Using P-containing Catalyst Patents (Class 585/514)
  • Patent number: 10138175
    Abstract: Embodiments of an invention disclosed herein relate to particles made from zeolite catalysts and their use in oligomerization processes. In particular, shaped particles (for example, spheroid particles) are made from compositions including the contact product of at least one zeolite catalyst and at least one binder.
    Type: Grant
    Filed: April 12, 2016
    Date of Patent: November 27, 2018
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Geraldine Tosin, Mechilium J. G. Janssen, Paul Hamilton, Georges M. K. Mathys
  • Patent number: 9440891
    Abstract: The present invention is directed to methods of forming olefins, especially linear alpha olefins from fatty acids or anhydrides, each method comprising: contacting an amount of precursor carboxylic acid anhydride with a palladium catalyst comprising a bidentate bis-phosphine ligand in a reaction mixture so as to form an olefin in a product with the concomittant formation and removal of CO and water from the reaction mixture, either directly or indirectly, wherein the reaction mixture is maintained with a sub-stoichiometric excess of a sacrificial carboxylic acid anhydride, an organic acid, or both, said sub-stoichiometric excess being relative to the amount of the precursor carboxylic acid anhydride. The precursor carboxylic acid anhydride may be added to the reaction mixture directly or formed in situ by the reaction between at least one precursor carboxylic acid with a stoichiometric amount of the sacrificial acid anhydride.
    Type: Grant
    Filed: November 27, 2013
    Date of Patent: September 13, 2016
    Assignee: California Institute of Technology
    Inventors: Yiyang Liu, Brian M. Stoltz, Robert H. Grubbs, Alexey Fedorov, Kelly E. Kim
  • Patent number: 9399179
    Abstract: A process (10) to separate a multi-component hydrocarbon stream (26) comprising ethylene, at least one polymer and other components includes flashing the multi-component hydrocarbon stream in a first flash stage (12) from an elevated pressure of more than 30 bar(a) and an elevated temperature in the range of 150° C. to 135° C. to a flash pressure in the range of 10 bar(a) to 30 bar(a), producing a first ethylene-containing vapor overheads product (28) at a pressure in the range of 10 bar(a) to 30 bar(a) and a first flash stage bottoms product (30.1) which includes some ethylene, the at least one polymer and some of the other components. The flash pressure and the elevated temperature of the multi-component hydrocarbon stream (26) are selected such that the first flash stage bottoms product (30.1) has a concentration of the at least one polymer of less than 5% by mass to render the viscosity of the first flash stage bottoms product (30.1) at the temperature of the first flash stage bottoms product (30.
    Type: Grant
    Filed: May 8, 2013
    Date of Patent: July 26, 2016
    Assignee: SASOL TECHNOLOGY PROPRIETARY LIMITED
    Inventors: Denise Louisette Venter, Natasha Brigman, Tyrone McKnight, Kevin Blann, Stephen John Evans
  • Patent number: 9266791
    Abstract: The invention relates to methods and equipment for converting C3+ olefin to, e.g., one or more of di-C3+ olefin, oligomers and polymers of C3+ olefin, branched C4+-aldehydes, C4+-carboxylic acids, and C4+ oxygenates. The invention encompasses producing methyl tert-butyl ether and diisobutylene, and converting methyl tert-butyl ether to isobutylene.
    Type: Grant
    Filed: June 21, 2013
    Date of Patent: February 23, 2016
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Matthew B. Yarrison, Alok Srivastava, Roshni Jindal, Chee-Keong Then, Rodney S. Smith
  • Patent number: 9260357
    Abstract: The invention relates to methods and equipment for converting C3+ olefin to, e.g., one or more of di-C3+ olefin, oligomers and polymers of C3+ olefin, branched C4+-aldehydes, C4+-carboxylic acids, and C4+ oxygenates. The invention encompasses producing methyl tert-butyl ether and diisobutylene, and converting methyl tert-butyl ether to isobutylene.
    Type: Grant
    Filed: June 21, 2013
    Date of Patent: February 16, 2016
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Matthew B. Yarrison, Alok Srivastava, Roshni Jindal, Chee Keong Then, Rodney S. Smith
  • Publication number: 20150133707
    Abstract: A process (10) to separate a multi-component hydrocarbon stream (26) comprising ethylene, at least one polymer and other components includes flashing the multi-component hydrocarbon stream in a first flash stage (12) from an elevated pressure of more than 30 bar(a) and an elevated temperature in the range of 150° C. to 185° C. to a flash pressure in the range of 10 bar(a) to 30 bar(a), producing a first ethylene-containing vapour overheads product (28) at a pressure in the range of 10 bar(a) to 30 bar(a) and a first flash stage bottoms product (30.1) which includes some ethylene, the at least one polymer and some of the other components. The flash pressure and the elevated temperature of the multi-component hydrocarbon stream (26) are selected such that the first flash stage bottoms product (30.1) has a concentration of the at least one polymer of less than 5% by mass to render the viscosity of the first flash stage bottoms product (30.1) at the temperature of the first flash stage bottoms product (30.
    Type: Application
    Filed: May 8, 2013
    Publication date: May 14, 2015
    Inventors: Denise Louisette Venter, Natasha Brigman, Tyrone Mcknight, Kevin Blann, Stephen John Evans
  • Publication number: 20150031914
    Abstract: A new P-N-P ligand is useful in ethylene oligomerizations. In combination with i) a source of chromium; and ii) an activator such as methylalumoxane; the ligand of this invention may be used to prepare an oligomer product that contains a mixture of high purity alpha olefins. In a preferred embodiment, the ligand of this invention enables a selective oligomerization in which the majority of the liquid product is a mixture of hexene and octene. The amount of by-product polymer that is produced in preferred oligomerization reactions is advantageously low.
    Type: Application
    Filed: January 17, 2013
    Publication date: January 29, 2015
    Applicant: NOVA CHEMICALS (INTERNATIONAL) S.A.
    Inventors: Xiaoliang Gao, Peter Zoricak
  • Patent number: 8912346
    Abstract: A phosphine ligand suitable for use in telomerizing butadiene comprises two phenyl groups and a xanthene moiety.
    Type: Grant
    Filed: May 14, 2009
    Date of Patent: December 16, 2014
    Assignee: Dow Global Technologies LLC
    Inventors: Petrus Van Leeuwen, Mathieu Tschan, Eduardo Jose Garcia-Suarez, Zoraida Freixa, Henk Hagen
  • Patent number: 8865955
    Abstract: One exemplary embodiment is a process for oligomerizing one or more hydrocarbons. The process includes providing a feed including one or more C3 and C4 hydrocarbons to a separation zone, separating a first stream including an effective amount of C3 olefins for oligomerizing, separating a second stream including an effective amount of one or more C4 olefins for oligomerizing, providing at least a portion of the first stream to a first oligomerization zone for producing at least one of a C9 and a C12 hydrocarbon, and providing at least a portion of the second stream to a second oligomerization zone for producing at least one of a C8 and a C12 hydrocarbon.
    Type: Grant
    Filed: December 10, 2010
    Date of Patent: October 21, 2014
    Assignee: UOP LLC
    Inventors: Steven Lee Krupa, Christian D. Freet, Mohamed Shakur
  • Publication number: 20140081064
    Abstract: Disclosed herein is a method of preparing 1-octene at high activity and high selectivity while stably maintaining reaction activity by tetramerizing ethylene using a chromium-based catalyst system comprising a transition metal or a transition metal precursor, a cocatalyst, and a P—C—C—P backbone structure ligand represented by (R1)(R2)P—(R5)CHCH(R6)—P(R3)(R4).
    Type: Application
    Filed: November 21, 2013
    Publication date: March 20, 2014
    Applicant: SK INNOVATION CO., LTD. & SK GLOBAL CHEMICAL CO. LTD.
    Inventors: TAEK KYU HAN, MYUNG AHN OK, SUNG SEOK CHAE, SANG OOK KANG, JAE HO JUNG
  • Patent number: 8664460
    Abstract: The application discloses novel processes for the oligomerization of unsaturated hydrocarbons, and more specifically the use of selected ionic liquids containing Indium (III) Chloride in the oligomerization of unsaturated hydrocarbons, which allows for selection of the oligomers formed.
    Type: Grant
    Filed: December 12, 2006
    Date of Patent: March 4, 2014
    Assignee: The Queen's University of Belfast
    Inventors: Martyn John Earle, Johanna Kärkkäinen, Natalia V. Plechkova, Alina Tomaszowska, Kenneth Richard Seddon
  • Patent number: 8609924
    Abstract: Disclosed herein is a method of preparing 1-octene at high activity and high selectivity while stably maintaining reaction activity by tetramerizing ethylene using a chromium-based catalyst system comprising a transition metal or a transition metal precursor, a cocatalyst, and a P—C—C—P backbone structure ligand represented by (R1)(R2)P—(R5)CHCH(R6)—P(R3)(R4).
    Type: Grant
    Filed: January 17, 2008
    Date of Patent: December 17, 2013
    Assignees: SK Innovation Co., Ltd., SK Global Chemical Co., Ltd.
    Inventors: Taek Kyu Han, Myung Ahn Ok, Sung Seok Chae, Sang Ook Kang, Jae Ho Jung
  • Patent number: 8604141
    Abstract: Ruthenium and osmium carbene compounds that are stable in the presence of a variety of functional groups and can be used to catalyze olefin metathesis reactions on unstrained cyclic and acyclic olefins are disclosed. Also disclosed are methods of making the carbene compounds. The carbene compounds are of the formula where M is Os or Ru; R1 is hydrogen; R is selected from the group consisting of hydrogen, substituted or unsubstituted alkyl, and substituted or unsubstituted aryl; X and X1 are independently selected from any anionic ligand; and L and L1 are independently selected from any neutral electron donor. The ruthenium and osmium carbene compounds of the present invention may be synthesized using diazo compounds, by neutral electron donor ligand exchange, by cross metathesis, using acetylene, using cumulated olefins, and in a one-pot method using diazo compounds and neutral electron donors.
    Type: Grant
    Filed: April 24, 2012
    Date of Patent: December 10, 2013
    Assignee: California Institute of Technology
    Inventors: Robert H. Grubbs, Peter Schwab, Sonbinh T. Nguyen
  • Publication number: 20130137912
    Abstract: Catalytic composition comprising at least one non-aqueous ionic liquid medium of general formula Q1+A1?, in which Q1+ represents an organic cation and A1? represents an anion, and at least one ionic component of general formula Q2+A2?, in which Q2+ represents an organic cation comprising at least one sulphonic acid or carboxylic acid function, and A2? represents an anion. The invention also relates to an isobutene dimerization process using the catalytic composition.
    Type: Application
    Filed: November 29, 2012
    Publication date: May 30, 2013
    Applicant: IFP ENERGIES NOUVELLES
    Inventor: IFP Energies nouvelles
  • Patent number: 8354566
    Abstract: An overbased salt of an oligomerized alkylhydroxyaromatic compound for use in a lubricating oil composition is disclosed, wherein the alkyl group of the alkylhydroxyaromatic compound is derived from an olefin mixture comprising propylene oligomers having an initial boiling point of at least about 195° C. and a final boiling point of greater than 325° C. and up to about 400° C. as measured by ASTM D86. Also disclosed is a propylene oligomer having an initial boiling point of at least about 195° C. and a final boiling point of greater than 325° C. and up to about 400° C. as measured by ASTM D8, wherein the propylene oligomer contains a distribution of carbon atoms that comprise at least about 50 weight percent of C14 to C20 carbon atoms.
    Type: Grant
    Filed: April 17, 2012
    Date of Patent: January 15, 2013
    Assignees: Chevron Oronite Company LLC, Chevron Oronite S.A.
    Inventors: Gilles P. Sinquin, Michael R. Adams
  • Patent number: 8334420
    Abstract: A metal complex comprising a metal compound complexed to a heteroatomic ligand, the metal complex having Structure X: wherein R1, R2, R3, and R4 are each independently an alkyl group, a cycloalkyl group, a substituted cycloalkyl group, an aromatic group, or a substituted aromatic group, R1c, R2c, R3c, R4c, and R5c are each independently hydrogen or an alkyl group, and MXp comprises a group IVB, VB, or VIB metal. A metal complex comprising a metal compound complexed to a diphosphino aminyl ligand comprising at least two diphosphino aminyl moieties and a linking group linking each aminyl nitrogen atom of the diphosphino aminyl moieties.
    Type: Grant
    Filed: May 7, 2008
    Date of Patent: December 18, 2012
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Brooke L. Small, Jeffery C. Gee
  • Patent number: 8252956
    Abstract: A new P-N-P ligand in which each phosphorus atom is bonded to two ortho-fluorine substituted phenyl groups is useful in ethylene oligomerizations. In combination with i) a source of chromium and ii) an activator such as methalumoxane; the ligand of this invention may be used to prepare an oligomer product that contains a mixture of hexenes and octenes. The hexenes and octenes produced with this ligand contain very low levels of internal olefins when produced under preferred reaction conditions.
    Type: Grant
    Filed: June 24, 2011
    Date of Patent: August 28, 2012
    Assignee: Nova Chemicals (International) S.A.
    Inventors: Xiaoliang Gao, Charles Ashton Garret Carter, Liangyou Fan, Lee Douglas Henderson
  • Patent number: 8252955
    Abstract: A new P—N—P ligand is useful in ethylene oligomerizations. In combination with i) a source of chromium and ii) an activator such as methylalumoxane; the ligand of this invention may be used to prepare an oligomer product that contains a mixture of hexenes and octenes. The hexenes and octenes produced with this ligand contain very low levels of internal olefins when produced under preferred reaction conditions.
    Type: Grant
    Filed: September 1, 2009
    Date of Patent: August 28, 2012
    Assignee: NOVA Chemicals (International) S.A.
    Inventors: Xiaoliang Gao, Charles Ashton Garret Carter, Lee Douglas Henderson
  • Patent number: 8203025
    Abstract: The invention provides a solid phosphoric acid catalyst which has high activity and attains high dimer selectivity in olefin dimerization reactions and efficient methods of olefin dimerization. The solid phosphoric acid catalyst comprises a carrier and phosphoric acid supported thereon. When the solid phosphoric acid catalyst is heated at 250° C. for 20 minutes, heating loss of water is 50 mass % or more based on diphosphorus pentoxide (P2O5) derived from the phosphoric acid. A method of olefin dimerization comprises bringing an olefin-containing feed material containing water in an amount of 10-1000 mass ppm into contact with the catalyst to initiate the reaction.
    Type: Grant
    Filed: May 25, 2006
    Date of Patent: June 19, 2012
    Assignee: Nippon Oil Corporation
    Inventors: Tatsuo Hamamatsu, Nobuhiro Kimura, Tsutomu Takashima, Takashi Morikita
  • Patent number: 8188327
    Abstract: This invention covers a process for dimerizing of isobutylene to Iso-octene and unique configuration is being disclosed, where the Feed is diluted to low level with recycle which has essentially no Iso-octene, dual catalyst system, new selectivator (IPA) and successive catalyst stages if needed to enhance the conversion. The process is very selective and provides higher isobutylene conversion. Additionally the invention also covers the hydrogenation of olefins to Paraffin, Iso-octene to Iso-octane product under moderate conditions and with dual or single catalyst system.
    Type: Grant
    Filed: February 1, 2010
    Date of Patent: May 29, 2012
    Inventor: Amarjit S. Bakshi
  • Publication number: 20110124936
    Abstract: A process for oligomerization of an olefinic feedstock that contains olefinic hydrocarbon molecules that have 2 to 10 carbon atoms per molecule is described, whereby said process comprises bringing said feedstock into contact with a catalyst that comprises at least one amorphous material with hierarchized and organized porosity and consists of at least two elementary spherical particles, each of said particles comprising a mesostructured silicon-oxide-based matrix that has a mesopore diameter of between 1.5 and 30 nm and that exhibits amorphous and microporous walls with a thickness of between 1 and 50 nm, whereby said elementary spherical particles have a maximum diameter of 200 microns.
    Type: Application
    Filed: April 28, 2009
    Publication date: May 26, 2011
    Applicant: IFP Energies nouvelles
    Inventors: Amandine Cabiac, Alexandra Chaumonnot, Laurent Simon
  • Patent number: 7867938
    Abstract: A catalyst precursor composition comprising: a source of chromium, molybdenum or tungsten; a first ligand having the general formula (R1)(R2P—X—P(R3)(R4); and a second ligand having the general formula (R1?)(R2?)P—X?—P(R3?)(R4?). The present invention also relates to a catalyst system comprising the catalyst precursor composition of the present invention and a cocatalyst. The present invention further relates to a process for the trimerization and tetramerization of olefinic monomers, particularly the trimerization and tetramerization of ethylene to 1-hexene and 1-octene, wherein the process comprises contacting at least one olefinic monomer with the catalyst system of the present invention.
    Type: Grant
    Filed: November 20, 2006
    Date of Patent: January 11, 2011
    Assignee: Shell Oil Company
    Inventors: Eric Johannes Maria De Boer, Harry Van Der Heijden, Quoc An On, Johan Paul Smit, Arie Van Zon
  • Patent number: 7834229
    Abstract: In a process for oligomerizing an olefinic hydrocarbon feedstock comprising at least 65 wt % olefins and/or sulfur-containing molecules, the feedstock is contacted under oligomerization conditions with (a) a first unidimensional 10-ring molecular sieve catalyst and (b) a second multidimensional crystalline molecular sieve catalyst. The first and second catalysts may be contained in separate reactors or as separate beds in a single reactor.
    Type: Grant
    Filed: May 26, 2005
    Date of Patent: November 16, 2010
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Stephen Harold Brown, John Stephen Godsmark, Georges Marie Karel Mathys
  • Patent number: 7829749
    Abstract: A new P-N-P ligand is useful in ethylene oligomerizations. In combination with i) a source of chromium and ii) an activator such as methylalumoxane; the ligand of this invention may be used to prepare an oligomer product that contains a mixture of hexenes and octenes. The hexenes and octenes produced with this ligand contain very low levels of internal olefins when produced under preferred reaction conditions.
    Type: Grant
    Filed: September 1, 2009
    Date of Patent: November 9, 2010
    Assignee: Nova Chemicals (International) S.A.
    Inventors: Xiaoliang Gao, Charles Ashton Garret Carter, Lee Douglas Henderson
  • Patent number: 7786336
    Abstract: The present invention relates to a catalyst composition for ethylene oligomerization and the use thereof. Such catalyst composition includes chromium compound, ligand containing P and N, activator and accelerator; wherein the chromium compound is selected from the group consisting of acetyl acetone chromium, THF-chromium chloride and Cr(2-ethylhecanoate)3; general formula of the ligand containing P and N is shown as: in which R1, R2, R3 and R4 are phenyl, benzyl, or naphthyl. R5 is isopropyl, butyl, cyclopropyl, cyclopentyl, cyclohexyl or fluorenyl; the activatior is methyl aluminoxane, ethyl aluminoxane, propyl aluminoxane and/or butyl aluminoxane; the accelerator is selected from the group consisting of 1,1,2,2,-tetrachloroethane, 1,1,2,2-tetrabromoethane, 1,1,2,2-tetrafluoroethane, and compounds having a formula of X1R6X2, in which X1 and X2 are F, Cl, Br, I or alkoxyl, R6 is alkylene or arylene group; the molar ratio of chromium compound, ligand containing P and N, activator and accelerator is 1:0.
    Type: Grant
    Filed: March 9, 2007
    Date of Patent: August 31, 2010
    Assignee: Petrochina Company Limited
    Inventors: Baojun Zhang, Tao Jiang, Jianzhong Li, Lihua Xing, Yingnan Ning, Shukun Sun, Dongting Kuang, Yongcheng Sun, Yunguang Han, Qian Chen, Hongxia Chen, Deshun Zhang, Yulong Li, Yongjun Zhang, Huimin Yuan, Sihan Wang, Guizhi Wang, Jingyuan Zhang
  • Patent number: 7786337
    Abstract: In a process for oligomerizing an olefinic hydrocarbon feedstock, the feedstock is contacted under oligomerization conditions with (a) a first crystalline molecular sieve catalyst and (b) a second catalyst comprising a solid phosphoric acid. The first and second catalysts may be contained in separate reactors or as separate beds in a single reactor.
    Type: Grant
    Filed: May 26, 2005
    Date of Patent: August 31, 2010
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Stephen Harold Brown, John Stephen Godsmark, Georges Maria Karel Mathys
  • Patent number: 7759533
    Abstract: A substantially surface-deactivated catalyst composition that is stable at least to 300° C. The catalyst includes a zeolite catalyst (e.g., ZSM-22, ZSM-23, or ZSM-57) having active internal Brönsted acid sites and a surface-deactivating amount of a rare earth or yttrium oxide (e.g., chosen from lanthanum oxide or lanthanides oxide). This catalyst is preferably used in a process for producing a higher olefin by oligomerizing a light olefin, wherein the process includes contacting a light olefin under oligomerization conditions with the substantially surface-deactivated catalyst composition.
    Type: Grant
    Filed: October 5, 2007
    Date of Patent: July 20, 2010
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Jane C. Cheng, Sal Miseo, Stuart L. Soled, John S. Buchanan, Jennifer S. Feeley
  • Patent number: 7741527
    Abstract: The present invention provides a solid phosphoric acid catalyst which attains high activity and dimer selectivity in olefin dimerization reaction and an efficient method for dimerization of olefin using the same. The solid phosphoric acid catalyst comprises phosphoric acid supported on a siliceous carrier, the proportion of orthophosphoric acid in the phosphoric acid supported being 60 mol % or more in terms of phosphorus atom amount. The solid phosphoric acid catalyst is prepared by bringing a phosphoric acid aqueous solution into contact with the siliceous carrier followed by drying, the preparation step being carried out at a temperature lower than 100° C. Also provided is a method for bringing an olefin-containing raw material into contact with the catalyst.
    Type: Grant
    Filed: July 13, 2005
    Date of Patent: June 22, 2010
    Assignee: Nippon Oil Corporation
    Inventors: Tatsuo Hamamatsu, Nobuhiro Kimura, Tsutomu Takashima, Takashi Morikita
  • Patent number: 7737315
    Abstract: The invention relates to the use of isobutene-containing olefin feedstock in oligomerization reactions, particularly in the production of octenes as feedstock for the manufacture of plasticizer alcohols, the process comprising contacting a feed comprising isobutene with a molecular sieve at a temperature in excess of 240° C. to produce a product low in triple-branched octenes.
    Type: Grant
    Filed: January 28, 2009
    Date of Patent: June 15, 2010
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Stephen Harold Brown, Georges Marie Mathys
  • Publication number: 20100137669
    Abstract: Disclosed herein is a method of preparing 1-octene at high activity and high selectivity while stably maintaining reaction activity by tetramerizing ethylene using a chromium-based catalyst system comprising a transition metal or a transition metal precursor, a cocatalyst, and a P—C—C—P backbone structure ligand represented by (R1)(R2)P—(R5)CHCH(R6)—P(R3)(R4).
    Type: Application
    Filed: January 17, 2008
    Publication date: June 3, 2010
    Inventors: Taek Kyu Han, Myung Ahn Ok, Sung Seok Chae, Sang Ook Kang, Jae Ho Jung
  • Patent number: 7687672
    Abstract: The present invention relates to an in-line method for generating comonomer, such as 1-hexene or 1-octene, from monomer, such as ethylene. The comonomer generated is directly transported, without isolation or storage, to a polyethylene polymerization reactor.
    Type: Grant
    Filed: February 3, 2006
    Date of Patent: March 30, 2010
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: John S. Buchanan, Timothy D. Shaffer
  • Patent number: 7588738
    Abstract: The invention relates to series reactor beds containing different oligomerization catalysts and having independent temperature control, and processes for the oligomerization of light olefins to heavier olefins using such series reactor beds.
    Type: Grant
    Filed: August 23, 2005
    Date of Patent: September 15, 2009
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Stephen Harold Brown, Jon Edmond Randoph Stanat, Jose Manuel Vargas, Stephen W. Beadle, Georges Marie K. Mathys, John Stephen Godsmark, Raphael Frans Caers
  • Patent number: 7554001
    Abstract: The invention provides a mixed heteroatomic ligand for an oligomerization of olefins catalyst, which ligand includes at least three heteroatoms, of which at least one heteroatom is sulfur and at least two heteroatoms are not the same. The invention also provides a multidentate mixed heteroatomic ligand for an oligomerization of olefins catalyst, which ligand includes at least three heteroatoms of which at least one is a sulfur atom. The ligand may also contain, in addition to sulfur, at least one nitrogen or phosphorous heteroatom.
    Type: Grant
    Filed: October 16, 2007
    Date of Patent: June 30, 2009
    Assignee: Sasol Technology (Pty) Ltd.
    Inventors: John Thomas Dixon, Peter Wasserscheid, David Shane McGuinness, Fiona Millicent Hess, Hulisani Maumela, David Hedley Morgan, Annette Bollman
  • Publication number: 20090134546
    Abstract: The invention relates to the use of isobutene-containing olefin feedstock in oligomerization reactions, particularly in the production of octenes as feedstock for the manufacture of plasticizer alcohols, the process comprising contacting a feed comprising isobutene with a molecular sieve at a temperature in excess of 240° C. to produce a product low in triple-branched octenes.
    Type: Application
    Filed: January 28, 2009
    Publication date: May 28, 2009
    Inventors: Stephen Harold Brown, Georges Marie Mathys
  • Patent number: 7525009
    Abstract: The invention describes a process for trimerisation olefins, which process includes the step of contacting an olefinic feedstream with a catalyst system which includes a transition metal compound and a heteroatomic ligand and wherein the trimer is an olefin and wherein the heteroatomic ligand is described by the following general formula (R)nA-B-C(R)m.
    Type: Grant
    Filed: December 19, 2003
    Date of Patent: April 28, 2009
    Assignee: Sasol Technology (Pty) Limited
    Inventors: Kevin Blann, Annette Bollmann, John Thomas Dixon, Arno Neveling, David Hedley Morgan, Hulisani Maumela, Esna Killian, Fiona Millicent Hess, Stefanus Otto, Matthew James Overett
  • Patent number: 7510646
    Abstract: Process for the production of hydrocarbon blends with a high octane number by the hydrogenation of hydrocarbon blends, containing branched C8, C12 and C16 olefinic cuts, characterized by sending said blends, as such or fractionated into two streams, one substantially containing the branched C8 olefinic cut, the other substantially containing the branched C12 and C16 olefinic cuts, to a single hydrogenation zone or to two hydrogenation zones in parallel, respectively, only the stream substantially containing of saturated C8 hydrocarbons, obtained by the fractionation of the stream produced by the single hydrogenation zone or obtained by the hydrogenation zone fed by the fractionated stream substantially containing the branched C8 olefinic cut, being at least partly recycled to the single hydrogenation zone or to the hydrogenation zone fed by the fractionated stream substantially containing the branched C8 olefinic cut, and the hydrocarbon blend with a high octane number, obtained by the fractionation of the st
    Type: Grant
    Filed: December 29, 2003
    Date of Patent: March 31, 2009
    Assignee: Snamprogetti S.p.A.
    Inventors: Roberto Catani, Marco Di Girolamo, Massimo Conte, Ambrogio Gusberti
  • Patent number: 7501548
    Abstract: The invention relates to the use of isobutene-containing olefin feedstock in oligomerization reactions, particularly in the production of octenes as feedstock for the manufacture of plasticizer alcohols, the process comprising contacting a feed comprising isobutene with a molecular sieve at a temperature in excess of 240° C. to produce a product low in triple-branched octenes.
    Type: Grant
    Filed: March 10, 2006
    Date of Patent: March 10, 2009
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Stephen Harold Brown, Georges Marie Mathys
  • Patent number: 7491859
    Abstract: Process for the telomerization of a conjugated diene, wherein the conjugated diene is reacted with a compound containing an active hydrogen atom and having a formula R?—H in the presence of a telomerization catalyst based on: (a) a source of group VIII metal, (b) a bidentate ligand wherein the bidentate ligand has the general formula I R1R2M1-R-M2R3R4??(I) wherein M1 and M2 are independently P, As or Sb; R1, R2, R3 and R4 independently represent a monovalent aliphatic group; or R1, R2 and M1 together and/or R3, R4 and M2 together independently represent an optionally substituted aliphatic cyclic group with at least 5 ring atoms, of which one is the M1 or M2 atom, respectively; R represents a bivalent organic bridging group; and novel bidentate diphosphines which can be used in this process.
    Type: Grant
    Filed: December 9, 2005
    Date of Patent: February 17, 2009
    Assignee: Shell Oil Company
    Inventors: Eit Drent, Michael Rolf Eberhard, Paul Gerald Pringle, Renata Helena van der Made
  • Publication number: 20080194400
    Abstract: The invention relates to a multi-layer catalyst made from niobium for the catalytic conversion of hydrocarbons, comprising a) a support component made from a doped or undoped oxide or hydroxide of an element of the V sub-group of the periodic table, or mixtures thereof, b) a layer of a promoter compound, selected from oxygen, sulphur or phosphorus compounds of an element of the VI, VII and VIII sub-group or a phosphoxy compound and mixtures thereof and c) a layer comprising a compound of platinum metal. The invention further relates to a method for production of the catalyst and the use thereof.
    Type: Application
    Filed: July 12, 2006
    Publication date: August 14, 2008
    Inventor: Friedrich Schmidt
  • Patent number: 7378537
    Abstract: A metal complex comprising a metal compound complexed to a heteroatomic ligand, the metal complex having Structure X: wherein R1, R2, R3, and R4 are each independently an alkyl group, a cycloalkyl group, a substituted cycloalkyl group, an aromatic group, or a substituted aromatic group, R1c, R2c, R3c, R4c, and R5c are each independently hydrogen or an alkyl group, and MXp comprises a group IVB, VB, or VIB metal. A metal complex comprising a metal compound complexed to a diphosphino aminyl ligand comprising at least two diphosphino aminyl moieties and a linking group linking each aminyl nitrogen atom of the diphosphino aminyl moieties.
    Type: Grant
    Filed: July 25, 2006
    Date of Patent: May 27, 2008
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Brooke L. Small, Jeffery C. Gee
  • Patent number: 7323524
    Abstract: The invention provides a process for polymerising olefins to branched polyolefins in the presence of a polymerisation catalyst and a cocatalyst, wherein the cocatalyst produces 1-octene in a selectivity greater than 30%.
    Type: Grant
    Filed: December 19, 2003
    Date of Patent: January 29, 2008
    Assignee: Sasol Technology (PTY) Limited
    Inventors: Kevin Blann, Deon De Wet-Roos, John Thomas Dixon
  • Patent number: 7297832
    Abstract: The invention describes a process for tetramerisation of olefins wherein the product stream of the process contains more than 30% of the tetramer olefin. The process includes the step of contacting an olefinic feedstream with a catalyst system containing a transition metal compound and a heteroatomic ligand.
    Type: Grant
    Filed: December 19, 2003
    Date of Patent: November 20, 2007
    Assignee: Sasol Technology (PTY) Limited
    Inventors: Kevin Blann, Annette Bollmann, John Thomas Dixon, Arno Neveling, David Hedley Morgan, Hulisani Maumela, Esna Killian, Fiona Millicent Hess, Stefanus Otto, Matthew James Overett, Michael James Green
  • Patent number: 7276616
    Abstract: The use of a phosphorus containing Ligand as a Ligand for a metathesis catalyst in a catalysed metathesis reaction wherein the phosphorus containing Ligand is a heterocyclic organic compound with a ligating phosphorus atom as an atom in the heterocyclic ring structure of the heterocyclic organic compound. The invention also relates to a metathesis catalyst such a phosphorus containing Ligand and to a metathesis reaction using the catalyst.
    Type: Grant
    Filed: July 4, 2003
    Date of Patent: October 2, 2007
    Assignee: Sasol Technology (UK) Limited
    Inventors: Catherine Lynn Dwyer, Ann Elizabeth Catherine McConnell, Grant Stephen Forman
  • Patent number: 7273959
    Abstract: A catalyst composition suitable for the trimerization of olefinic monomers, wherein the catalyst composition comprises: a) a source of chromium, molybdenum or tungsten; b) a ligand of general formula (I); (R1)(R2)P—X—P(R3)(R4)??(I) wherein: X is a bivalent organic bridging group; R1 and R3 are independently selected from, hydrocarbyl, substituted hydrocarbyl, heterohydrocarbyl and substituted heterohydrocarbyl groups, with the proviso that when R1 and R3 are cycloaromatic groups they do not contain a polar substituent at any of the ortho-positions; R2 and R4 are independently selected from optionally substituted cycloaromatic groups, each R2 and R4 bearing a polar substituent on at least one of the ortho-positions; and c) a cocatalyst.
    Type: Grant
    Filed: October 6, 2004
    Date of Patent: September 25, 2007
    Assignee: Shell Oil Company
    Inventors: Eit Drent, René Ernst
  • Patent number: 7268268
    Abstract: A process for the dimerization of at least one olefin with a carbon number between 2 and 10 by contacting the feed with a catalyst system comprising at least: (a) tectometallosilicate zeolite with having TON-type structure, (b) tectometallosilicate zeolite with having MTT-type structure, (c) tectometallosilicate zeolite with the same structure as that of the ZSM-48 zeolite, or (d) silicoaluminophosphate (SAPO) zeo-type with AEL-type structure; under dimerization condition to produce highly branched olefins.
    Type: Grant
    Filed: April 19, 2001
    Date of Patent: September 11, 2007
    Assignee: Saudi Basic Industries Corporation
    Inventors: Farouk al-Soufi, Sami A. I. Barri, Yajnavalkya Subrai Bhat, Altaf Husain
  • Patent number: 7259284
    Abstract: A process for preparing very high viscosity polyalphaolefins using an acidic ionic liquid oligomerization catalyst in the absence of an organic diluent and the products formed thereby. A method of continuously manufacturing a high viscosity polyalphaolefin product by introducing a monomer and an ionic liquid catalyst together into a reaction zone while simultaneously withdrawing from the reaction zone a reaction zone effluent that contains the high viscosity polyalphaolefin. The reaction zone is operated under reaction conditions suitable for producing the high viscosity polyalphaolefin product. The preferred high viscosity polyalphaolefin has a kinematic viscosity exceeding 8 cSt and is the reaction product of the trimerization, oligomerization, or polymerization of an alpha olefin or a mixture of one or more product thereof. The high viscosity polyalphaolefins are useful as lubricants or lubricant additives.
    Type: Grant
    Filed: July 27, 2004
    Date of Patent: August 21, 2007
    Assignee: Chevron Phillips Chemical Company, LP
    Inventors: Kenneth D. Hope, Donald W. Twomey, Michael S. Driver, Donald A. Stern, J. Barry Collins, Thomas V. Harris
  • Patent number: 7256152
    Abstract: A composition defined: either as comprising at least one Broensted acid, designated HB, dissolved in a liquid medium with an ionic nature of general formula Q+A?, in which Q+ represents an organic cation and A? represents an anion that is different from B, or as resulting from dissolving at least one Broensted acid, designated HB, in a non-aqueous liquid medium with an ionic nature of general formula Q+A?, in which Q+ represents an organic cation and A? represents an anion that is identical to the anion B, can be used as a catalyst and solvent in acid catalysis processes, in particular in the alkylation of aromatic hydrocarbons, the oligomerization of olefins, the dimerization of isobutene, the alkylation of olefins by isoparaffins, the isomerization of n-paraffins into isoparaffins, the isomerization of n-olefins into iso-olefins, the isomerization of the double bond of an olefin and the purification of an olefin mixture that contains branched alpha olefins as impurities.
    Type: Grant
    Filed: September 3, 2002
    Date of Patent: August 14, 2007
    Assignee: Institut Francais du Petrole
    Inventors: Helene Olivier-Bourbigou, Dominique Commereuc, Olivia Martin, Lionel Magna, Emmanuel Pellier
  • Patent number: 7161052
    Abstract: A process is described for the valorization of a charge of hydrocarbons and for reducing the vapour pressure of said charge, comprising three steps: a step a) consisting of separating said charge of hydrocarbons into a fraction (O1) comprising essentially compounds containing 5 carbon atoms, including at least 2% by weight of pentenes, a step b) consisting of placing said fraction (O1) in contact with a cut of hydrocarbons (O2) at least partly comprising hydrocarbons having a number of carbon atoms between 6 and 10, including at least 2% by weight of olefins, and a step c) consisting of separating the effluents originating from step b) into a gasoline cut (?) the upper distillation point of which is less than 100° C. and a kerosene cut (?) having a distillation range between 100° C. and 300° C.
    Type: Grant
    Filed: September 3, 2003
    Date of Patent: January 9, 2007
    Assignee: Institut Francais de Petrole
    Inventors: Patrick Briot, Vincent Coupard, Alain Forestiere, Eric Llido, Thierry Poussereau
  • Patent number: 7141640
    Abstract: An upflow reactor for the production of bisphenol A from acetone and phenol includes a vessel, a catalyst bed disposed within the vessel, and a reactant distribution/product collection system disposed within the vessel. The reactant distribution/product collection system includes a perforated distributor disposed at a lower end of the reactor. The reactant distribution/product collection system further includes a perforated collector disposed at an upper end of the reactor. A method for producing bisphenol A from acetone and phenol Includes Introducing the reacting mixture containing acetone and phenol to the distributor, directing it upward through the catalyst bed, and recovering the reacted acetone and phenol as bisphenol A together with other isomers and non reacted species. A method for avoiding catalyst bead carryover from the bed in an upflow reactor Includes receiving a product of the upflow reactor into the collector disposed at an upper end of the reactor through a screen with proper slit size.
    Type: Grant
    Filed: October 8, 2002
    Date of Patent: November 28, 2006
    Assignee: General Electric Company
    Inventors: Hatem Belfadhel, Corinne Duchanoy, Jan-Willem Goedmakers, Eduard Hendricus Schlarmann, Monique I. R. de Winne
  • Patent number: 7102047
    Abstract: Ruthenium and osmium carbene compounds that are stable in the presence of a variety of functional groups and can be used to catalyze olefin metathesis reactions on unstrained cyclic and acyclic olefins are disclosed. Also disclosed are methods of making the carbene compounds. The carbene compounds are of the formula where M is Os or Ru; R1 is hydrogen; R is selected from the group consisting of hydrogen, substituted or unsubstituted alkyl, and substituted or unsubstituted aryl; X and X1 are independently selected from any anionic ligand; and L and L1 are independently selected from any neutral electron donor. The ruthenium and osmium carbene compounds of the present invention may be synthesized using diazo compounds, by neutral electron donor ligand exchange, by cross metathesis, using acetylene, using cumulated olefins, and in a one-pot method using diazo compounds and neutral electron donors.
    Type: Grant
    Filed: October 18, 2004
    Date of Patent: September 5, 2006
    Assignee: California Institute of Technology
    Inventors: Robert H. Grubbs, Peter Schwab, Sonbinh T. Nguyen