Transition Metal-containing Catalyst Patents (Class 585/489)
  • Patent number: 9376325
    Abstract: A new configuration of ZSM-5 is provided whereby the crystals have a higher average silica to alumina ratio at the edges of each crystallite than in the center as determined from a narrow slit line scan profile obtained from SEM/EDX or TEM/EDX elemental analysis. Such ZSM-5 crystals are obtained by a preparation process using L-tartaric acid. The new configuration ZSM-5 provides significantly reduced xylene losses in ethylbenzene dealkylation, especially when combined with silica as binder, and one or more hydrogenation metals selected from platinum, tin, lead, silver, copper, and nickel.
    Type: Grant
    Filed: June 20, 2013
    Date of Patent: June 28, 2016
    Assignee: Shell Oil Company
    Inventors: Laszlo Domokos, Ralph Haswell, Hong-Xin Li
  • Patent number: 9000247
    Abstract: A method of forming mixed xylenes from a heavy reformate using a dealkylation-transalkylation system includes the step of introducing both a heavy reformate containing methyl ethyl benzenes and tri-methyl benzenes and that is sufficiently free of toluene and a hydrogen-containing material into the dealkylation stage such that the heavy reformate and the hydrogen-containing material intermingle and contact the hydrodealkylation catalyst. The dealkylation-transalkylation system includes dealkylation, non-aromatic product gas separations and transalkylation stages. Toluene forms from the reaction of methyl ethyl benzenes and hydrogen in the presence of the hydrodealkylation catalyst. The method also includes the step of introducing a dealkylated heavy reformate into the transalkylation stage such that the dealkylated heavy reformate contacts a transalkylation catalyst, forming a transalkylation stage product mixture includes mixed xylenes.
    Type: Grant
    Filed: April 19, 2013
    Date of Patent: April 7, 2015
    Assignee: Saudi Arabian Oil Company
    Inventor: Raed Abudawoud
  • Patent number: 8993821
    Abstract: A new family of crystalline aluminosilicate zeolites has been synthesized that has been designated UZM-43. These zeolites are similar to previously known ERS-10, SSZ-47 and RUB-35 zeolites but are characterized by unique x-ray diffraction patterns and compositions and have catalytic properties for carrying out various hydrocarbon conversion processes. Catalysts made from these zeolites are useful in hydrocarbon conversion reactions.
    Type: Grant
    Filed: December 18, 2012
    Date of Patent: March 31, 2015
    Assignee: UOP LLC
    Inventors: Deng-Yang Jan, Jaime G. Moscoso, Paula L. Bogdan
  • Patent number: 8969643
    Abstract: A method of converting hydrocarbons requires contacting a hydrocarbon stream containing alkylated aromatic hydrocarbons with a catalyst of a phosphorus-containing pentasil zeolite in a reactor. The phosphorus-containing pentasil zeolite having a phosphorus content of 7.5% or less by weight of zeolite, a pore volume of at least 0.2 ml/g, and a 27Al MAS NMR spectrum characterized by a peak at or near 50 ppm that is greater than any other peak in said spectrum. A benzene-enriched output stream is recovered from the reactor.
    Type: Grant
    Filed: May 23, 2013
    Date of Patent: March 3, 2015
    Assignee: Saudi Basic Industries Corporation
    Inventors: Ashim Kumar Ghosh, Pamela Harvey, Neeta Kulkarni, Manuel Castelan
  • Patent number: 8933283
    Abstract: This invention relates to a petroleum refining method for producing high value-added clean petroleum products and aromatics (Benzene/Toluene/Xylene) together, by which low pollution petroleum products including liquefied petroleum gas or low-sulfur gas oil and aromatics can be efficiently produced together from a fluid catalytic cracked oil fraction.
    Type: Grant
    Filed: November 26, 2008
    Date of Patent: January 13, 2015
    Assignee: SK Innovation Co., Ltd.
    Inventors: Cheol Joong Kim, Jae Wook Ryu, Kyeong Hak Seong, Byoung Mu Chang, Byeung Soo Lim, Jong Hyung Lee, Kyung Seok Noh, Hyuck Jae Lee, Sam Ryong Park, Sun Choi, Seung Hoon Oh, Yong Seung Kim, Gyung Rok Kim
  • Patent number: 8927798
    Abstract: A new family of coherently grown composites of TUN and IMF zeotypes has been synthesized and shown to be effective catalysts for aromatic transformation reactions. These zeolites are represented by the empirical formula: NanMmk+TtAll-xExSiyOz where “n” is the mole ratio of Na to (Al+E), M represents at least one meta, “m” is the mole ratio of M to (Al+E), “k” is the average charge of the metal or metals M, T is the organic structure directing agent or agents, “t” is the mole ratio of N from the organic structure directing agent or agents to (Al+E), and E is a framework element such as gallium. The process involves contacting at least a first aromatic with the coherently grown composites of TUN and IMF zeotypes to produce at least a second aromatic.
    Type: Grant
    Filed: December 9, 2013
    Date of Patent: January 6, 2015
    Assignee: UOP LLC
    Inventors: Christopher P. Nicholas, Mark A. Miller, Antoine Negiz
  • Publication number: 20140316174
    Abstract: Methods are provided for the treatment of a feed stream containing C9 aromatic components to produce mesitylene-containing products. The methods include hydrodealkylating the feed stream to remove C2 and higher alkyl groups from the aromatic components and transalkylating the feed stream to rearrange the distribution of methyl groups among the aromatic components. Disclosed methods also include the treatment of a hydrocarbon feedstock by hydrodealkylation and/or transalkylation in order to produce a hydrocarbon product having an increased mass percentage of mesitylene.
    Type: Application
    Filed: April 18, 2014
    Publication date: October 23, 2014
    Inventors: Chris D'Acosta, Jeffery Miller, Robert Hoch
  • Patent number: 8835705
    Abstract: The process concerns ethylbenzene conversion and xylene isomerization with a catalyst pretreated by sulfiding.
    Type: Grant
    Filed: August 3, 2012
    Date of Patent: September 16, 2014
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Chunshe Cao, Jeffrey L. Andrews, Michel Molinier
  • Patent number: 8748685
    Abstract: A new family of aluminosilicate zeolites designated UZM-44 has been synthesized. These zeolites are represented by the empirical formula. NanMmk+TtAl1-xExSiyOz where “n” is the mole ratio of Na to (Al+E), M represents a metal or metals from zinc, Group 1, Group 2, Group 3 and or the lanthanide series of the periodic table, “m” is the mole ratio of M to (Al+E), “k” is the average charge of the metal or metals M, T is the organic structure directing agent or agents, and E is a framework element such as gallium. UZM-44 may be used to catalyze an aromatic transformation process by contacting a feed comprising at least a first aromatic with UZM-44 at hydrocarbon conversion conditions to produce at least a second aromatic.
    Type: Grant
    Filed: December 18, 2013
    Date of Patent: June 10, 2014
    Assignee: UOP LLC
    Inventors: Christopher P. Nicholas, Antoine Negiz, Mark A. Miller
  • Patent number: 8735641
    Abstract: Disclosed is a method for selective dealkylation of alkyl-substituted C9+ aromatic compounds using a bimodal porous dealkylation catalyst at a low temperature. The catalyst has a bimodal porous structure including both mesopores and micropores. The catalyst includes a crystalline aluminosilicate and a metal. The catalyst is highly active at a low temperature. According to the method, C9+ aromatic compounds substituted with at least one C2+ alkyl group as by-products formed by xylene production can be selectively dealkylated and converted to BTX, etc. on a large scale within a short time. In addition, the method is an environmentally friendly process entailing reduced waste treatment cost when compared to conventional mesitylene production methods. Therefore, high value-added mesitylene can be separated from low value-added C9+ aromatic compounds at lower cost compared to conventional methods.
    Type: Grant
    Filed: June 22, 2012
    Date of Patent: May 27, 2014
    Assignees: S-Oil Corporation, Inha-Industry Partnership Institute
    Inventors: Sung Hyeon Baeck, Geon Joong Kim, Dong-Kyun Noh, Tae Young Jang, Tae-Yun Kim, Young Soo Ahn, Chan-ju Song, Sang-Cheol Paik
  • Patent number: 8609919
    Abstract: A new family of aluminosilicate zeolites designated UZM-44 has been synthesized. These zeolites are represented by the empirical formula. NanMmk+TtAl1?xExSiyOz where “n” is the mole ratio of Na to (Al+E), M represents a metal or metals from zinc, Group 1, Group 2, Group 3 and or the lanthanide series of the periodic table, “m” is the mole ratio of M to (Al+E), “k” is the average charge of the metal or metals M, T is the organic structure directing agent or agents, and E is a framework element such as gallium. UZM-44 may be used to catalyze an aromatic transformation process by contacting a feed comprising at least a first aromatic with UZM-44 at hydrocarbon conversion conditions to produce at least a second aromatic.
    Type: Grant
    Filed: March 11, 2013
    Date of Patent: December 17, 2013
    Assignee: UOP LLC
    Inventors: Christopher P. Nicholas, Antoine Negiz, Mark A. Miller
  • Patent number: 8586809
    Abstract: A guard bed or absorber is placed upstream of a transalkylation reactor to avoid deposition of halide and/or halogen species on the catalysts in said reactor.
    Type: Grant
    Filed: July 14, 2011
    Date of Patent: November 19, 2013
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: James H. Beech, Jr., Julia E. Steinheider, Doron Levin, Selma S. Lawrence
  • Patent number: 8574542
    Abstract: A new configuration of ZSM-5 is provided whereby the crystals have a higher average silica to alumina ratio at the edges of each crystallite than in the center as determined from a narrow slit line scan profile obtained from SEM/EDX or TEM/EDX elemental analysis. Such ZSM-5 crystals are obtained by a preparation process using L-tartaric acid. The new configuration ZSM-5 provides significantly reduced xylene losses in ethylbenzene dealkylation, especially when combined with silica as binder, and one or more hydrogenation metals selected from platinum, tin, lead, silver, copper, and nickel. Further advantages are found if used in combination with a small crystal size ZSM-5.
    Type: Grant
    Filed: September 10, 2008
    Date of Patent: November 5, 2013
    Assignee: Shell Oil Company
    Inventors: László Domokos, Ralph Haswell, Hong-Xin Li
  • Publication number: 20130281757
    Abstract: A new configuration of ZSM-5 is provided whereby the crystals have a higher average silica to alumina ratio at the edges of each crystallite than in the centre as determined from a narrow slit line scan profile obtained from SEM/EDX or TEM/EDX elemental analysis. Such ZSM-5 crystals are obtained by a preparation process using L-tartaric acid. The new configuration ZSM-5 provides significantly reduced xylene losses in ethylbenzene dealkylation, especially when combined with silica as binder, and one or more hydrogenation metals selected from platinum, tin, lead, silver, copper, and nickel.
    Type: Application
    Filed: June 20, 2013
    Publication date: October 24, 2013
    Inventors: Laszlo DOMOKOS, Ralph HASWELL, Hong-Xin LI
  • Publication number: 20130165727
    Abstract: Disclosed is a method for selective dealkylation of alkyl-substituted C9+ aromatic compounds using a bimodal porous dealkylation catalyst at a low temperature. The catalyst has a bimodal porous structure including both mesopores and micropores. The catalyst includes a crystalline aluminosilicate and a metal. The catalyst is highly active at a low temperature. According to the method, C9+ aromatic compounds substituted with at least one C2+ alkyl group as by-products formed by xylene production can be selectively dealkylated and converted to BTX, etc. on a large scale within a short time. In addition, the method is an environmentally friendly process entailing reduced waste treatment cost when compared to conventional mesitylene production methods. Therefore, high value-added mesitylene can be separated from low value-added C9+ aromatic compounds at lower cost compared to conventional methods.
    Type: Application
    Filed: June 22, 2012
    Publication date: June 27, 2013
    Applicants: INHA-INDUSTRY PARTNERSHIP INSTITUTE, S-OIL CORPORATION
    Inventors: Sung Hyeon Baeck, Geon Joong Kim, Dong-Kyun Noh, Tae Young Jang, Tae-Yun Kim, Young Soo Ahn, Chan-Ju Song, Sang-Cheol Paik
  • Patent number: 8309778
    Abstract: The present invention provides a catalyst comprising metallic Pt and/or Pd supported on a binder-free zeolite for producing light aromatic hydrocarbons and light alkanes from hydrocarbonaceous feedstock, wherein the amount of metallic Pt and/or Pd is of 0.01-0.8 wt %, preferably 0.01-0.5 wt % on the basis of the total weight of the catalyst, and the binder-free zeolite is selected from the group consisting of mordenite, beta zeolite, Y zeolite, ZSM-5, ZSM-11 and composite or cocrystal zeolite thereof. The present invention also provides a process for producing light aromatic hydrocarbons and light alkanes from hydrocarbonaceous feedstock using said catalyst.
    Type: Grant
    Filed: November 7, 2011
    Date of Patent: November 13, 2012
    Assignees: China Petroleum & Chemical Corporation, Shanghai Research Institute of Petrochemical Technology Sinopec
    Inventors: Deju Wang, Zhongneng Liu, Xueli Li, Minbo Hou, Zheming Wang, Jianqiang Wang
  • Patent number: 8168844
    Abstract: Process for the catalytic hydrodealkylation alone of hydrocarbon compositions comprising C8-C13 alkylaromatic compounds mixed with C4-C10 aliphatic and cycloaliphatic products which, under the reaction conditions, undergo aromati-zation and subsequent hydrodealkylation, which comprises treating said hydrocarbon compositions in continuous and in the presence of hydrogen, with a catalyst consisting of a ZSM-5 zeolite, as such or in bound form, wherein the Si/Al molar ratio in the ZSM-5 ranges from 5 to 100, modified by means of the platinum-molybdenum couple, at a temperature ranging from 400 to 650° C., a pressure ranging from 2 to 4 MPa and H2/feedstock molar ratio ranging from 3 to 6. The presence of organic compounds containing heteroatoms such as sulphur, nitrogen or oxygen in the feedstock does not at all alter the performances of the catalyst according to the process object of the invention.
    Type: Grant
    Filed: August 2, 2007
    Date of Patent: May 1, 2012
    Assignee: Polimeri Europa S.p.A.
    Inventors: Vittorio Arca, Angelo Boscolo Boscoletto, Pierluigi Crocetta
  • Patent number: 8071828
    Abstract: In a process for producing xylene by transalkylation of a C9+ aromatic hydrocarbon feedstock, the feedstock, at least one C6-C7 aromatic hydrocarbon and hydrogen are supplied to at least one reaction zone containing at least first and second catalyst beds located such that the feedstock and hydrogen contact the first bed before contacting the second bed. The first catalyst bed comprises a first catalyst composition comprising a molecular sieve having a Constraint Index in the range of about 3 to about 12 and at least one metal or compound thereof of Groups 6-10 of the Periodic Table of the Elements, and the second catalyst bed comprises a second catalyst composition comprising a molecular sieve having a Constraint Index less than 3.
    Type: Grant
    Filed: December 20, 2010
    Date of Patent: December 6, 2011
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Chunshe Cao, Michel Molinier
  • Patent number: 8071832
    Abstract: A process converts ethylbenzene in a C8 aromatic hydrocarbon mixture containing a large amount of non-aromatic hydrocarbons, mainly to benzene, by which the xylene loss is small, the deactivation rate of the catalyst can be reduced, and a high conversion rate to p-xylene can be attained. The process for converting ethylbenzene includes bringing a feedstock containing an alicyclic hydrocarbon(s) in an amount of not less than 1.0% by weight, ethylbenzene and xylene into contact with hydrogen in the presence of a catalyst to convert ethylbenzene mainly to benzene, wherein the catalyst is mainly composed of MFI zeolite and an inorganic oxide(s) and rhenium-supported, and wherein the conversion is carried out at a reaction pressure of not less than 1.0 MPa-G.
    Type: Grant
    Filed: March 18, 2009
    Date of Patent: December 6, 2011
    Assignee: Toray Industries, Inc.
    Inventors: Takahiro Yoshikawa, Masatoshi Watanabe, Ryoji Ichioka
  • Patent number: 7880045
    Abstract: Process for the catalytic hydrodealkylation alone of hydrocarbons, comprising C8-C13 alkylaromatic compounds, optionally mixed with C4-C9 aliphatic and cycloaliphatic products, which comprises treating said hydrocarbon compositions, in continuous and in the presence of hydrogen, with a catalyst consisting of a ZSM-5 zeolite, as such or in a bound form, wherein the Si/Al molar ratio in the ZSM-5 ranges from 5 to 35, modified with at least one metal selected from those belonging to groups IIB, VIB, VIII, at a temperature ranging from 400 to 650° C., a pressure ranging from 2 to 4 MPa and a H2/charge molar ratio ranging from 3 to 6.
    Type: Grant
    Filed: December 13, 2004
    Date of Patent: February 1, 2011
    Assignee: Polimeri Europa S.p.A.
    Inventors: Vittorio Arca, Angelo Boscolo Boscoletto
  • Publication number: 20100249479
    Abstract: A catalyst composition which comprises: a) a carrier which comprises at least 30 wt % of a binder selected from silica, zirconia and titania; at least 20 wt % of a pentasil zeolite, having a bulk silica to alumina ratio in the range of from 20 to 150 and being in its H+ form; and less than 10 wt % of other components, all percentages being on the basis of total carrier; b) platinum in an amount in the range of from 0.001 to 0.1 wt %, on the basis of total catalyst; and c) tin in an amount in the range of from 0.01 to 0.5 wt %, on the basis of total catalyst; its preparation and use; are provided.
    Type: Application
    Filed: July 28, 2008
    Publication date: September 30, 2010
    Inventors: Johanna Jacoba Berg-Slot, László Domokos, Ingrid Maria Van Vegghel
  • Publication number: 20100179360
    Abstract: A process for converting ethylbenzene, by which ethylbenzene in a feedstock containing C8 aromatic hydrocarbon is converted to benzene at a high degree of conversion is disclosed. The process for converting ethylbenzene includes bringing a C8 aromatic hydrocarbon mixed feedstocks containing ethylbenzene into contact with an acid type catalyst containing at least one metal selected from the group consisting of the metals belonging to Group VII and Group VIII in the presence of H2 to convert ethylbenzene to benzene. The feedstock contains C9-C10 aromatic hydrocarbons including ethyltoluene, and the ethyltoluene is converted to toluene together with the conversion of ethylbenzene.
    Type: Application
    Filed: March 28, 2007
    Publication date: July 15, 2010
    Applicant: Toray Industries, Inc., a corporation of Japan
    Inventors: Ryoji Ichioka, Eiichi Minomiya, Shinobu Yamakawa
  • Patent number: 7723554
    Abstract: Process for the catalytic hydrodealkylation alone of hydrocarbon compositions comprising C8-C13 alkylaromatic compounds, optionally in a mixture with C4-C9 aliphatic and cycloaliphatic products, including the treatment in continuous of said hydrocarbon compositions, in the presence of water, with a catalyst consisting of a ZSM-5 zeolite as such or in bound form, wherein the molar ratio Si/Al in the ZSM-5 ranges from 5 to 35, modified with at least one metal selected from those belonging to groups IIB, VIB and VIII, at a temperature ranging from 400 to 700° C., a pressure of between 2 and 4 MPa, a molar ratio between water and the charge in the feed to the reactor ranging from 0.0006 to 0.16 (i.e. between 0.01 and 2.5% w/w) and a molar ratio H2/charge of between 3 and 6.
    Type: Grant
    Filed: February 8, 2005
    Date of Patent: May 25, 2010
    Assignee: Polimeri Europa S.p.A.
    Inventors: Vittorio Arca, Angelo Boscolo Boscoletto
  • Patent number: 7601881
    Abstract: A catalyst and process is disclosed to selectively upgrade a paraffinic feedstock to obtain an isoparaffin-rich product for blending into gasoline. The catalyst comprises a support of a tungstated oxide or hydroxide of a Group IVB (IUPAC 4) metal, a phosphorus component, and at least one platinum-group metal component which is preferably platinum. The catalyst has a structure other than a heteropoly anion structure.
    Type: Grant
    Filed: January 30, 2008
    Date of Patent: October 13, 2009
    Assignee: UOP LLC
    Inventors: Ralph D. Gillespie, Feng Xu
  • Patent number: 7563358
    Abstract: A hydrocarbon conversion process for producing an aromatics product containing of benzene, toluene, xylenes, or mixtures thereof. The process is carried out by converting precursors of benzene, toluene, and xylenes that are contained in a hydrocarbon feed (C6+ non-aromatic cyclic hydrocarbons, A8+ single-ring aromatic hydrocarbons having at least one alkyl group containing two or more carbon atoms; and A9+ single-ring aromatic hydrocarbons having at least three methyl groups) to produce a product that contains an increased amount of benzene, toluene, xylenes, or combinations thereof compared to said hydrocarbon feed.
    Type: Grant
    Filed: August 24, 2006
    Date of Patent: July 21, 2009
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Elizabeth L. Stavens, Stephen H. Brown, J. Scott Buchanan, Yun-Feng Chang, Larry L. Iaccino, Paul F. Keusenkothen, John D. Y. Ou, Randall D. Partridge
  • Patent number: 7446237
    Abstract: Catalysts comprise a combination of molecular sieve having a pore diameter of from about 4 to 8 angstroms and a catalytically-effective amount of molybdenum hydrogenation component and a sufficient amount of at least one platinum group metal hydrogenation component to enhance the isomerization activity of the catalyst.
    Type: Grant
    Filed: July 11, 2007
    Date of Patent: November 4, 2008
    Assignee: UOP LLC
    Inventors: Paula L. Bogdan, Patrick C. Whitchurch, Robert B. Larson, James E. Rekoske
  • Patent number: 7425660
    Abstract: Catalysts comprising a combination of molecular sieve having a pore diameter of from about 4 to 8 angstroms and a catalytically-effective amount of molybdenum hydrogenation component in an amorphous aluminum phosphate binder provide processes for isomerizing xylene and dealkylating ethylbenzene in feed streams that exhibit stability, selectivity and low ring loss.
    Type: Grant
    Filed: July 3, 2007
    Date of Patent: September 16, 2008
    Assignee: UOP LLC
    Inventors: Robert B. Larson, James E. Rekoske, Patrick C. Whitchurch, Paula L. Bogdan
  • Patent number: 7304195
    Abstract: A process for increasing the production of benzene from a hydrocarbon mixture. A process for producing an aromatic hydrocarbon mixture and liquefied petroleum gas (LPG) from a hydrocarbon mixture, and a solvent extraction process for separating and recovering polar hydrocarbons from a hydrocarbon mixture containing polar hydrocarbons (that is, aromatic hydrocarbons) and nonpolar hydrocarbons (that is, non-aromatic hydrocarbons) are integrated, thereby it is possible to increase the production of benzene.
    Type: Grant
    Filed: September 13, 2005
    Date of Patent: December 4, 2007
    Assignee: SK Corporation
    Inventors: Sun Choi, Seung Hoon Oh, Kyoung Hak Sung, Jong Hyung Lee, Sin Choel Kang, Yong Seung Kim, Byeung Soo Lim, Byoung Mu Chang
  • Patent number: 7301063
    Abstract: A process for increasing the production of light olefin hydrocarbons from a hydrocarbon feedstock. A process for producing an aromatic hydrocarbon mixture and liquefied petroleum gas (LPG) from a hydrocarbon mixture, and a process for producing a hydrocarbon feedstock which is capable of being used as a feedstock in the former process, that is to say, a fluidized catalytic cracking (FCC) process, a catalytic reforming process, and/or a pyrolysis process, are integrated, thereby it is possible to increase the production of C2-C4 light olefin hydrocarbons.
    Type: Grant
    Filed: September 12, 2005
    Date of Patent: November 27, 2007
    Assignee: SK Corporation
    Inventors: Sun Choi, Seung Hoon Oh, Kyoung Hak Sung, Jong Hyung Lee, Sin Choel Kang, Yong Seung Kim, Byeung Soo Lim, Ahn Seop Choi, Byoung Mu Chang
  • Patent number: 7301064
    Abstract: Catalysts comprising a combination of molecular sieve having a pore diameter of from about 4 to 8 angstroms and a catalytically-effective amount of molybdenum hydrogenation component in an amorphous aluminum phosphate binder provide processes for isomerizing xylene and dealkylating ethylbenzene in feed streams that exhibit stability, selectivity and low ring loss.
    Type: Grant
    Filed: September 14, 2005
    Date of Patent: November 27, 2007
    Assignee: UOP LLC
    Inventors: Paula L. Bogdan, Patrick C. Whitchurch, Robert B. Larson, James E. Rekoske, Dimitri A. Trufanov, Victor C. Patton, Suheil F. Abdo
  • Patent number: 7297831
    Abstract: Disclosed is a process of preparing aromatic hydrocarbons and liquefied petroleum gas (LPG) from a hydrocarbon mixture, in which a non-aromatic compound in the hydrocarbon feedstock mixture is converted into a gaseous material having a large amount of LPG through hydrocracking, and an aromatic compound therein is converted into an oil component having large amounts of benzene, toluene, and xylene (BTX) through dealkylation and transalkylation, in the presence of a catalyst obtained by supporting platinum/bismuth onto a mixture support having zeolite and an inorganic binder. The gaseous product is separated into LPG and a mixture of methane and ethane depending on differences in boiling point through distillation, while the liquid product is separated into benzene, toluene, xylene, and C9+ aromatic compounds depending on differences in boiling point through distillation.
    Type: Grant
    Filed: November 8, 2006
    Date of Patent: November 20, 2007
    Assignee: SK Corporation
    Inventors: Jong Hyung Lee, Seung Hoon Oh, Kyoung Hak Sung, Sun Choi, Yong Seung Kim, Byeung Soo Lim
  • Patent number: 7282617
    Abstract: A process for making medium and long chain alkylaromatics and alkylphenols having a high level of anti-Markovnikov addition of the alkyl group. The alkylaromatics and alkylphenols made by the process of the present invention have enhanced stability and are particularly well suited to make highly stable oil additives and enhanced oil recovery surfactants.
    Type: Grant
    Filed: March 31, 2006
    Date of Patent: October 16, 2007
    Assignee: Chevron U.S.A. Inc.
    Inventors: William L. Schinski, Curt B. Campbell
  • Patent number: 7081556
    Abstract: There is provided a process for aromatics conversion by contacting a feed suitable for aromatics conversion under conversion condition and in the presence of a catalyst comprising ITQ-13. Examples of such conversion processes include isomerization of aromatic (xylenes) feedstock, disproportionation of toluene to benzene and xylenes, alkylation and transalkylation of aromatics, conversion of light paraffins and light olefins to aromatics, conversion of naphtha to aromatics, and conversion of alcohol to aromatics.
    Type: Grant
    Filed: November 1, 2002
    Date of Patent: July 25, 2006
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: John Scott Buchanan, Jihad Mohammed Dakka, Xiaobing Feng, Jose Guadalupe Santiesteban
  • Patent number: 7041866
    Abstract: A catalyst and process is disclosed to selectively upgrade a paraffinic feedstock to obtain an isoparaffin-rich product for blending into gasoline. The catalyst comprises a support of a sulfated oxide or hydroxide of a Group IVB (IUPAC 4) metal, a first component comprising at least one Group III A (IUPAC 13) component, and at least one platinum-group metal component which is preferably platinum.
    Type: Grant
    Filed: October 8, 2002
    Date of Patent: May 9, 2006
    Assignee: UOP LLC
    Inventor: Ralph D. Gillespie
  • Patent number: 6977322
    Abstract: A catalyst and process is disclosed to selectively upgrade a paraffinic feedstock to obtain an isoparaffin-rich product for blending into gasoline. The catalyst comprises a support of a tungstated oxide or hydroxide of a Group IVB (IUPAC 4) metal, a first component of at least one lanthanide element, yttrium or mixtures thereof, which is preferably ytterbium or holmium, and at least one platinum-group metal component which is preferably platinum.
    Type: Grant
    Filed: July 19, 2004
    Date of Patent: December 20, 2005
    Assignee: UOP LLC
    Inventor: Ralph D. Gillespie
  • Patent number: 6900365
    Abstract: A catalytic hydrodealkylation/reforming process which comprises contacting a heavy hydrocarbon feedstream under catalytic hydrodealkylation/reforming conditions with a composition comprising borosilicate molecular sieves having a pore size greater than about 5.0 Angstroms and a Constraint Index smaller than about 1.0; further containing a hydrogenation/dehydrogenation component; wherein at least a portion of the heavy hydrocarbon feedstream is converted to a product comprising benzene, toluene, xylenes and ethylbenzene.
    Type: Grant
    Filed: December 11, 2001
    Date of Patent: May 31, 2005
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Cong-Yan Chen, Stacey I. Zones, Andrew Rainis, Dennis J. O'Rear
  • Patent number: 6746597
    Abstract: A noble metal nanometer-sized catalyst composition is described along with the method for preparation of the composition. The crystal face of the catalyst contains a preponderance of (111) type crystal phase exposure. The crystal phase exposure is controlled by sequestering the noble metal cation before deposition on a catalyst support. Controlled catalyst face exposition combined with the nanometer scale of the catalyst increases the catalyst selectivity and activity, particularly for hydrogenation and dehydrogenation reactions.
    Type: Grant
    Filed: January 31, 2002
    Date of Patent: June 8, 2004
    Assignee: Hydrocarbon Technologies, Inc.
    Inventors: Bing Zhou, Michael Rueter
  • Publication number: 20040087822
    Abstract: There is provided a process for aromatics conversion by contacting a feed suitable for aromatics conversion under conversion condition and in the presence of a catalyst comprising ITQ-13. Examples of such conversion processes include isomerization of aromatic (xylenes) feedstock, disproportionation of toluene to benzene and xylenes, alkylation and transalkylation of aromatics, conversion of light paraffins and light olefins to aromatics, conversion of naphtha to aromatics, and conversion of alcohol to aromatics.
    Type: Application
    Filed: November 1, 2002
    Publication date: May 6, 2004
    Inventors: John Scott Buchanan, Jihad Mohammed Dakka, Xiaobing Feng, Jose Guadalupe Santiesteban
  • Publication number: 20040045872
    Abstract: There is provided macrostructures of porous inorganic material which can have controlled size, shape, and/or porosity and a process for preparing the macrostructures. The macrostructures comprise a three-dimension network of particles of porous inorganic materials. The process for preparing the macrostructures involves forming an admixture containing a porous organic ion exchanger and a synthesis mixture capable of forming a porous inorganic material and then converting the synthesis mixture to a solid porous inorganic material. After formation of the composite material, the porous organic ion exchanger can be removed from the composite material to obtain the macrostructures, either before or after the porous inorganic material is hydrothermally treated with a structure directing agent to convert at least a portion of such porous inorganic material to a crystalline molecular sieve composition. The resulting macrostructure is composed of particles of the crystalline molecular sieve composition.
    Type: Application
    Filed: July 1, 2003
    Publication date: March 11, 2004
    Inventors: Per Johan Sterte, Lubomira Borislavova Tosheva-Jivkova
  • Patent number: 6635792
    Abstract: Disclosed are a process for producing aromatic hydrocarbon compounds and liquefied petroleum gas (LPG) from a hydrocarbon feedstock having boiling points of 30-250° C. and a catalyst useful therefor. In the presence of said catalyst, aromatic components in the hydrocarbon feedstock are converted to BTX-enriched components of liquid phase through hydrodealkylation and/or transalkylation, and non-aromatic components are converted to LPG-enriched gaseous materials through hydrocracking. The products of liquid phase may be separated as benzene, toluene, xylene, and C9 or higher aromatic compounds, respectively according to their different boiling points, while LPG is separated from the gaseous products, in a distillation tower.
    Type: Grant
    Filed: November 20, 2001
    Date of Patent: October 21, 2003
    Assignee: SK Corporation
    Inventors: Sun Choi, Seung-Hoon Oh, Yong-Seung Kim, Beung-Soo Lim, Kyeong-Hak Seong
  • Patent number: 6627780
    Abstract: A catalyst composition and a process for hydrodealkylating a C9+ aromatic compound such as, for example, 1,2,4-trimethylbenzene to a C6 to C8 aromatic hydrocarbon such as a xylene are disclosed. The composition comprises an alumina, a metal oxide, a phosphorus oxide and optionally, an acid site modifier selected from the group consisting of silicon oxides, sulfur oxides, boron oxides, magnesium oxides, tin oxides, titanium oxides, zirconium oxides, molybdenum oxides, germanium oxides, indium oxides, lanthanum oxides, cesium oxides, and combinations of any two or more thereof. The process comprises contacting a fluid which comprises a C9+ aromatic compound with the catalyst composition under a condition sufficient to effect the conversion of a C9+ aromatic compound to a C6 to C8 aromatic hydrocarbon.
    Type: Grant
    Filed: January 9, 2003
    Date of Patent: September 30, 2003
    Assignee: Phillips Petroleum Company
    Inventors: An-hsiang Wu, Charles A. Drake
  • Patent number: 6605566
    Abstract: A novel supported bimetallic catalyst comprises a group VIII metal such as platinum, and tin, at least a portion of which interacts strongly with the group VIII metal in the catalyst in the reduced state. In the partially oxidized state, the catalyst of the invention contains at least 10% of tin in the form of a reduced tin species with oxidation state 0, said species having an isomer shift in the range 0.80 to 2.60 mm/s and a quadrupolar splitting in the range 0.65 to 2.00 mm/s. The invention also concerns the preparation of said catalyst, and processes using said catalyst for transforming hydrocarbons into aromatic compounds, such as gasoline reforming processes and aromatic production processes.
    Type: Grant
    Filed: August 23, 2001
    Date of Patent: August 12, 2003
    Assignee: Institut Francais du Petrole
    Inventors: Fabienne Le Peltier, Blaise Didillon, Jean-Claude Jumas, Josette Olivier-Fourcade
  • Patent number: 6593503
    Abstract: A catalyst composition and a process for converting a hydrocarbon stream such as, for example, gasoline to C6 to C8 aromatic hydrocarbons such as toluene and xylenes are disclosed. The catalyst composition includes an alumina, a silica, and a metal wherein the weight ratio of aluminum to silicon is in the range of from about 0.002:1 to about 0.6:1. The process includes contacting a hydrocarbon stream with the catalyst composition under a condition sufficient to effect the conversion of a hydrocarbon to a C6 to C8 aromatic hydrocarbon. Also disclosed is a process for producing the catalyst composition which includes: (1) contacting a zeolite with an effective amount of an acid under a condition sufficient to effect a reduction in aluminum content of the zeolite to produce an acid-leached zeolite; and (2) impregnating the acid-leached zeolite with an effective amount of a metal compound under a condition sufficient to effect the production of a metal-promoted zeolite.
    Type: Grant
    Filed: August 12, 1996
    Date of Patent: July 15, 2003
    Assignee: Phillips Petroleum Company
    Inventors: An-hsiang Wu, Charles A. Drake, Ralph J. Melton
  • Publication number: 20030125593
    Abstract: A catalyst composition and a process for hydrodealkylating a C9+ aromatic compound such as, for example, 1,2,4-trimethylbenzene to a C6 to C8 aromatic hydrocarbon such as a xylene are disclosed. The composition comprises an alumina, a metal oxide, a phosphorus oxide and optionally, an acid site modifier selected from the group consisting of silicon oxides, sulfur oxides, boron oxides, magnesium oxides, tin oxides, titanium oxides, zirconium oxides, molybdenum oxides, germanium oxides, indium oxides, lanthanum oxides, cesium oxides, and combinations of any two or more thereof. The process comprises contacting a fluid which comprises a C9+ aromatic compound with the catalyst composition under a condition sufficient to effect the conversion of a C9+ aromatic compound to a C6 to C8 aromatic hydrocarbon.
    Type: Application
    Filed: January 9, 2003
    Publication date: July 3, 2003
    Applicant: Phillips Petroleum Company
    Inventors: An-Hsiang Wu, Charles A. Drake
  • Patent number: 6504076
    Abstract: A method is provided for conversion of heavy alkylaromatic compounds, particularly those in the C8-C12 range, into more valuable aromatics of benzene, toluene and xylene utilizing a toluene disproportionation unit containing a nickel, palladium or platinum-modified mordenite catalyst. The method allows large amounts of these heavy alkylaromatic compounds to be processed without adversely affecting catalyst activity or catalyst life. This is accomplished by introducing the heavy alkylaromatic compounds into the reactor at constant reaction severity conditions and maintaining those conditions during conversion.
    Type: Grant
    Filed: May 18, 2001
    Date of Patent: January 7, 2003
    Assignee: Fina Technology, Inc.
    Inventors: Xin Xiao, James R. Butler
  • Publication number: 20020092797
    Abstract: Disclosed are a process for producing aromatic hydrocarbon compounds and liquefied petroleum gas (LPG) from a hydrocarbon feedstock having boiling points of 30-250° C. and a catalyst useful therefor. In the presence of said catalyst, aromatic components in the hydrocarbon feedstock are converted to BTX-enriched components of liquid phase through hydrodealkylation and/or transalkylation, and non-aromatic components are converted to LPG-enriched gaseous materials through hydrocracking. The products of liquid phase may be separated as benzene, toluene, xylene, and C9 or higher aromatic compounds, respectively according to their different boiling points, while LPG is separated from the gaseous products, in a distillation tower.
    Type: Application
    Filed: November 20, 2001
    Publication date: July 18, 2002
    Inventors: Sun Choi, Seung-Hoon Oh, Yong-Seung Kim, Beung-Soo Lim, Kyeong-Hak Seong
  • Publication number: 20020016258
    Abstract: A catalyst composition and a process for hydrodealkylating a C9+ aromatic compound such as, for example, 1,2,4-trimethylbenzene to a C6 to C8 aromatic hydrocarbon such as a xylene are disclosed. The composition comprises an alumina, a metal oxide, and a coke suppressor selected from the group consisting of silicon oxides, phosphorus oxides, boron oxides, magnesium oxides, tin oxides, titanium oxides, zirconium oxides, molybdenum oxides, germanium oxides, indium oxides, lanthanum oxides, cesium oxides, and combinations of any two or more thereof. The process comprises contacting a fluid which comprises a C9+ aromatic compound with the catalyst composition under a condition sufficient to effect the conversion of a C9+ aromatic compound to a C6 to C8 aromatic hydrocarbon.
    Type: Application
    Filed: February 23, 1999
    Publication date: February 7, 2002
    Applicant: Phillips Petroleum Company
    Inventors: AN-HSIANG WU, CHARLES A. DRAKE
  • Publication number: 20010051754
    Abstract: A process for toluene disproportionation which obtains high xylene yields while minimizing ethylbenzene production employs a dual catalyst bed. The first bed employs an acid zeolite, e.g., ZSM-5 which disproportionates toluene and the downstream second bed uses an acid zeolite having hydrogenation-dehydrogenation activity, e.g., PtZSM-5, to selectively eliminate ethylbenzene.
    Type: Application
    Filed: August 3, 1999
    Publication date: December 13, 2001
    Inventors: DARIA N. LISSY, SANJAY B. SHARMA, DAVID S. SHIHABI
  • Publication number: 20010001448
    Abstract: The patent application discloses an integrated process for reformate upgrading. Such a process enables production of a high value product slate, by incorporating the step of reforming along with reaction/diffusion with a zeolite.
    Type: Application
    Filed: September 27, 1999
    Publication date: May 24, 2001
    Inventors: VINAYA A. KAPOOR, ROBERT A. CRANE, JEFFREY S. BECK, JOHN H. THURTELL, DAVID L. STERN
  • Patent number: RE39222
    Abstract: A process for producing 2,6-dialkylnaphthalene from a hydrocarbon feedstock that contains at least one component selected from the group consisting of dialkylnaphthalene isomers, monoalkylnaphthalene isomers, polyalkylnaphthalenes, and naphthalene, is provided that includes the following steps: I. separating the hydrocarbon feedstock and/or a dealkylation product fed from step III into a naphthalene fraction, a monoalkylnaphthalene fraction, a dialkylnaphthalene fraction and a remaining products fraction; II. separating and purifying 2,6-dialkylnaphthalene from the dialkylnaphthalene fraction of step I; III. dealkylating the hydrocarbon feedstock and/or the remaining products fraction of step I and feeding the dealkylation product to step I; and IV. alkylating the naphthalene and monoalkylnaphthalene fractions of step I; wherein the hydrocarbon feedstock is fed to step I or step III.
    Type: Grant
    Filed: February 19, 2002
    Date of Patent: August 1, 2006
    Assignees: Kobe Steel, Ltd., Mobile Oil Corporation
    Inventors: Masahiro Motoyuki, Koji Yamamoto, Ajit Vishwanath Sapre, John Paul McWilliams, Susan Patricia Donnelly