication date: August 18, 2011
    Applicant: MITSUI CHEMICALS, INC.
    Inventors: Kenji Fujiwara, Tsuneyuki Ohkubo, Terunori Fujita, Shinobu Aoki, Masayasu Ishibashi, Masao Imai, Kozo Yasuda
  • Publication number: 20110196113
    Abstract: The present invention relates to a process to make light olefins and aromatics, in a combined XTO-OC process, from an oxygen-containing, halogenide-containing or sulphur-containing organic feedstock comprising: a0) providing a first portion and a second portion of said oxygen-containing, halogenide-containing or sulphur-containing organic feedstock, a) providing a catalyst comprising zeolitic molecular sieves containing at least 10 membered ring pore openings or larger in their microporous structure, b) providing an XTO reaction zone, an OC reaction zone and a catalyst regeneration zone, said catalyst circulating in the three zones, such that at least a portion of the regenerated catalyst is passed to the OC reaction zone, at least a portion of the catalyst in the OC reaction zone is passed to the XTO reaction zone and at least a portion of the catalyst in the XTO reaction zone is passed to the regeneration zone; c) contacting the first portion of said oxygen-containing, halogenide-containing or sulphur-co
    Type: Application
    Filed: June 24, 2009
    Publication date: August 11, 2011
    Inventors: Nikolai Nesterenko, Walter Vermeiren, Giacomo Grasso, Sander Van Donk, Wolfgang Garcia
  • Publication number: 20110196181
    Abstract: Processes comprising: providing a starting material comprising one or more aromatic hydrocarbons, and having an aromatic sulfur compound content and a total sulfur content; reducing the aromatic sulfur compound content and the total sulfur content in the starting material; and hydrogenating the one or more aromatic hydrocarbons in the presence of a supported ruthenium catalyst and hydrogen.
    Type: Application
    Filed: April 18, 2011
    Publication date: August 11, 2011
    Inventors: Michael Becker, Axel Salden, Bianca Stäck, Jochem Henkelmann, Steffen Springmann, Frederik van Laar, Wilhelm Ruppel, Peter Resch, Michael Bender
  • Patent number: 7994377
    Abstract: For converting ethanol to a diesel fuel base stock: a reaction stage (a) of contacting the ethanol with an acid catalyst, amorphous or structured, predominantly mesoporous, at a temperature of 300° C. to 500° C., at a pressure of 2 to 10 MPa and at a WHSV of 0.2 to 4 h?1, producing a gas phase, an organic liquid phase and an aqueous liquid phase, and —a stage (b) of separating the gas phase, the organic liquid phase and the aqueous liquid phase at a pressure close to the reaction pressure, and recycling at least part of the gas phase separated in stage (b) to stage (a), and hydrogenating at least part of the organic liquid phase separated in stage (b).
    Type: Grant
    Filed: May 29, 2007
    Date of Patent: August 9, 2011
    Assignee: IFP Energies Nouvelles
    Inventors: Vincent Coupard, Sylvie Maury, Frédéric Capuano, Mohamed Bengrine
  • Publication number: 20110172481
    Abstract: A process of producing a 1,1-diaryl alkane comprising a condensation reaction of an aromatic compound having at least one aromatic hydrogen with an acetal, in the presence of a perfluorinated sulfonic acid in polymeric form as catalyst.
    Type: Application
    Filed: January 10, 2011
    Publication date: July 14, 2011
    Applicant: EVONIK DEGUSSA GmbH
    Inventors: Jeffrey Howard Dimmit, Mike Douglas Cagle
  • Publication number: 20110172432
    Abstract: The invention relates to the field of chemistry, especially organic chemistry, and more specifically the field of heterogeneous palladium catalysts used to catalyse chemical reactions involving the formation of carbon-carbon bonds. The invention also relates to a method for synthesising a heterogeneous palladium catalyst that can catalyse a C—C coupling reaction, the method essentially including steps of providing a solid substrate onto which groups of formula —PR1R2, wherein R1 is an optionally substituted alkyl group, or an optionally substituted cycloalkyl group, et R2 is an optionally substituted aryl group or an optionally substituted heteroaryl group, have been covalently bonded, and incorporating a catalytically effective amount of palladium into the resulting substituted substrate. The invention further relates to the resulting catalysts and to the uses thereof in C—C coupling reactions.
    Type: Application
    Filed: April 11, 2008
    Publication date: July 14, 2011
    Applicants: UNIVERSITE DE HAUTE ALSACE, CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE
    Inventors: Claude Le Drian, Jean-Michel Becht, Stéphane Schweizer
  • Publication number: 20110166390
    Abstract: The present invention provides cycloparaphenylene compounds, their macrocyclic precursors, and methods for making the compounds. The cycloparaphenylene compounds can be used to prepare armchair carbon nanotubes.
    Type: Application
    Filed: November 29, 2010
    Publication date: July 7, 2011
    Applicant: Lawrence Berkeley National Laboratory
    Inventors: Ramesh Jasti, Carolyn Bertozzi
  • Publication number: 20110166404
    Abstract: The novel C dialdehyde compound which can be efficiently utilized in the synthesis of carotenoid compounds based on the sulfone chemistry, the preparation method of the same, and the expeditious and practical synthetic processes for lycopene and ?-carotene by the use of the above novel compound are disclosed. The syntheses of lycopene and ?-carotene are characterized by the processes of the coupling reaction between two equivalents of geranyl sulfone or cyclic geranyl sulfone and the above C dialdehyde, the functional group transformation reactions of the diol in the resulting C 40 coupling products to X's (either halogens or ethers), and the double elimination reactions of the functional groups of the benzenesulfonyl and X to produce the fully conjugated polyene chain of the carotenoids.
    Type: Application
    Filed: March 14, 2011
    Publication date: July 7, 2011
    Applicant: Myongji University Industry and Academia Cooperation
    Inventors: Sang Ho Koo, Eun Ho Choi, Joo-Won Suh
  • Publication number: 20110152513
    Abstract: Materials and processes for the conversion of carbohydrates and polyols to gasoline boiling range hydrocarbons. Carbohydrates and polyols are reacted in the presence of modified zeolite catalysts to form a reaction product containing non-aromatic and aromatic gasoline boiling range hydrocarbons.
    Type: Application
    Filed: October 26, 2010
    Publication date: June 23, 2011
    Applicant: CONOCOPHILLIPS COMPANY
    Inventors: Jianhua YAO, Edward L. SUGHRUE, II, Yun BAO, Kristi FJARE, TiePan SHI
  • Publication number: 20110152523
    Abstract: The present invention provides a process for efficiently producing an alkylated aromatic compound in good yield, by a cross-coupling reaction between an alkyl halide and an aromatic magnesium reagent. A process for producing an aromatic compound represented by Formula (1): R—Ar???(1) wherein R is a hydrocarbon group, and Ar? is an aryl group; the process comprising: reacting a compound represented by Formula (2): R—X??(2) wherein X is a halogen atom, and R is as defined above, with a magnesium reagent represented by Formula (3): Ar?—MgY??(3) wherein Y is a halogen atom, and Ar? is as defined above, in the presence of a catalyst for cross-coupling reactions comprising an iron compound and a bisphosphine compound represented by Formula (4): wherein Q is a divalent group derived from an aromatic ring by removing two hydrogen (H) atoms on adjacent carbon atoms; and each Ar is independently an aryl group.
    Type: Application
    Filed: March 10, 2009
    Publication date: June 23, 2011
    Applicant: Kyoto University
    Inventors: Masaharu Nakamura, Takuji Hatakeyama, Yu-ichi Fujiwara
  • Patent number: 7964764
    Abstract: A method of synthesizing hydrocarbons from smaller hydrocarbons includes the steps of hydrocarbon halogenation, simultaneous oligomerization and hydrogen halide neutralization, and product recovery, with a metal-oxygen cataloreactant used to facilitate carbon-carbon coupling. Treatment with air or oxygen liberates halogen and regenerates the cataloreactant.
    Type: Grant
    Filed: January 7, 2010
    Date of Patent: June 21, 2011
    Assignee: GRT, Inc.
    Inventor: Ivan M. Lorkovic
  • Patent number: 7964761
    Abstract: Processes for conversion of lignin to liquid products such as bio-fuels and fuel additives are disclosed and described. A process for conversion of a lignin material to bio-fuels can include subjecting the lignin material to a base catalyzed depolymerization reaction to produce a partially depolymerized lignin. The partially depolymerized lignin can then be subjected to a stabilization/partial hydrodeoxygenation reaction to form a partially hydrodeoxygenated product. Following partial hydrodeoxygenation, the partially hydrodeoxygenated product can be reacted in a hydroprocessing step to form a bio-fuel. Each of these reaction steps can be performed in single or multiple steps, depending on the design of the process. The production of an intermediate partially hydrodeoxygenation product and subsequent reaction thereof can significantly reduce or eliminate reactor plugging and catalyst coking.
    Type: Grant
    Filed: October 31, 2007
    Date of Patent: June 21, 2011
    Assignee: University of Utah Research Foundation
    Inventors: Wlodzimierz W. Zmierczak, Jan D. Miller
  • Publication number: 20110112275
    Abstract: The present invention relates to condensed aromatic compounds with multiple ring bridging of the general formulae (1), (2), (3), (4) and (5). The invention furthermore relates to the use of the compounds according to the invention in an organic electronic device and to a process for the preparation of the compounds according to the invention. The invention furthermore relates to an electronic device which comprises the compounds according to the invention.
    Type: Application
    Filed: October 1, 2009
    Publication date: May 12, 2011
    Applicant: Merck Patent GmbH
    Inventors: Amir Hossain Parham, Christof Pflumm, Holger Heil, Arne Buesing
  • Patent number: 7919661
    Abstract: A method for the production of styrene comprising reacting toluene and syngas in one or more reactors is disclosed.
    Type: Grant
    Filed: August 18, 2008
    Date of Patent: April 5, 2011
    Assignee: Fina Technology, Inc.
    Inventors: Joseph E. Pelati, James R. Butler
  • Patent number: 7919660
    Abstract: A method of converting methanol feedstock to olefins is provided and includes contacting the methanol feedstock in a first conversion zone with a catalyst at reaction conditions effective to produce a first reaction zone effluent comprising DME, unreacted methanol and water, and recycling at least a portion of an overhead vapor product to the first conversion zone and/or to the second conversion zone.
    Type: Grant
    Filed: December 21, 2007
    Date of Patent: April 5, 2011
    Assignee: UOP LLC
    Inventors: Bipin V. Vora, Peter R. Pujado