By Addition Of Entire Unsaturated Molecules, E.g., Polymerization, Etc. Patents (Class 585/502)
  • Patent number: 11904291
    Abstract: The present disclosure relates to an apparatus for preparing an oligomer, and more particularly, to an apparatus for preparing an oligomer including: a reactor including a gaseous area having a first gaseous reactant inlet provided at a lower portion thereof, and a reaction area in which a reaction medium reacts with the gaseous reactant above the gaseous area; a second gaseous reactant inlet provided on an inner wall of the reactor in the gaseous area and a third gaseous reactant inlet provided on an inner wall of the reactor facing the second gaseous reactant inlet; and a first injection nozzle connected to the second gaseous reactant inlet and a second injection nozzle connected to the third gaseous reactant inlet.
    Type: Grant
    Filed: July 9, 2021
    Date of Patent: February 20, 2024
    Assignee: LG Chem, Ltd.
    Inventors: Moon Sub Hwang, Min Ho Sun, Jong Hun Song, Kyung Seog Youk, Jeong Seok Lee, Hong Min Lee
  • Patent number: 11773036
    Abstract: Disclosed herein are processes and reaction systems for controlling a temperature of an oligomerization reaction zone using a heat exchange system.
    Type: Grant
    Filed: February 8, 2023
    Date of Patent: October 3, 2023
    Assignee: Chevron Phillips Chemical Company LP
    Inventor: Bruce E. Kreischer
  • Patent number: 10758881
    Abstract: A method for processing an oligomerization product stream includes discharging the oligomerization product stream from an oligomerization reactor through a product outlet line, and heating the oligomerization product stream, heating a wall of the product outlet line, or both. The oligomerization product stream includes solvent, linear alpha olefins, a polymer byproduct, or a combination of at least one of the foregoing. The heating is to a temperature that is greater than the melting temperature of the polymer byproduct present in the oligomerization product stream.
    Type: Grant
    Filed: March 17, 2017
    Date of Patent: September 1, 2020
    Assignees: SABIC GLOBAL TECHNOLOGIES B.V., LINDE AG
    Inventors: Abdullah Alqahtani, Shahid Azam, Anina Wöhl, Wolfgang Müller, Andreas Meiswinkel, Heinz Bölt, Ralf Noack, Andreas Metzner, Andre Porebski, Tobias Meier
  • Patent number: 10646860
    Abstract: The invention concerns a catalytic composition comprising: at least one nickel precursor with an oxidation number of (+II), at least one phosphine ligand with formula PR1R2R3 in which the groups R1, R2 and R3, which may be identical or different and which may or may not be bonded together, and at least one Lewis base, said composition having a molar ratio of the phosphine ligand to the nickel precursor of less than or equal to 5 and a molar ratio of the Lewis base and phosphine ligand together to the nickel precursor of greater than or equal to 5.
    Type: Grant
    Filed: December 13, 2016
    Date of Patent: May 12, 2020
    Assignee: IFP Energies Nouvelles
    Inventors: Pierre-Alain Breuil, Olivia Chaumet-Martin
  • Patent number: 10604457
    Abstract: A process comprising a) contacting (i) ethylene, (ii) a catalyst system comprising 1) a heteroatomic ligand iron salt complex, or a heteroatomic ligand and an iron salt, (iii) hydrogen, and (iv) optionally an organic reaction medium; and b) forming an oligomer product wherein 1) the oligomer product has a Schulz-Flory K value from 0.4 to 0.8 and 2) the oligomer product comprises (a) less than 1 wt. % of polymer, (b) less than 1 wt. % compounds having greater than 70 carbon atoms, (c) less than 1 wt. % compounds having a weight average molecular weight of greater than 1000 g/mol, or (d) any combination thereof wherein the weight percentage is based on the total weight of the oligomer product.
    Type: Grant
    Filed: December 29, 2016
    Date of Patent: March 31, 2020
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Steven M. Bischof, Brooke L. Small, Ryan W. Snell, Ron D. Knudsen, Eric J. Netemeyer, Orson L. Sydora, Jamie N. Sutherland, Bruce E. Kreischer, William J. Fisher
  • Patent number: 10563135
    Abstract: Processes for oligomerizing olefins to produce diesel. The oligomerization zone temperature is controlled to counteract catalyst deactivation caused by coking, by contaminants such as cyclo C5 and/or cyclo C6 hydrocarbons, or both. The temperature is increased in increments to ensure that that the oligomerization zone is producing product at a target product yield with a target product quality, which may be measured by a product cetane number. The target product yield is at least 50 wt % and a target product cetane number may be at least 35.
    Type: Grant
    Filed: November 2, 2016
    Date of Patent: February 18, 2020
    Assignee: UOP LLC
    Inventors: Zhihao Fei, Steven L. Krupa, Hosoo Lim, Charles P. Luebke, Robert Mehlberg, Christopher P. Nicholas, Lisa M. Wolschlag
  • Patent number: 9943824
    Abstract: The present invention relates to a polymerization device for the production of melts of thermoplastic polymers in which the heat of the discharged product can be recovered and used for preheating of the usable raw materials. In addition, the present invention relates to a corresponding method for the production of thermoplastic polymers.
    Type: Grant
    Filed: February 24, 2014
    Date of Patent: April 17, 2018
    Assignee: UHDE INVENTA-FISHER GmbH
    Inventors: Ekkehard Siebecke, Mirko Bär, Bernd Königsmann
  • Patent number: 9802874
    Abstract: Disclosed herein is a method of preparing 1-octene at high activity and high selectivity while stably maintaining reaction activity by tetramerizing ethylene using a chromium-based catalyst system comprising a transition metal or a transition metal precursor, a cocatalyst, and a P—C—C—P backbone structure ligand represented by (R1)(R2)P—(R5)CHCH(R6)—P(R3)(R4).
    Type: Grant
    Filed: November 21, 2013
    Date of Patent: October 31, 2017
    Assignees: SK Innovation Co., Ltd., SK Global Chemical Co., Ltd.
    Inventors: Taek Kyu Han, Myung Ahn Ok, Sung Seok Chae, Sang Ook Kang, Jae Ho Jung
  • Patent number: 9580525
    Abstract: An olefin oligomerization process comprises contacting an olefin feed with a catalyst composition. The catalyst composition includes a crystalline aluminosilicate having FAU, EMT or a combination of FAU and EMT framework type. The crystalline aluminosilicate has cobalt and at least one alkaline earth metal selected from calcium, barium, strontium and mixtures thereof within its intra-crystalline cages.
    Type: Grant
    Filed: September 18, 2012
    Date of Patent: February 28, 2017
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Georges M. K. Mathys, Geraldine Tosin, Johan A. Martens, Marcel J. G. Janssen, Joris Franken
  • Patent number: 9266983
    Abstract: The present disclosure provides a catalyst composition for ethylene oligomerization including an imino ferrous complex shown in Formula (I) as the main catalyst, an aluminum-containing cocatalyst, water, and an organic solvent: According to the present disclosure, a higher oligomerization activity can be obtained with the catalyst composition than with a catalyst composition system in the prior art which contains no water. Moreover, when the catalyst composition according to the present disclosure is used, a high selectivity of ?-olefins is obtainable. Besides, the catalyst composition according to the present disclosure can enable rapid initiation, stable operation, and good repeatability of the oligomerization reaction. According to the present disclosure, a high oligomerization activity can be obtained even at a rather low ratio of Al/Fe, or at a low reaction temperature.
    Type: Grant
    Filed: April 16, 2014
    Date of Patent: February 23, 2016
    Assignees: CHINA PETROLEUM & CHEMICAL CORPORATION, BEIJING RESEARCH INSTITUTE OF CHEMICAL INDUSTRY, CHINA PETROLEUM & CHEMICAL CORPORATION
    Inventors: Tonglin Li, Mingfang Zheng, Jun Liu, Huaijie Wang, Haiying Zhang, Weizhen Li, Jilong Wang, Yuling Piao
  • Patent number: 9206272
    Abstract: The present invention relates to a method for ethylene oligomerization. According to the method of the present invention, highly active ethylene oligomerization reaction is possible by using a catalyst system including a novel chromium compound exhibiting high activity for ethylene oligomerization reaction, and therefore, polyethylene can be prepared using a small amount of comonomers or using only ethylene without comonomers.
    Type: Grant
    Filed: May 10, 2013
    Date of Patent: December 8, 2015
    Assignee: LG Chem, Ltd.
    Inventors: Heon Yong Kwon, Yong Ho Lee, Kyoung-Chan Lim, Ki Soo Lee, Min Seok Cho
  • Patent number: 9029619
    Abstract: The present invention relates to a process to make alpha olefins comprising: dehydrating ethanol to recover an ethylene stream, introducing said ethylene stream into an oligomerization zone containing an oligomerization catalyst and into contact with said oligomerization catalyst, operating said oligomerization zone at conditions effective to produce an effluent consisting essentially of 1-butene, 1-hexene, optionally heavier alpha olefins and unconverted ethylene if any, introducing the above effluent into a fractionation zone to recover a stream consisting essentially of 1-butene, a stream consisting essentially of 1-hexene, optionally a stream consisting essentially of heavier alpha olefins and an optional ethylene stream. In an advantageous embodiment the 1-hexene or at least one heavier alpha olefins, if any, are isomerized to an internal olefin and subsequently transformed by metathesis with the aid of additional ethylene into different alpha-olefins with even or odd number of carbons.
    Type: Grant
    Filed: December 10, 2009
    Date of Patent: May 12, 2015
    Assignee: Total Research & Technology Feluy
    Inventor: Walter Vermeiren
  • Patent number: 9017522
    Abstract: A process to separate a multi-component hydrocarbon stream which includes ethylene and other components with at least some of the components being present in a number of phases, is provided. The process includes in a first flash stage, flashing the multi-component hydrocarbon stream, from an elevated pressure and temperature to a pressure in the range of 10-18 bar(a), producing a first ethylene-containing vapor stream at a pressure in the range of 10-18 bar(a) and a multi-phase stream which includes some ethylene. In a second flash stage, the multi-phase stream is flashed to a pressure of less than 6 bar(a), producing a second vapor stream at a pressure of less than 6 bar(a) and a bottoms stream. The first ethylene-containing vapor stream is removed from the first flash stage, the second vapor stream is removed from the second flash stage and the bottoms stream is removed from the second flash stage.
    Type: Grant
    Filed: October 1, 2010
    Date of Patent: April 28, 2015
    Assignee: Sasol Technolgy (Proprietary) Limited
    Inventors: Johannes Jochemus Gildenhuys, Andrew Kenneth Stone, William Francis Revelt
  • Patent number: 8957270
    Abstract: A process for producing a base for a fuel from a C2 ethanol feedstock, by a first stage for oligomerization of the feedstock into a hydrocarbon effluent that contains a mixture of olefins for the most part having between 4 and 30 carbons, and contains a C10-C24 fraction that has a mean linearity that is greater than 60%, in the presence of a homogeneous catalytic system that contains a metal precursor of titanium, zirconium, hafnium, nickel and/or iron, a second stage for oligomerization of a portion of the effluent that is obtained from stage a), into a hydrocarbon effluent that contains a mixture of olefins for the most part having between 4 and 30 carbon atoms, and containing a C10-C24 fraction that has a mean linearity that is less than 50%, in the presence of a homogeneous catalytic system.
    Type: Grant
    Filed: May 6, 2011
    Date of Patent: February 17, 2015
    Assignee: IFP Energies Nouvelles
    Inventors: Sandrine Berard, Stephane Harry, Natacha Touchais, Lionel Magna, Helene Olivier-Bourbigou, Cedrik Popelin, David Proriol, Lucien Saussine
  • Patent number: 8937206
    Abstract: The process converts FCC olefins to heavier compounds. The heavier compounds are more easily separated from the unconverted paraffins. The heavier compounds can be recycled to an FCC unit or delivered to a separate FCC unit. Suitable conversion zones are oligomerization and aromatic alkylation zones.
    Type: Grant
    Filed: March 27, 2014
    Date of Patent: January 20, 2015
    Assignee: UOP LLC
    Inventors: Joao Jorge da Silva Ferreira Alves, James E. Rekoske, Christopher P. Nicholas
  • Patent number: 8901364
    Abstract: Disclosed is a process for producing a hydrocarbon fraction rich in components boiling in the range typical for diesel fuel comprising contacting a feedstock comprising one or more C2 to C10 alkenes with a modified zeolite catalyst having a one-dimensional micropore structure consisting of channels made from rings containing between 8 and 12 silicon/aluminum atoms at a temperature in the range 100 to 500° C. and pressure in the range 0.1 to 200 bar characterized in that the modified zeolite catalyst is one which has been prepared by treating a corresponding zeolite precursor with an alkaline solution. The alkaline solution used to treat the zeolite precursor can be for example aqueous sodium hydroxide solution. Relative to equivalent untreated zeolites the modified zeolite catalysts described show improved catalyst life and selectivity to hydrocarbons boiling in the range 250 to 350° C.
    Type: Grant
    Filed: June 22, 2010
    Date of Patent: December 2, 2014
    Assignee: BP Corporation North America Inc.
    Inventors: Avelino Corma, Cristina Martinez, Eric J. Doskocil, George Yaluris
  • Patent number: 8865959
    Abstract: A process for the preparation of oligomeric poly alpha-olefins includes oligomerizing low molecular weight PAO oligomer in the presence of a Lewis acid catalyst such as promoted aluminum trichloride or boron trifluoride under oligomerization conditions. The low molecular weight PAO oligomers used as a feed or feed component of the present process are the light olefinic by-product fractions including the dimers and light fractions from the metallocene-catalyzed PAO oligomerization process which are characterized by a molecular weight of 150 to 600 and a terminal olefin (vinylidene) content of at least 25%.
    Type: Grant
    Filed: March 4, 2009
    Date of Patent: October 21, 2014
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Abhimanyu Onkar Patil, Margaret May-Som Wu, Norman Yang
  • Publication number: 20140275296
    Abstract: Embodiments of the invention relates to conversion of hydrocarbon material including but not limited to coal and biomass to a synthetic liquid transportation fuel. The invention includes the integration of a non-catalytic first reaction scheme, which converts carbonaceous materials into a solid product that includes char and ash and a gaseous product; a non-catalytic second reaction scheme, which converts a portion of the gaseous product from the first reaction scheme to light olefins and liquid byproducts; a traditional gas-cleanup operations; and the third reaction scheme to combine the olefins from the second reaction scheme to produce a targeted fuel like liquid transportation fuels.
    Type: Application
    Filed: March 15, 2013
    Publication date: September 18, 2014
    Inventor: Altex Technologies Corporation
  • Patent number: 8816147
    Abstract: A process for recovering 1-hexene comprising: a) separating the mixture obtained from the ethylene trimerization reaction into a top fraction comprising ethylene and a bottom fraction, b) separating a portion of the bottom fraction obtained from step a) into a top fraction comprising 1-hexene and 1-butene and a bottom fraction, c) separating a portion of the fraction comprising 1-hexene and 1-butene obtained from step b) into a top fraction principally comprising 1-butene and into a bottom fraction principally comprising 1-hexene, and in said process: a portion of the bottom fraction obtained from step b) is returned to the reaction section and another portion of said bottom fraction obtained from step b) is used in a recirculation loop connecting the reaction section and the column of said step b), said recirculation loop being used to cool the reaction section and to reboil said column of step b).
    Type: Grant
    Filed: July 1, 2013
    Date of Patent: August 26, 2014
    Assignee: Axens
    Inventors: Daniel-Jean Vinel, Jean-Alain Chodorge, Jerome Pigourier, Pierre-Yves Martin, Laurent Bournay
  • Patent number: 8816146
    Abstract: Methods for dimerizing alpha-olefins utilizing immobilized buffered catalysts wherein a buffered ionic liquid is mixed with an organometallic complex of the formula: where M is selected from the group of Ti, Zr, Hg, Ni, and V and R and R? are selected from the group consisting of hydrogen, alkyl, aryl, alkenyl, alkynyl, alkyloxy, substituted aryl, and halogens, are provided.
    Type: Grant
    Filed: July 1, 2010
    Date of Patent: August 26, 2014
    Assignee: Phillips 66 Company
    Inventors: Tanja Englmann, Christine Denner, Helmut G. Alt, Roland Schmidt, Matthias Dötterl
  • Patent number: 8809611
    Abstract: A method for removal and recovery of an organic amine from a hydrocarbon stream containing the amine, including: i) mixing the hydrocarbon stream containing the amine with an aqueous inorganic acid in a volumetric ratio of hydrocarbon stream:aqueous inorganic acid of greater than 1:1-5:1, preferably 1.5:1-4:1, more preferably 3:1, ii) phase separating of hydrocarbon and aqueous phase; iii) removing the hydrocarbon phase and optionally further purifying thereof, iv) optionally recycling at least a part of the hydrocarbon phase obtained in step (iii) into mixing step (i), v) mixing the aqueous phase obtained in step (iii) with an aqueous alkaline solution, vi) phase separating of an aqueous phase and an organic phase formed, vii) removing the organic phase obtained in step (vi) and optionally further purifying thereof.
    Type: Grant
    Filed: November 1, 2013
    Date of Patent: August 19, 2014
    Assignee: Saudi Basic Industries Corporation
    Inventors: Fuad M. Mosa, Shahid Majeed Azam, Sultan Eid Al-Otaibi
  • Patent number: 8759598
    Abstract: An object of the present invention is to provide a process of producing propylene by contacting ethylene with a catalyst, where propylene is produced with high selectivity. The present invention relates to a production process of propylene, comprising contacting ethylene with a catalyst, wherein the catalyst comprises a zeolite as an active ingredient and an acid content in the outer surface of the zeolite is 5 % or less based on an acid content of the entire zeolite.
    Type: Grant
    Filed: November 8, 2011
    Date of Patent: June 24, 2014
    Assignee: Mitsubishi Chemical Corporation
    Inventors: Mikio Hayashi, Masashi Yamaguchi, Yumiko Yoshikawa, Takahiko Takewaki, Tohru Setoyama
  • Patent number: 8748682
    Abstract: The process and apparatus converts ethylene in a dilute ethylene stream that may be derived from an FCC product to heavier hydrocarbons. The catalyst may be an amorphous silica-alumina base with a Group VIII and/or VIB metal. The catalyst is resistant to feed impurities such as hydrogen sulfide, carbon oxides, hydrogen and ammonia. At least 40 wt-% of the ethylene in the dilute ethylene stream can be converted to heavier hydrocarbons.
    Type: Grant
    Filed: September 26, 2013
    Date of Patent: June 10, 2014
    Assignee: UOP LLC
    Inventors: Christopher P. Nicholas, Alakananda Bhattacharyya, David E. Mackowiak
  • Patent number: 8748681
    Abstract: The process and apparatus converts ethylene in a dilute ethylene stream that may be derived from an FCC product to heavier hydrocarbons. The catalyst may be an amorphous silica-alumina base with a Group VIII and/or VIB metal. The catalyst is resistant to feed impurities such as hydrogen sulfide, carbon oxides, hydrogen and ammonia. At least 40 wt-% of the ethylene in the dilute ethylene stream can be converted to heavier hydrocarbons.
    Type: Grant
    Filed: March 31, 2009
    Date of Patent: June 10, 2014
    Assignee: UOP LLC
    Inventors: Christopher P. Nicholas, Alakananda Bhattacharyya, David E. Mackowiak
  • Patent number: 8742193
    Abstract: A process for oligomerization of an olefinic feedstock that contains olefinic hydrocarbon molecules that have 2 to 10 carbon atoms per molecule is described, whereby said process comprises bringing said feedstock into contact with a catalyst that comprises at least one amorphous material with hierarchized and organized porosity and consists of at least two elementary spherical particles, each of said particles comprising a mesostructured silicon-oxide-based matrix that has a mesopore diameter of between 1.5 and 30 nm and that exhibits amorphous and microporous walls with a thickness of between 1 and 50 nm, whereby said elementary spherical particles have a maximum diameter of 200 microns.
    Type: Grant
    Filed: April 28, 2009
    Date of Patent: June 3, 2014
    Assignee: IFP Energies Nouvelles
    Inventors: Amandine Cabias, Alexandra Chaumonnot, Laurent Simon
  • Publication number: 20140135554
    Abstract: Recycle of a stream comprising C8 oligomers to an oligomerization zone to be oligomerized with C4 olefins can produce diesel range oligomers. A diesel stream can be separated from a gasoline stream which can be recycled to the oligomerization zone.
    Type: Application
    Filed: November 7, 2013
    Publication date: May 15, 2014
    Applicant: UOP LLC
    Inventors: Christopher P. Nicholas, Steven L. Krupa, Kurt M. Vanden Bussche, Todd M. Kruse
  • Publication number: 20140135553
    Abstract: A process for separating an oligomerate stream into a vaporous oligomerate stream and a liquid oligomerate bottom stream is followed by recycling the liquid oligomerate bottom stream to an oligomerization zone to maintain the liquid phase therein and to provide unreacted olefins to the oligomerization zone.
    Type: Application
    Filed: November 7, 2013
    Publication date: May 15, 2014
    Applicant: UOP LLC
    Inventors: Christopher P. Nicholas, Steven L. Krupa, Kurt M. Vanden Bussche, Todd M. Kruse
  • Patent number: 8722953
    Abstract: The invention relates to a process for preparing substituted or unsubstituted 1,7-diolefins by hydrodimerizing non-cyclic olefins having at least two conjugated double bonds in the presence of a reducing agent and of a catalyst, wherein the catalyst used is a metal-carbene complex.
    Type: Grant
    Filed: June 6, 2007
    Date of Patent: May 13, 2014
    Assignee: Evonik Degussa GmbH
    Inventors: Volker Brehme, Manfred Neumann, Frank Bauer, Elke Fiebig-Bauer, Franz Rudolf Bauer, Johanna Elisabeth Bauer, Dirk Roettger
  • Patent number: 8716542
    Abstract: In a process for oligomerizing an olefinic hydrocarbon feedstock comprising at least 65 wt % olefins and/or sulfur-containing molecules, the feedstock is contacted under oligomerization conditions with (a) a first unidimensional 10-ring molecular sieve catalyst and (b) a second multidimensional crystalline molecular sieve catalyst. The first and second catalysts may be contained in separate reactors or as separate beds in a single reactor.
    Type: Grant
    Filed: September 2, 2010
    Date of Patent: May 6, 2014
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Stephen Harold Brown, John Stephen Godsmark, Georges Marie Karel Mathys
  • Patent number: 8704021
    Abstract: The process converts FCC olefins to heavier compounds. The heavier compounds are more easily separated from the unconverted paraffins. The heavier compounds can be recycled to an FCC unit or delivered to a separate FCC unit. Suitable conversion zones are oligomerization and aromatic alkylation zones.
    Type: Grant
    Filed: May 23, 2013
    Date of Patent: April 22, 2014
    Assignee: UOP LLC
    Inventors: Joao Jorge da Silva Ferreira Alves, James E. Rekoske, Christopher P. Nicholas
  • Patent number: 8691713
    Abstract: Treatment at elevated temperature and advantageously superatmospheric pressure with an inert gas, especially nitrogen, rejuvenates molecular sieve catalysts deactivated by use in liquid-phase or supercritical or dense-phase olefin oligomerization, or by use in aromatic alkylation.
    Type: Grant
    Filed: May 26, 2006
    Date of Patent: April 8, 2014
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Jihad M. Dakka, Hans K. T. Goris, Stephen H. Brown
  • Patent number: 8664460
    Abstract: The application discloses novel processes for the oligomerization of unsaturated hydrocarbons, and more specifically the use of selected ionic liquids containing Indium (III) Chloride in the oligomerization of unsaturated hydrocarbons, which allows for selection of the oligomers formed.
    Type: Grant
    Filed: December 12, 2006
    Date of Patent: March 4, 2014
    Assignee: The Queen's University of Belfast
    Inventors: Martyn John Earle, Johanna Kärkkäinen, Natalia V. Plechkova, Alina Tomaszowska, Kenneth Richard Seddon
  • Patent number: 8642814
    Abstract: The invention describes methods and systems for making particular organic compounds from unsaturated fatty acids derived from biological materials. Particular embodiments describe synthesizing civetone and olefins from a mixture of palmitoleic and oleic unsaturated fatty acid esters. The inventive methods use reaction steps such as metathesis, cyclization, hydrolysis, and/or decarboxylation.
    Type: Grant
    Filed: July 24, 2013
    Date of Patent: February 4, 2014
    Assignee: Heliae Development, LLC
    Inventor: Sandip Shinde
  • Patent number: 8575410
    Abstract: The process and apparatus converts ethylene in a dilute ethylene stream that may be derived from an FCC product to heavier hydrocarbons. The catalyst may be an amorphous silica-alumina base with a Group VIII and/or VIB metal. The catalyst is resistant to feed impurities such as hydrogen sulfide, carbon oxides, hydrogen and ammonia. At least 40 wt-% of the ethylene in the dilute ethylene stream can be converted to heavier hydrocarbons.
    Type: Grant
    Filed: March 31, 2009
    Date of Patent: November 5, 2013
    Assignee: UOP LLC
    Inventors: Christopher P. Nicholas, Alakananda Bhattacharyya, David E. Mackowiak
  • Patent number: 8552241
    Abstract: A method of converting ethanol to a diesel fuel base stock comprises: a reaction stage (a) of contacting the ethanol with an acid catalyst, amorphous or structured, predominantly mesoporous, for example at a temperature of 300° C. to 500° C., at a pressure of 2 to 10 MPa and at a WHSV of 0.2 to 4 h?1, producing a gas phase, an organic liquid phase and an aqueous liquid phase, and a stage (b) of separating said gas phase, said organic liquid phase and said aqueous liquid phase at a pressure close to the reaction pressure. The method can involve recycling at least part of the gas phase separated in stage (b) to stage (a), and hydrogenating at least part of the organic liquid phase separated in stage (b).
    Type: Grant
    Filed: August 8, 2011
    Date of Patent: October 8, 2013
    Assignee: IFP Energies nouvelles
    Inventors: Vincent Coupard, Sylvia Maury, Frédéric Capuano, Mohamed Bengrine
  • Patent number: 8536391
    Abstract: This disclosure provides for alpha olefin oligomers and polyalphaolefins (or PAOs) and methods of making the alpha olefin oligomers and PAOs. This disclosure encompasses metallocene-based alpha olefin oligomerization catalyst systems, including those that include at least one metallocene and an activator comprising a solid oxide chemically-treated with an electron withdrawing anion. The alpha olefin oligomers and PAOs prepared with these catalyst systems can have a high viscosity index combined with a low pour point, making them particularly useful in lubricant compositions and as viscosity modifiers.
    Type: Grant
    Filed: June 15, 2010
    Date of Patent: September 17, 2013
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Brooke L. Small, Kenneth D. Hope, Qing Yang, Albert P. Masino, Max P. McDaniel, Richard M. Buck, William B. Beaulieu, Eduardo J. Baralt, Eric J. Netemeyer, Bruce Kreischer
  • Patent number: 8513478
    Abstract: Liquid poly-alpha-olefins having a KV100 of 2 to 6000 cSt, 20 weight percent dimer or less and a viscosity index of 60 or more are obtained by contacting in a reaction zone, in the presence of from 0 to 60 psi hydrogen, C3 to C20 alpha-olefin monomers with a non-coordinating anion activator, a single bridged meso-metallocene transition metal compound having less than about 35 wt % racemic isomer, and a co-activator. The molar ratio of activator to meso-metallocene is from 10:1 to 0.1:1, and the alpha-olefin monomers in the feed components are present in at least 20 wt % or more based upon the weight of the meso-metallocene, non-coordinating anion activator, co-activator, monomers, and solvent or diluent. The productivity of the process is at least 50,000 g of total product per gram of transition metal compound and no more than 5% monomer is converted from olefin to alkane.
    Type: Grant
    Filed: August 1, 2007
    Date of Patent: August 20, 2013
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Margaret M. Wu, Mark P. Hagemeister, Norman Yang
  • Patent number: 8502006
    Abstract: A process for the dimerization of isoolefins is disclosed. The process may include: contacting an isoolefin with sulfurous acid in a reaction zone at conditions of temperature and pressure sufficient to dimerize at least a portion of the isoolefin.
    Type: Grant
    Filed: September 11, 2009
    Date of Patent: August 6, 2013
    Assignee: Catalytic Distillation Technologies
    Inventor: William M. Cross, Jr.
  • Patent number: 8487153
    Abstract: Methods for dimerizing alpha-olefins utilizing immobilized buffered catalysts wherein a buffered ionic liquid is mixed with an organometallic complex of the formula: where X is a halogen, n=2 or 3, M=Ti, V, Cr, Mn, Fe, Co and Ni and R1, R2, R3 and R4 are selected from the group consisting of hydrogen, alkyl, aryl, alkenyl, alkynyl, alkyloxy, substituted aryl, and X are provided. A method for dimerizing alpha-olefins utilizing the immobilized buffered catalysts and a co-catalyst is also provided.
    Type: Grant
    Filed: July 1, 2010
    Date of Patent: July 16, 2013
    Assignee: Phillips 66 Company
    Inventors: Matthias Dötterl, Roland Schmidt, Tanja Englmann, Christine Denner, Helmut G. Alt
  • Patent number: 8481796
    Abstract: A hydrocarbon composition that comprises species of at least 3 different carbon numbers, at least about 95 wt % non-normal hydrocarbons, no greater than 1000 wppm aromatics, no greater than 10 wt % naphthenes, and also has a certain boiling point range; and a process for making the hydrocarbon composition.
    Type: Grant
    Filed: January 27, 2006
    Date of Patent: July 9, 2013
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Keith H. Kuechler, Stephen Harold Brown, An Amandine Verberckmoes, Steven E. Silverberg, Marc P. Puttemans, Mark R. Welford, John S. Godsmark
  • Patent number: 8481444
    Abstract: Catalyst composition for the oligomerization of ethylene, comprising (i) an at least partially hydrolyzed transition metal compound, obtainable by controlled addition of water to a transition metal compound having the general formula MXm(OR?)4-m or MXm(OOCR?)4-m, wherein R? is an alkyl, alkenyl, aryl, aralkyl or cycloalkyl group, X is halogen, preferably Cl or Br, and m is from 0 to 4; preferably 0-3; and (ii) an organoaluminum compound as a cocatalyst, wherein the molar ratio of water and transition metal compound is within a range of between about (0.01-3):1; a process for oligomerization of ethylene and a method for preparing the catalyst composition.
    Type: Grant
    Filed: November 13, 2008
    Date of Patent: July 9, 2013
    Assignee: Saudi Basic Industries Corporation
    Inventors: Vugar Aliyev, Fuad Mosa, Mohammed Al-Hazmi
  • Patent number: 8471086
    Abstract: We provide a process for producing hydrocarbon products. The process includes operating a process unit comprising a liquid catalyst in a first mode, adjusting a molar ratio of olefin to HCl, and operating the process unit in a second mode. The first mode and the second mode are different, one being a distillate mode and the other being a lubricant mode. Increasing the molar ratio of olefin to HCl provides a higher amount of a lubricant.
    Type: Grant
    Filed: June 28, 2010
    Date of Patent: June 25, 2013
    Assignee: Chevron U.S.A. Inc.
    Inventor: Sven Ivar Hommeltoft
  • Patent number: 8471084
    Abstract: The process converts FCC olefins to heavier compounds. The heavier compounds are more easily separated from the unconverted paraffins. The heavier compounds can be recycled to an FCC unit or delivered to a separate FCC unit. Suitable conversion zones are oligomerization and aromatic alkylation zones.
    Type: Grant
    Filed: March 31, 2010
    Date of Patent: June 25, 2013
    Assignee: UOP LLC
    Inventors: Joao Jorge da Silva Ferreira Alves, James E. Rekoske, Christopher P. Nicholas
  • Patent number: 8461406
    Abstract: According to the present invention there is provided a process for producing an oligomeric product by the oligomerisation of at least one olefinic compound including: A) providing an activated oligomerisation catalyst comprising the combination of: i) a source of a transition metal; ii) a ligating compound of the formula (R1)mX1(Y)X2(R2)n iii) a metal containing activator; and (iv) at least one olefinic compound; B) diluting the activated oligomerisation catalyst of A with an introduced liquid medium; and C) contacting the at least one olefinic compound to be oligomerised with the diluted activated catalyst of B to produce an oligomeric product.
    Type: Grant
    Filed: July 10, 2006
    Date of Patent: June 11, 2013
    Assignee: Sasol Technology (PTY) Limited
    Inventors: Matthew James Overett, Kevin Blann, Esna Killian, David Hedley Morgan, Hulisani Maumela, Annette Bollmann, John Thomas Dixon
  • Patent number: 8440872
    Abstract: A process for preparing poly alpha olefins from a Fisher-Tropsch product. The process comprising the steps of contacting a C5-C18 fraction of an alpha-olefinic hydrocarbon mixture produced from thermal cracking a C16-C40 Fisher-Tropsch product with an oligomerization catalyst under conditions to produce an oligomerized product; and fractionating the oligomerized product to obtain a fractionated product having an average carbon number greater than 30. A process for preparing lubricant base stocks from a Fisher-Tropsch product is also provided.
    Type: Grant
    Filed: October 5, 2007
    Date of Patent: May 14, 2013
    Assignee: Exxonmobil Research and Engineering Company
    Inventors: John S. Buchanan, Margaret M. Wu, Lorenzo DeCaul
  • Patent number: 8415519
    Abstract: The invention involves a process for converting an oxygenate-containing feed into an olefin-containing product comprising: (a) providing a co-catalyst oxide of a metal from Groups 2-4 of the Periodic Table of Elements, Lanthanides, Actinides, and combinations thereof, (b) contacting the metal oxide with nitromethane under conditions sufficient for the nitromethane to adsorb onto the metal oxide; (c) analyzing the nitromethane-adsorbed metal oxide using NMR to determine a basic site density of the metal oxide; (d) providing a catalyst system comprising a primary catalyst comprising aluminosilicates, aluminophosphates, silicoaluminophosphates, and metal-containing derivatives and combinations thereof, and the co-catalyst metal oxide whose basic site density is ?0.
    Type: Grant
    Filed: December 17, 2008
    Date of Patent: April 9, 2013
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Stephen N. Vaughn, Sebastien P. B. Kremer, Teng Xu
  • Patent number: 8404915
    Abstract: This invention relates to a method to selectively oligomerize olefins comprising contacting olefins with: 1) at least one diaryl-substituted diphosphine ligand; 2) a chromium metal precursor; and 3) optionally, one or more activators. In a particular embodiment, the method for selectively oligomerizing olefins includes trimerizing ethylene to selectively form 1-hexene.
    Type: Grant
    Filed: August 24, 2007
    Date of Patent: March 26, 2013
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Laughlin G. McCullough, Francis Charles Rix, John F. Walzer, Lily Joy Ackerman, Keith Anthony Hall, Gary Michael Diamond, Victor Oswaldo Nava-Salgado
  • Publication number: 20130023708
    Abstract: Processes for making CX to CY olefins are provided. The processes include reacting a feedstock comprising C5 and C6 olefins under dimerization or oligomerization conditions to provide a dimerization or oligomerization product. The product is separated into a stream comprising unreacted C5 and C6 paraffins, a stream comprising C10 to CX-1 olefins, and a stream comprising CX to CY olefins, wherein X is at least 14 and Y is greater than X and less than or equal to 36.
    Type: Application
    Filed: July 19, 2011
    Publication date: January 24, 2013
    Applicant: UOP LLC
    Inventors: Debarshi Majumder, Stephen Wayne Sohn, Bryan K. Glover, Andrea G. Bozzano
  • Patent number: 8309780
    Abstract: Provided is a process for oligomerizing n-olefins. The process has the step of reacting (oligomerizing) an amount of one or more n-olefins in the presence of a catalytically effective amount of a two or more metal oxides at a temperature effective to effect oligomerization. The two or more metal oxides are represented by the formula MOn/M?On?. M and M?, are, independently, selected from the group consisting of Al, Ce, Fe, P, W, Zr, and combinations thereof. M and M? are different metals or combinations of metals. “n” and “n?” are positive numbers and vary stoichiometrically depending on the valency of M and M?, respectively. Provided is also a process for alkylation of an alkylatable aromatic compound. The process has the step of contacting an amount of one or more n-olefins with an amount of aromatic compound in the presence of a catalytically effective amount of the two or more metal oxides at a temperature effective to effect alkylation of the aromatic compound.
    Type: Grant
    Filed: December 21, 2007
    Date of Patent: November 13, 2012
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Jihad Mohammed Dakka, Jeffrey T. Elks, James C. Vartuli
  • Patent number: 8309779
    Abstract: Disclosed herein is a catalyst system for selective oligomerization of ethylene, which comprises a P—C—C—P frame-work ligand, which is (R1)(R2)P—(R5)CHCH(R6)—P(R3)(R4), and a chromium-based metal compound. Also disclosed is a method of greatly enhancing the activity and selectivity of oligomerization, such as trimerization or tetramerization, using a ligand having a specific steric arrangement structure.
    Type: Grant
    Filed: December 24, 2007
    Date of Patent: November 13, 2012
    Assignees: SK Innovation Co., Ltd., SK Global Chemical Co., Ltd.
    Inventors: Taek Kyu Han, Sung Seok Chae, Sang Ook Kang, Kyung Ryang Wee, Sung Kwan Kim