And H Patents (Class 585/488)
-
Patent number: 11104624Abstract: A method (100) is proposed for the manufacture of benzene, in which a first feedstock mixture is formed, which contains alkylated aromatics and hydrogen, and in which the alkylated aromatics contained in the first feedstock mixture are partially converted with the hydrogen contained in the first feedstock mixture to the benzene through hydrodealkylation (33), thereby obtaining a first product mixture, wherein the first product mixture contains the benzene, the unconverted alkylated aromatics, alkanes with one to three carbon atoms formed in the conversion of the alkylated aromatics to the benzene, and the unconverted hydrogen, and wherein at least a part of the alkanes with one to three carbon atoms and of the hydrogen are separated from the first product mixture, thereby obtaining a light-gas fraction.Type: GrantFiled: September 8, 2017Date of Patent: August 31, 2021Assignee: LINDE AKTIENGESELLSCHAFTInventors: David Bruder, Torben Hofel, Benedikt Kurz, Karlheinz Brudi, Matthias Andre, Anne Spindelndreher, Richard Koller, Heinz Zimmermann
-
Patent number: 9815754Abstract: Methods and apparatus for processing hydrocarbons are provided. In one example, a method for processing hydrocarbons includes the step of providing feed stream including toluene, ethylbenzene, mixed xylenes, and C9 hydrocarbons. Ethylbenzene is present in the feed stream in an amount of at least about 20% by weight of total C8 aromatic hydrocarbons present in the feed stream. The method further includes the step of subjecting the feed stream to ethylbenzene conversion to form a benzene-containing product stream that includes benzene.Type: GrantFiled: August 29, 2014Date of Patent: November 14, 2017Assignee: UOP LLCInventors: Lawrence E. Sullivan, Emily Harrell, Feng Xu, Jason L. Noe
-
Patent number: 9000247Abstract: A method of forming mixed xylenes from a heavy reformate using a dealkylation-transalkylation system includes the step of introducing both a heavy reformate containing methyl ethyl benzenes and tri-methyl benzenes and that is sufficiently free of toluene and a hydrogen-containing material into the dealkylation stage such that the heavy reformate and the hydrogen-containing material intermingle and contact the hydrodealkylation catalyst. The dealkylation-transalkylation system includes dealkylation, non-aromatic product gas separations and transalkylation stages. Toluene forms from the reaction of methyl ethyl benzenes and hydrogen in the presence of the hydrodealkylation catalyst. The method also includes the step of introducing a dealkylated heavy reformate into the transalkylation stage such that the dealkylated heavy reformate contacts a transalkylation catalyst, forming a transalkylation stage product mixture includes mixed xylenes.Type: GrantFiled: April 19, 2013Date of Patent: April 7, 2015Assignee: Saudi Arabian Oil CompanyInventor: Raed Abudawoud
-
Patent number: 8969643Abstract: A method of converting hydrocarbons requires contacting a hydrocarbon stream containing alkylated aromatic hydrocarbons with a catalyst of a phosphorus-containing pentasil zeolite in a reactor. The phosphorus-containing pentasil zeolite having a phosphorus content of 7.5% or less by weight of zeolite, a pore volume of at least 0.2 ml/g, and a 27Al MAS NMR spectrum characterized by a peak at or near 50 ppm that is greater than any other peak in said spectrum. A benzene-enriched output stream is recovered from the reactor.Type: GrantFiled: May 23, 2013Date of Patent: March 3, 2015Assignee: Saudi Basic Industries CorporationInventors: Ashim Kumar Ghosh, Pamela Harvey, Neeta Kulkarni, Manuel Castelan
-
Patent number: 8927798Abstract: A new family of coherently grown composites of TUN and IMF zeotypes has been synthesized and shown to be effective catalysts for aromatic transformation reactions. These zeolites are represented by the empirical formula: NanMmk+TtAll-xExSiyOz where “n” is the mole ratio of Na to (Al+E), M represents at least one meta, “m” is the mole ratio of M to (Al+E), “k” is the average charge of the metal or metals M, T is the organic structure directing agent or agents, “t” is the mole ratio of N from the organic structure directing agent or agents to (Al+E), and E is a framework element such as gallium. The process involves contacting at least a first aromatic with the coherently grown composites of TUN and IMF zeotypes to produce at least a second aromatic.Type: GrantFiled: December 9, 2013Date of Patent: January 6, 2015Assignee: UOP LLCInventors: Christopher P. Nicholas, Mark A. Miller, Antoine Negiz
-
Publication number: 20140316174Abstract: Methods are provided for the treatment of a feed stream containing C9 aromatic components to produce mesitylene-containing products. The methods include hydrodealkylating the feed stream to remove C2 and higher alkyl groups from the aromatic components and transalkylating the feed stream to rearrange the distribution of methyl groups among the aromatic components. Disclosed methods also include the treatment of a hydrocarbon feedstock by hydrodealkylation and/or transalkylation in order to produce a hydrocarbon product having an increased mass percentage of mesitylene.Type: ApplicationFiled: April 18, 2014Publication date: October 23, 2014Inventors: Chris D'Acosta, Jeffery Miller, Robert Hoch
-
Patent number: 8835705Abstract: The process concerns ethylbenzene conversion and xylene isomerization with a catalyst pretreated by sulfiding.Type: GrantFiled: August 3, 2012Date of Patent: September 16, 2014Assignee: ExxonMobil Chemical Patents Inc.Inventors: Chunshe Cao, Jeffrey L. Andrews, Michel Molinier
-
Patent number: 8748685Abstract: A new family of aluminosilicate zeolites designated UZM-44 has been synthesized. These zeolites are represented by the empirical formula. NanMmk+TtAl1-xExSiyOz where “n” is the mole ratio of Na to (Al+E), M represents a metal or metals from zinc, Group 1, Group 2, Group 3 and or the lanthanide series of the periodic table, “m” is the mole ratio of M to (Al+E), “k” is the average charge of the metal or metals M, T is the organic structure directing agent or agents, and E is a framework element such as gallium. UZM-44 may be used to catalyze an aromatic transformation process by contacting a feed comprising at least a first aromatic with UZM-44 at hydrocarbon conversion conditions to produce at least a second aromatic.Type: GrantFiled: December 18, 2013Date of Patent: June 10, 2014Assignee: UOP LLCInventors: Christopher P. Nicholas, Antoine Negiz, Mark A. Miller
-
Patent number: 8609919Abstract: A new family of aluminosilicate zeolites designated UZM-44 has been synthesized. These zeolites are represented by the empirical formula. NanMmk+TtAl1?xExSiyOz where “n” is the mole ratio of Na to (Al+E), M represents a metal or metals from zinc, Group 1, Group 2, Group 3 and or the lanthanide series of the periodic table, “m” is the mole ratio of M to (Al+E), “k” is the average charge of the metal or metals M, T is the organic structure directing agent or agents, and E is a framework element such as gallium. UZM-44 may be used to catalyze an aromatic transformation process by contacting a feed comprising at least a first aromatic with UZM-44 at hydrocarbon conversion conditions to produce at least a second aromatic.Type: GrantFiled: March 11, 2013Date of Patent: December 17, 2013Assignee: UOP LLCInventors: Christopher P. Nicholas, Antoine Negiz, Mark A. Miller
-
Patent number: 8586809Abstract: A guard bed or absorber is placed upstream of a transalkylation reactor to avoid deposition of halide and/or halogen species on the catalysts in said reactor.Type: GrantFiled: July 14, 2011Date of Patent: November 19, 2013Assignee: ExxonMobil Chemical Patents Inc.Inventors: James H. Beech, Jr., Julia E. Steinheider, Doron Levin, Selma S. Lawrence
-
Publication number: 20130281757Abstract: A new configuration of ZSM-5 is provided whereby the crystals have a higher average silica to alumina ratio at the edges of each crystallite than in the centre as determined from a narrow slit line scan profile obtained from SEM/EDX or TEM/EDX elemental analysis. Such ZSM-5 crystals are obtained by a preparation process using L-tartaric acid. The new configuration ZSM-5 provides significantly reduced xylene losses in ethylbenzene dealkylation, especially when combined with silica as binder, and one or more hydrogenation metals selected from platinum, tin, lead, silver, copper, and nickel.Type: ApplicationFiled: June 20, 2013Publication date: October 24, 2013Inventors: Laszlo DOMOKOS, Ralph HASWELL, Hong-Xin LI
-
Publication number: 20130165727Abstract: Disclosed is a method for selective dealkylation of alkyl-substituted C9+ aromatic compounds using a bimodal porous dealkylation catalyst at a low temperature. The catalyst has a bimodal porous structure including both mesopores and micropores. The catalyst includes a crystalline aluminosilicate and a metal. The catalyst is highly active at a low temperature. According to the method, C9+ aromatic compounds substituted with at least one C2+ alkyl group as by-products formed by xylene production can be selectively dealkylated and converted to BTX, etc. on a large scale within a short time. In addition, the method is an environmentally friendly process entailing reduced waste treatment cost when compared to conventional mesitylene production methods. Therefore, high value-added mesitylene can be separated from low value-added C9+ aromatic compounds at lower cost compared to conventional methods.Type: ApplicationFiled: June 22, 2012Publication date: June 27, 2013Applicants: INHA-INDUSTRY PARTNERSHIP INSTITUTE, S-OIL CORPORATIONInventors: Sung Hyeon Baeck, Geon Joong Kim, Dong-Kyun Noh, Tae Young Jang, Tae-Yun Kim, Young Soo Ahn, Chan-Ju Song, Sang-Cheol Paik
-
Patent number: 8168844Abstract: Process for the catalytic hydrodealkylation alone of hydrocarbon compositions comprising C8-C13 alkylaromatic compounds mixed with C4-C10 aliphatic and cycloaliphatic products which, under the reaction conditions, undergo aromati-zation and subsequent hydrodealkylation, which comprises treating said hydrocarbon compositions in continuous and in the presence of hydrogen, with a catalyst consisting of a ZSM-5 zeolite, as such or in bound form, wherein the Si/Al molar ratio in the ZSM-5 ranges from 5 to 100, modified by means of the platinum-molybdenum couple, at a temperature ranging from 400 to 650° C., a pressure ranging from 2 to 4 MPa and H2/feedstock molar ratio ranging from 3 to 6. The presence of organic compounds containing heteroatoms such as sulphur, nitrogen or oxygen in the feedstock does not at all alter the performances of the catalyst according to the process object of the invention.Type: GrantFiled: August 2, 2007Date of Patent: May 1, 2012Assignee: Polimeri Europa S.p.A.Inventors: Vittorio Arca, Angelo Boscolo Boscoletto, Pierluigi Crocetta
-
Patent number: 8071832Abstract: A process converts ethylbenzene in a C8 aromatic hydrocarbon mixture containing a large amount of non-aromatic hydrocarbons, mainly to benzene, by which the xylene loss is small, the deactivation rate of the catalyst can be reduced, and a high conversion rate to p-xylene can be attained. The process for converting ethylbenzene includes bringing a feedstock containing an alicyclic hydrocarbon(s) in an amount of not less than 1.0% by weight, ethylbenzene and xylene into contact with hydrogen in the presence of a catalyst to convert ethylbenzene mainly to benzene, wherein the catalyst is mainly composed of MFI zeolite and an inorganic oxide(s) and rhenium-supported, and wherein the conversion is carried out at a reaction pressure of not less than 1.0 MPa-G.Type: GrantFiled: March 18, 2009Date of Patent: December 6, 2011Assignee: Toray Industries, Inc.Inventors: Takahiro Yoshikawa, Masatoshi Watanabe, Ryoji Ichioka
-
Patent number: 8071828Abstract: In a process for producing xylene by transalkylation of a C9+ aromatic hydrocarbon feedstock, the feedstock, at least one C6-C7 aromatic hydrocarbon and hydrogen are supplied to at least one reaction zone containing at least first and second catalyst beds located such that the feedstock and hydrogen contact the first bed before contacting the second bed. The first catalyst bed comprises a first catalyst composition comprising a molecular sieve having a Constraint Index in the range of about 3 to about 12 and at least one metal or compound thereof of Groups 6-10 of the Periodic Table of the Elements, and the second catalyst bed comprises a second catalyst composition comprising a molecular sieve having a Constraint Index less than 3.Type: GrantFiled: December 20, 2010Date of Patent: December 6, 2011Assignee: ExxonMobil Chemical Patents Inc.Inventors: Chunshe Cao, Michel Molinier
-
Patent number: 7880045Abstract: Process for the catalytic hydrodealkylation alone of hydrocarbons, comprising C8-C13 alkylaromatic compounds, optionally mixed with C4-C9 aliphatic and cycloaliphatic products, which comprises treating said hydrocarbon compositions, in continuous and in the presence of hydrogen, with a catalyst consisting of a ZSM-5 zeolite, as such or in a bound form, wherein the Si/Al molar ratio in the ZSM-5 ranges from 5 to 35, modified with at least one metal selected from those belonging to groups IIB, VIB, VIII, at a temperature ranging from 400 to 650° C., a pressure ranging from 2 to 4 MPa and a H2/charge molar ratio ranging from 3 to 6.Type: GrantFiled: December 13, 2004Date of Patent: February 1, 2011Assignee: Polimeri Europa S.p.A.Inventors: Vittorio Arca, Angelo Boscolo Boscoletto
-
Publication number: 20100217057Abstract: A new configuration of ZSM-5 is provided whereby the crystals have a higher average silica to alumina ratio at the edges of each crystallite than in the centre as determined from a narrow slit line scan profile obtained from SEM/EDX or TEM/EDX elemental analysis. Such ZSM-5 crystals are obtained by a preparation process using L-tartaric acid. The new configuration ZSM-5 provides significantly reduced xylene losses in ethylbenzene dealkylation, especially when combined with silica as binder, and one or more hydrogenation metals selected from platinum, tin, lead, silver, copper, and nickel. Further advantages are found if used in combination with a small crystal size ZSM-5.Type: ApplicationFiled: September 10, 2008Publication date: August 26, 2010Inventors: László Domokos, Ralph Haswell, Hong-Xin Li
-
Patent number: 7723554Abstract: Process for the catalytic hydrodealkylation alone of hydrocarbon compositions comprising C8-C13 alkylaromatic compounds, optionally in a mixture with C4-C9 aliphatic and cycloaliphatic products, including the treatment in continuous of said hydrocarbon compositions, in the presence of water, with a catalyst consisting of a ZSM-5 zeolite as such or in bound form, wherein the molar ratio Si/Al in the ZSM-5 ranges from 5 to 35, modified with at least one metal selected from those belonging to groups IIB, VIB and VIII, at a temperature ranging from 400 to 700° C., a pressure of between 2 and 4 MPa, a molar ratio between water and the charge in the feed to the reactor ranging from 0.0006 to 0.16 (i.e. between 0.01 and 2.5% w/w) and a molar ratio H2/charge of between 3 and 6.Type: GrantFiled: February 8, 2005Date of Patent: May 25, 2010Assignee: Polimeri Europa S.p.A.Inventors: Vittorio Arca, Angelo Boscolo Boscoletto
-
Patent number: 7553998Abstract: This invention is drawn to a process for producing and recovering one or more high-purity xylene isomers from a feed stream having a substantial content of C9 and heavier hydrocarbons. The feed stream is processed to de-ethylate heavy aromatics, fractionated and passed to a circuit comprising C8-aromatic isomer recovery and isomerization to recover the high-purity xylene isomer with lowered energy costs.Type: GrantFiled: June 21, 2006Date of Patent: June 30, 2009Assignee: UOP LLCInventors: Leo Bresler, Robert B. Larson
-
Patent number: 6900365Abstract: A catalytic hydrodealkylation/reforming process which comprises contacting a heavy hydrocarbon feedstream under catalytic hydrodealkylation/reforming conditions with a composition comprising borosilicate molecular sieves having a pore size greater than about 5.0 Angstroms and a Constraint Index smaller than about 1.0; further containing a hydrogenation/dehydrogenation component; wherein at least a portion of the heavy hydrocarbon feedstream is converted to a product comprising benzene, toluene, xylenes and ethylbenzene.Type: GrantFiled: December 11, 2001Date of Patent: May 31, 2005Assignee: Chevron Phillips Chemical Company LPInventors: Cong-Yan Chen, Stacey I. Zones, Andrew Rainis, Dennis J. O'Rear
-
Patent number: 6627780Abstract: A catalyst composition and a process for hydrodealkylating a C9+ aromatic compound such as, for example, 1,2,4-trimethylbenzene to a C6 to C8 aromatic hydrocarbon such as a xylene are disclosed. The composition comprises an alumina, a metal oxide, a phosphorus oxide and optionally, an acid site modifier selected from the group consisting of silicon oxides, sulfur oxides, boron oxides, magnesium oxides, tin oxides, titanium oxides, zirconium oxides, molybdenum oxides, germanium oxides, indium oxides, lanthanum oxides, cesium oxides, and combinations of any two or more thereof. The process comprises contacting a fluid which comprises a C9+ aromatic compound with the catalyst composition under a condition sufficient to effect the conversion of a C9+ aromatic compound to a C6 to C8 aromatic hydrocarbon.Type: GrantFiled: January 9, 2003Date of Patent: September 30, 2003Assignee: Phillips Petroleum CompanyInventors: An-hsiang Wu, Charles A. Drake
-
Patent number: 6593503Abstract: A catalyst composition and a process for converting a hydrocarbon stream such as, for example, gasoline to C6 to C8 aromatic hydrocarbons such as toluene and xylenes are disclosed. The catalyst composition includes an alumina, a silica, and a metal wherein the weight ratio of aluminum to silicon is in the range of from about 0.002:1 to about 0.6:1. The process includes contacting a hydrocarbon stream with the catalyst composition under a condition sufficient to effect the conversion of a hydrocarbon to a C6 to C8 aromatic hydrocarbon. Also disclosed is a process for producing the catalyst composition which includes: (1) contacting a zeolite with an effective amount of an acid under a condition sufficient to effect a reduction in aluminum content of the zeolite to produce an acid-leached zeolite; and (2) impregnating the acid-leached zeolite with an effective amount of a metal compound under a condition sufficient to effect the production of a metal-promoted zeolite.Type: GrantFiled: August 12, 1996Date of Patent: July 15, 2003Assignee: Phillips Petroleum CompanyInventors: An-hsiang Wu, Charles A. Drake, Ralph J. Melton
-
Publication number: 20030125593Abstract: A catalyst composition and a process for hydrodealkylating a C9+ aromatic compound such as, for example, 1,2,4-trimethylbenzene to a C6 to C8 aromatic hydrocarbon such as a xylene are disclosed. The composition comprises an alumina, a metal oxide, a phosphorus oxide and optionally, an acid site modifier selected from the group consisting of silicon oxides, sulfur oxides, boron oxides, magnesium oxides, tin oxides, titanium oxides, zirconium oxides, molybdenum oxides, germanium oxides, indium oxides, lanthanum oxides, cesium oxides, and combinations of any two or more thereof. The process comprises contacting a fluid which comprises a C9+ aromatic compound with the catalyst composition under a condition sufficient to effect the conversion of a C9+ aromatic compound to a C6 to C8 aromatic hydrocarbon.Type: ApplicationFiled: January 9, 2003Publication date: July 3, 2003Applicant: Phillips Petroleum CompanyInventors: An-Hsiang Wu, Charles A. Drake
-
Patent number: 6359184Abstract: Disclosed herein is a catalyst composition for transalkylation of alkylaromatic hydrocarbons which exhibits the percent conversion of ethyltoluene higher than 50 wt %, is composed of mordenite (100 pbw), inorganic oxide and/or clay (25-150 pbw), and at least one metal component of rhenium, platinum, and nickel, and contains mordenite such that the maximum diameter of secondary particles of mordenite is smaller than 10 &mgr;m. Disclosed also herein is a process for producing xylene by the aid of said catalyst from alkylaromatic hydrocarbons containing C9 alkylaromatic hydrocarbons containing more than 5 wt % ethyltoluene and less than 0.5 wt % naphthalene, in the presence of hydrogen.Type: GrantFiled: January 19, 2000Date of Patent: March 19, 2002Assignee: Toray Industries, Inc.Inventors: Hajime Kato, Hitoshi Tanaka, Kazuyoshi Iwayama, Ryoji Ichioka
-
Publication number: 20020016258Abstract: A catalyst composition and a process for hydrodealkylating a C9+ aromatic compound such as, for example, 1,2,4-trimethylbenzene to a C6 to C8 aromatic hydrocarbon such as a xylene are disclosed. The composition comprises an alumina, a metal oxide, and a coke suppressor selected from the group consisting of silicon oxides, phosphorus oxides, boron oxides, magnesium oxides, tin oxides, titanium oxides, zirconium oxides, molybdenum oxides, germanium oxides, indium oxides, lanthanum oxides, cesium oxides, and combinations of any two or more thereof. The process comprises contacting a fluid which comprises a C9+ aromatic compound with the catalyst composition under a condition sufficient to effect the conversion of a C9+ aromatic compound to a C6 to C8 aromatic hydrocarbon.Type: ApplicationFiled: February 23, 1999Publication date: February 7, 2002Applicant: Phillips Petroleum CompanyInventors: AN-HSIANG WU, CHARLES A. DRAKE
-
Patent number: 6207871Abstract: There is provided a process for producing high-purity meta-xylene by converting a hydrocarbon feedstream comprising at least about 5 wt % ethylbenzene and at least about 20 wt % meta-xylene, over a single molecular sieve catalyst under ethylbenzene conversion conditions sufficient to provide a primary product stream depleted of more than 50% of the ethylbenzene present in the feedstream. The process can further comprise stripping benzene and/or toluene by-products from the primary product stream to provide a secondary product stream comprising at least about 75 wt % mixed ortho-xylene and meta-xylene; and splitting the secondary product stream by removing substantially all of the ortho-xylene present therein to provide a tertiary product stream comprising at least about 95 wt % meta-xylene.Type: GrantFiled: December 19, 1997Date of Patent: March 27, 2001Assignee: Mobil Oil CorporationInventors: Stuart D. Hellring, David L. Stern
-
Patent number: 6133494Abstract: A catalyst composition and a process for hydrodealkylating C.sub.9 + aromatic compounds such as, for example, trimethylbenzenes, to C.sub.6 to C.sub.8 aromatic hydrocarbons such as toluene and xylenes are disclosed. The composition comprises an alumina and a silica wherein the weight ratio of aluminum to silicon is in the range of from about 0.005:1 to about 0.25:1. The process comprises contacting, in the presence of the catalyst composition, a fluid which comprises a C.sub.9 + aromatic compound with a hydrogen-containing fluid under a condition sufficient to effect the conversion of a C.sub.9 + aromatic compound to a C.sub.6 to C.sub.8 aromatic hydrocarbon; and the C.sub.9 + aromatic compound contains at least 9 carbon atoms.Type: GrantFiled: May 21, 1999Date of Patent: October 17, 2000Assignee: Phillips Petroleum CompanyInventors: An-hsiang Wu, Charles A. Drake
-
Patent number: 6040490Abstract: Aromatic hydrocarbons are efficiently converted by bringing feedstock containing from 5 to 50% by weight of an aromatic hydrocarbon having an ethyl group and a C.sub.9 alkyl aromatic hydrocarbon into contact with a catalyst capable of disproportionation, trans-alkylation and dealkylation, a secondary particle diameter of a zeolite in the catalyst being 10 .mu.m or less.Type: GrantFiled: August 12, 1998Date of Patent: March 21, 2000Assignee: Toray Industries, Inc.Inventors: Ryoji Ichioka, Shinobu Yamakawa, Hirohito Okino, Hajime Kato, Kazuyoshi Iwayama, Hiroshi Konta, Akira Kitamura
-
Patent number: 5929295Abstract: A catalyst composition, a process for producing the composition and a hydrocarbon conversion process for converting a C.sub.9 + aromatic compound to a C.sub.6 to C.sub.8 aromatic hydrocarbon such as a xylene are disclosed. The composition comprises an acid-treated zeolite having impregnated thereon a metal or metal oxide. The composition can be produced by incorporating the metal or metal oxide into the zeolite. The hydrocarbon conversion process comprises contacting a fluid which comprises a C.sub.9 + aromatic compound with the catalyst composition under a condition sufficient to effect the conversion of a C.sub.9 + aromatic compound to a C.sub.6 to C.sub.8 aromatic hydrocarbon.Type: GrantFiled: August 6, 1997Date of Patent: July 27, 1999Assignee: Phillips Petroleum CompanyInventors: An-hsiang Wu, Ralph J. Melton, Charles A. Drake
-
Patent number: 5907074Abstract: A catalyst composition and a process for hydrodealkylating a C.sub.9 + aromatic compound such as, for example, 1,2,4-trimethylbenzene to a C.sub.6 to C.sub.8 aromatic hydrocarbon such as a xylene are disclosed. The composition comprises a zeolite, a metal oxide, and an activity modifier selected from the group consisting of silicon oxides, sulfur oxides, phosphorus oxides, boron oxides, magnesium oxides, tin oxides, titanium oxides, zirconium oxides, germanium oxides, indium oxides, lanthanum oxides, cesium oxides, and combinations of any two or more thereof. The process comprises contacting a fluid which comprises a C.sub.9 + aromatic compound with the catalyst composition under a condition sufficient to effect the conversion of a C.sub.9 + aromatic compound to a C.sub.6 to C.sub.8 aromatic hydrocarbon.Type: GrantFiled: January 13, 1997Date of Patent: May 25, 1999Assignee: Phillips Petroleum CompanyInventors: An-hsiang Wu, Charles A. Drake
-
Patent number: 5877374Abstract: A new process for the hydrodealkylation of ethylbenzene and the isomerization of xylenes at low pressure and at a low hydrogen to ethylbenzene mole ratio as well as a low hydrogen to hydrocarbon feed mole ratio using a catalyst comprising (a) HZSM-5 having a particle size less than 1.0 microns, (b) a Group VIII metal such as platinum, and (c) an additional element such as magnesium.Type: GrantFiled: April 2, 1997Date of Patent: March 2, 1999Assignee: Chevron Chemical CompanyInventors: Gerald J. Nacamuli, Roger F. Vogel
-
Patent number: 5866744Abstract: A catalyst composition and a process for converting a hydrocarbon stream such as, for example, a C.sub.9 + aromatic compound to C.sub.6 to C.sub.8 aromatic hydrocarbons such as xylenes are disclosed. The catalyst composition comprises an aluminosilicate, and a metal wherein the weight ratio of aluminum to silicon is in the range of from about 0.002:1 to about 0.6:1. The process comprises contacting a hydrocarbon stream with the catalyst composition under a condition sufficient to effect the conversion of a hydrocarbon to a C.sub.6 to C.sub.8 aromatic hydrocarbon.Type: GrantFiled: January 30, 1997Date of Patent: February 2, 1999Assignee: Phillips Petroleum CompanyInventors: An-hsiang Wu, Charles A. Drake
-
Patent number: 5866741Abstract: A catalyst composition, a process for producing the composition and a hydrocarbon conversion process for converting a C.sub.9 + aromatic compound to a C.sub.6 to C.sub.8 aromatic hydrocarbon such as a xylene are disclosed. The composition comprises a zeolite having impregnated thereon an activity promoter selected from the group consisting of molybdenum, molybdenum oxides, lanthanum, lanthanum oxides, and combinations of two or more thereof. The composition can be produced by incorporating the activity promoter into the zeolite. The hydrocarbon conversion process comprises contacting a fluid which comprises a C.sub.9 + aromatic compound with the catalyst composition under a condition sufficient to effect the conversion of a C.sub.9 + aromatic compound to a C.sub.6 to C.sub.8 aromatic hydrocarbon.Type: GrantFiled: July 23, 1997Date of Patent: February 2, 1999Assignee: Phillips Petroleum CompanyInventors: An-hsiang Wu, Charles A. Drake
-
Patent number: 5866743Abstract: Carburization and metal-dusting while hydrodealkylating a hydrodealkylatable hydrocarbon are reduced even in the substantial absence of added sulfur.Type: GrantFiled: January 11, 1996Date of Patent: February 2, 1999Assignee: Chevron Chemical CompanyInventors: John V. Heyse, Bernard F. Mulaskey, Robert A. Innes, Daniel P. Hagewiesche, William J. Cannella, David C. Kramer
-
Patent number: 5866742Abstract: A catalyst composition, a process for producing the composition and a hydrocarbon conversion process for converting a C.sub.9 + aromatic compound to a C.sub.6 to C.sub.8 aromatic hydrocarbon such as a xylene are disclosed. The composition comprises a zeolite having incorporated therein a promoter comprising carbon and a metal or metal oxide. The composition can be produced by incorporating a metal compound into the zeolite followed by thermal treatment of the resulting zeolite with a hydrocarbon. The hydrocarbon conversion process comprises contacting a fluid which comprises a C.sub.9 + aromatic compound with the catalyst composition under a condition sufficient to effect the conversion of a C.sub.9 + aromatic compound to a C.sub.6 to C.sub.8 aromatic hydrocarbon.Type: GrantFiled: August 4, 1997Date of Patent: February 2, 1999Assignee: Phillips Petroleum CompanyInventors: An-hsiang Wu, Ralph J. Melton, Charles A. Drake
-
Patent number: 5856608Abstract: A catalyst composition and a process for converting a C.sub.9 + aromatic compound such as, for example, 1,2,4-trimethylbenzene to a C.sub.6 to C.sub.8 aromatic hydrocarbon such as a xylene are disclosed. The composition comprises a zeolite, a metal oxide, and optionally a selectivity modifier selected from the group consisting of silicon, sulfur, phosphorus, boron, magnesium, tin, titanium, zirconium, germanium, indium, lanthanum, cesium, oxides thereof and combinations of any two or more thereof. The process comprises contacting a fluid which comprises a C.sub.9 + aromatic compound with the catalyst composition under a condition sufficient to effect the conversion of a C.sub.9 + aromatic compound to a C.sub.6 to C.sub.8 aromatic hydrocarbon.Type: GrantFiled: February 21, 1997Date of Patent: January 5, 1999Assignee: Phillips Petroleum CompanyInventors: An-hsiang Wu, Charles A. Drake
-
Patent number: 5856609Abstract: A catalyst composition and a process for hydrodealkylating a C.sub.9 + aromatic compound such as, for example, 1,2,4-trimethylbenzene to a C.sub.6 to C.sub.8 aromatic hydrocarbon such as a xylene are disclosed. The composition comprises an alumina, a metal oxide, and a acid site modifier selected from the group consisting of silicon oxides, sulfur oxides, phosphorus oxides, boron oxides, magnesium oxides, tin oxides, titanium oxides, zirconium oxides, molybdenum oxides, germanium oxides, indium oxides, lanthanum oxides, cesium oxides, and combinations of any two or more thereof. The process comprises contacting a fluid which comprises a C.sub.9 + aromatic compound with the catalyst composition under a condition sufficient to effect the conversion of a C.sub.9 + aromatic compound to a C.sub.6 to C.sub.8 aromatic hydrocarbon.Type: GrantFiled: September 12, 1996Date of Patent: January 5, 1999Assignee: Phillips Petroleum CompanyInventors: An-hsiang Wu, Charles A. Drake
-
Patent number: 5849969Abstract: Carburization and metal-dusting while hydrodealkylating a hydrodealkylatable hydrocarbon are reduced even in the substantial absence of sulfur.Type: GrantFiled: June 7, 1995Date of Patent: December 15, 1998Assignee: Chevron Chemical CompanyInventors: John V. Heyse, Bernard F. Mulaskey, Robert A. Innes, Daniel P. Hagewiesche, William J. Cannella, David C. Kramer
-
Patent number: 5847256Abstract: An improved process for producing xylene from feedstock containing C.sub.9 alkyl aromatic hydrocarbons with the aid of a catalyst capable of disproportionation, rearrangement, and dealkylation, wherein said improvement comprises performing the reaction in the presence of an aromatic hydrocarbon having one or more ethyl groups in an amount of 5 to 50 wt %.Type: GrantFiled: October 22, 1997Date of Patent: December 8, 1998Assignee: Toray Industries, Inc.Inventors: Ryoji Ichioka, Shinobu Yamakawa, Hirohito Okino
-
Patent number: 5817903Abstract: A catalyst composition and a process for converting a C.sub.9 + aromatic compound to C.sub.6 to C.sub.8 aromatic hydrocarbons such as xylenes are disclosed. The catalyst composition comprises a zeolite and a metal. The process comprises contacting a fluid stream containing a C.sub.9 + aromatic compound with the catalyst composition under a condition sufficient to effect the production of C.sub.6 to C.sub.8 aromatic hydrocarbon. Also disclosed is a process for producing the catalyst composition which can comprise: (1) impregnating a zeolite with an effective and coke-reducing amount of a metal compound under a condition sufficient to effect the production of a metal-promoted zeolite and (2) calcining the metal-promoted zeolite.Type: GrantFiled: April 4, 1997Date of Patent: October 6, 1998Assignee: Phillips Petroleum CompanyInventors: An-hsiang Wu, Charles A. Drake
-
Patent number: 5811615Abstract: A catalyst composition and a process for hydrodealkylating a C.sub.9 + aromatic compound to a C.sub.6 to C.sub.8 aromatic hydrocarbon such as a xylene are disclosed. The composition comprises an alumina and hexavalent chromium oxide. The process comprises contacting a fluid which comprises a C.sub.9 + aromatic compound with the catalyst composition under a condition sufficient to effect the conversion of a C.sub.9 + aromatic compound to a C.sub.6 to C.sub.8 aromatic hydrocarbon.Type: GrantFiled: October 30, 1996Date of Patent: September 22, 1998Assignee: Phillips Petroleum CompanyInventors: An-hsiang Wu, Charles A. Drake
-
Patent number: 5789642Abstract: A catalyst composition and a process for hydrodealkylating a C.sub.9 + aromatic compound to a C.sub.6 to C.sub.8 aromatic hydrocarbon are disclosed. The composition comprises an alumina, molybdenum oxide, and zinc oxide. The process comprises contacting a fluid which comprises a C.sub.9 + aromatic compound with the catalyst composition under a condition sufficient to effect the conversion of a C.sub.9 + aromatic compound to a C.sub.6 to C.sub.8 aromatic hydrocarbon.Type: GrantFiled: December 12, 1996Date of Patent: August 4, 1998Assignee: Phillips Petroleum CompanyInventors: An-hsiang Wu, Charles A. Drake
-
Patent number: 5763721Abstract: A catalyst composition and a process for hydrodealkylating a C.sub.9 + aromatic compound such as, for example, 1,2,4-trimethylbenzene to a C.sub.6 to C.sub.8 aromatic hydrocarbon such as a xylene are disclosed. The composition comprises an alumina, a metal oxide, a phosphorus oxide and optionally, an acid site modifier selected from the group consisting of silicon oxides, sulfur oxides, boron oxides, magnesium oxides, tin oxides, titanium oxides, zirconium oxides, molybdenum oxides, germanium oxides, indium oxides, lanthanum oxides, cesium oxides, and combinations of any two or more thereof. The process comprises contacting a fluid which comprises a C.sub.9 + aromatic compound with the catalyst composition under a condition sufficient to effect the conversion of a C.sub.9 + aromatic compound to a C.sub.6 to C.sub.8 aromatic hydrocarbon.Type: GrantFiled: December 12, 1996Date of Patent: June 9, 1998Assignee: Phillips Petroleum CompanyInventors: An-hsiang Wu, Charles A. Drake
-
Patent number: 5744674Abstract: A catalyst for the preparation of benzene, toluene and xylene from C.sub.9.sup.+ heavy aromatics consists of zeolite ZSM-5 and .gamma.- or .eta.-Al.sub.2 O.sub.3 as carrier, Re, Sn and Pt or Pd supported on the carrier. Under the conditions of 350.degree.-450.degree. C., 0.5-3.5 MPa, a WHSV of 1-5 h.sup.-1 and a H.sub.2 /HC ratio (v/v) of 500-1200, the catalyst achieves high activity and stability as well as low hydrogen consumption.Type: GrantFiled: February 6, 1996Date of Patent: April 28, 1998Assignees: China Petrochemical Corporation, Research Institute of Petroleum ProcessingInventors: Shouxi Gui, Yuzhi Hao, Yanqing Li, Zhenhua Jing, Haohui Gu, Zhanqiao Liang, Baoyu Cheng
-
Patent number: 5714659Abstract: A catalyst composition and a process for hydrodealkylating a C.sub.9 + aromatic compound such as, for example, 1,2,4-trimethylbenzene to a C.sub.6 to C.sub.8 aromatic hydrocarbon such as a xylene are disclosed. The composition comprises an alumina, a metal oxide, and a acid site modifier selected from the group consisting of silicon oxides, boron oxides magnesium oxides, tin oxides, titanium oxides, zirconium oxides, molybdenum oxides, germanium oxides, indium oxides, lanthanum oxides, cesium oxides, and combinations of any two or more thereof. The process comprises contacting a fluid which comprises a C.sub.9 + aromatic compound with the catalyst composition under a condition sufficient to effect the conversion of a C.sub.9 + aromatic compound to a C.sub.6 to C.sub.8 aromatic hydrocarbon.Type: GrantFiled: August 29, 1996Date of Patent: February 3, 1998Assignee: Phillips Petroleum CompanyInventors: An-hsiang Wu, Charles A. Drake
-
Patent number: 5714660Abstract: A catalyst composition and a process for hydrodealkylating a C.sub.9 + aromatic compound such as, for example, 1,2,4-trimethylbenzene to a C.sub.6 to C.sub.8 aromatic hydrocarbon such as a xylene are disclosed. The composition comprises an alumina, a metal oxide, and an acid site modifier selected from the group consisting of silicon oxides, phosphorus oxides, boron oxides, magnesium oxides, tin oxides, titanium oxides, zirconium oxides, molybdenum oxides, germanium oxides, indium oxides, lanthanum oxides, cesium oxides, and combinations of any two or more thereof. The process comprises contacting a fluid which comprises a C.sub.9 + aromatic compound with the catalyst composition under a condition sufficient to effect the conversion of a C.sub.9 + aromatic compound to a C.sub.6 to C.sub.8 aromatic hydrocarbon.Type: GrantFiled: August 29, 1996Date of Patent: February 3, 1998Assignee: Phillips Petroleum CompanyInventors: An-hsiang Wu, Charles A. Drake, Ralph J. Melton
-
Patent number: 5698757Abstract: A composition which comprises a platinum-promoted zeolite and a gallium-promoted zeolite is disclosed. The composition can be used for converting a C.sub.9 + aromatic compound to a C.sub.6 to C.sub.8 aromatic hydrocarbon. Also disclosed is a process for converting a C.sub.9 + aromatic compound to a C.sub.6 to C.sub.8 aromatic hydrocarbons employing the composition.Type: GrantFiled: June 26, 1996Date of Patent: December 16, 1997Assignee: Phillips Petroleum CompanyInventors: An-hsiang Wu, Charles A. Drake
-
Patent number: 5516956Abstract: A mixture of aromatic hydrocarbons, comprising ethylbenzene and at least one xylene, is isomerized using a two component catalyst system to convert the ethylbenzene to compounds that may be removed from the aromatic hydrocarbon stream and to produce a product stream wherein the para-xylene concentration is approximately equal to the equilibrium ratio of the para-isomer. The first catalyst comprises an intermediate pore size zeolite that is effective for ethylbenzene conversion. The first catalyst is preferably silica-bound. The second catalyst comprises an intermediate pore size zeolite, which further has a small crystal size and which is effective to catalyze xylene isomerization. Each of the catalysts of this invention may contain one or more hydrogenation/dehydrogenation component.Type: GrantFiled: November 18, 1994Date of Patent: May 14, 1996Assignee: Mobil Oil CorporationInventors: Jeevan S. Abichandani, Chaya R. Venkat
-
Patent number: 5457255Abstract: A catalyst for hydrogenolytic dealkylation comprising rhodium on a crystalline metallo-silicate carrier and a process for hydrogenolytically dealkylating a hydrocarbon mixture mainly comprising alkyl aromatic hydrocarbons in the presence of such a catalyst are disclosed. The catalyst exhibits catalytic activity at low temperatures and high reaction selectivity and has a prolonged duration.Type: GrantFiled: May 24, 1994Date of Patent: October 10, 1995Assignee: Mitsubishi Oil Co., Ltd.Inventors: Fumio Kumata, Toshihiko Masuda, Iwao Ueda
-
Patent number: RE38532Abstract: Carburization and metal-dusting while hydrodealkylating a hydrodealkylatable hydrocarbon are reduced even in the substantial absence of added sulfur.Type: GrantFiled: December 6, 1999Date of Patent: June 8, 2004Assignee: Chevron Phillips Chemical Company LPInventors: John V. Heyse, Bernard F. Mulaskey, Robert A. Innes, Daniel P. Hagewiesche, William J. Cannella, David C. Kramer