Cr, Mo, Or W Patents (Class 585/630)
  • Patent number: 10662132
    Abstract: The present invention relates to a method of producing ethylene by separately collecting ethane and ethylene which are by-products of a propylene preparation process using propane dehydrogenation reaction and also combining an existing propylene preparation process with a process of converting ethane to ethylene. According to the present invention, valuable ethylene may be produced by converting most of ethane and ethylene, i.e., by-products of a propane dehydrogenation process, into ethylene without using the ethane as fuel, thereby improving process economic efficiency. Furthermore, a product line in the process of propane dehydrogenation reaction may be changed from a propylene product alone into two products, i.e., propylene and ethylene, and thus the operating conditions of a propylene dehydrogenation reactor and the operating conditions of a de-ethanizer may be adjusted according to the market situation, thereby increasing the production proportion of a favorable product line.
    Type: Grant
    Filed: June 26, 2017
    Date of Patent: May 26, 2020
    Assignee: HYOSUNG CHEMICAL CORPORATION
    Inventors: Bu Young Jo, Won Il Kim, Tae Wan Kim, Jong Chan Jang, Young Gyo Choi, Jung Ill Cho, Jong Ki Kim
  • Patent number: 10597343
    Abstract: An object of the present invention is to provide a composition containing fluoromethane having high purity. A method for producing fluoromethane, comprising: pyrolyzing in a gas phase a fluorine-containing methyl ether represented by Formula (1): wherein R1 and R2 are the same or different, and each represents an optionally substituted linear or branched monovalent aliphatic hydrocarbon group, an optionally substituted monovalent aromatic hydrocarbon group, an optionally substituted monovalent cyclic aliphatic hydrocarbon group, hydrogen, or halogen, in the presence of an alumina catalyst to thereby obtain a mixed gas containing fluoromethane and acid fluoride, wherein: the alumina catalyst contains chlorine in an amount of 1.0 wt % or less.
    Type: Grant
    Filed: June 3, 2016
    Date of Patent: March 24, 2020
    Assignee: DAIKIN INDUSTRIES, LTD.
    Inventors: Shingo Nakamura, Yuusuke Etou, Seiji Takubo, Katsuya Nakai
  • Patent number: 8546634
    Abstract: There is provided a method for production of a conjugated diene from a monoolefin having four or more carbon atoms by a fluidized bed reaction. The method for production of a conjugated diolefin includes bringing a catalyst in which an oxide is supported on a carrier into contact with a monoolefin having four or more carbon atoms in a fluidized bed reactor in which the catalyst and oxygen are present, wherein the method satisfies the following (1) to (3): (1) the catalyst contains Mo, Bi, and Fe; (2) a reaction temperature is in the range of 300 to 420° C.; and (3) an oxygen concentration in a reactor outlet gas is in the range of 0.05 to 3.0% by volume.
    Type: Grant
    Filed: September 29, 2010
    Date of Patent: October 1, 2013
    Assignee: Asahi Kasei Chemicals Corporation
    Inventors: Hideo Midorikawa, Hiroyuki Yano, Takashi Kinoshita
  • Publication number: 20120209048
    Abstract: A dehydrogenation catalyst is described that comprises an iron oxide, an alkali metal or compound thereof, and rhenium or a compound thereof. A process for preparing a dehydrogenation catalyst comprising preparing a mixture of iron oxide, an alkali metal or compound thereof, and rhenium or a compound thereof is also described. Additionally, a dehydrogenation process using the catalyst and a process for preparing polymers are described.
    Type: Application
    Filed: March 19, 2012
    Publication date: August 16, 2012
    Applicant: BASF Corporation
    Inventor: Ruth Mary Kowaleski
  • Patent number: 8222472
    Abstract: A method of producing 1,3-butadiene by the oxidative dehydrogenation of n-butene using a continuous-flow dual-bed reactor designed such that two kinds of catalysts charged in a fixed-bed reactor are not physically mixed. More particularly, a method of producing 1,3-butadiene by the oxidative dehydrogenation of n-butene using a C4 mixture including n-butene and n-butane as reactants and using a continuous-flow dual-bed reactor in which a multi-component bismuth molybdate catalyst and a zinc ferrite catalyst having different reaction activity in the oxidative dehydrogenation reaction of n-butene isomers (1-butene, trans-2-butene, cis-2-butene).
    Type: Grant
    Filed: February 9, 2009
    Date of Patent: July 17, 2012
    Assignees: SK Innovation Co., Ltd., SNU R&DB Foundation
    Inventors: Young Min Chung, Yong Tak Kwon, Tae Jin Kim, Seong Jun Lee, Yong Seung Kim, Seung Hoon Oh, In Kyu Song, Hee Soo Kim, Ji Chul Jung, Ho Won Lee
  • Patent number: 8188328
    Abstract: The present invention is an improved cyclic, endothermic hydrocarbon conversion process and a catalyst bed system for accomplishing the same. Specifically, the improved process comprises reacting a hydrocarbon with a multi-component catalyst bed in such a manner that the temperature within the catalyst bed remains within controlled temperature ranges throughout all stages of the process. The multi-component catalyst bed comprises a reaction-specific catalyst physically mixed with a heat-generating material.
    Type: Grant
    Filed: June 27, 2011
    Date of Patent: May 29, 2012
    Assignee: Sud-Chemie Inc.
    Inventors: Vladimir Fridman, Michael A. Urbancic
  • Patent number: 8003840
    Abstract: This invention relates to a bismuth molybdate catalyst, a preparation method thereof, and a method of preparing 1,3-butadiene using the same, and to a bismuth molybdate catalyst, a preparation method thereof, and a method of preparing 1,3-butadiene using the same, in which 1,3-butadiene can be prepared through oxidative dehydrogenation directly using a C4 mixture including n-butene and n-butane as a reactant in the presence of a mixed-phase bismuth molybdate catalyst including ?-bismuth molybdate (Bi2Mo3On) and ?-bismuth molybdate (Bi2MoO6). According to this invention, the C4 raffinate, containing many impurities, is used as a reactant, without an additional n-butane separation process, thus obtaining 1,3-butadiene at high yield.
    Type: Grant
    Filed: March 16, 2007
    Date of Patent: August 23, 2011
    Assignees: SK Innovation Co., Ltd., SK Global Chemical Co., Ltd.
    Inventors: Seung Hoon Oh, Seong Jun Lee, Tae Jin Kim, Ahn Seop Choi, Young Min Chung, In Kyu Song, Ji Chul Jung, Hee Soo Kim
  • Patent number: 7622623
    Abstract: An improved dehydrogenation catalyst bed system for olefin production utilizing classical processing techniques is disclosed.
    Type: Grant
    Filed: September 2, 2005
    Date of Patent: November 24, 2009
    Assignee: Sud-Chemie Inc.
    Inventors: Vladimir Fridman, Jay S. Merriam, Michael A. Urbancic
  • Patent number: 7279611
    Abstract: One aspect of the invention relates to a dehydrogenation catalyst composite containing alumina, chromium oxide, lithium oxide, and sodium oxide. The invention also relates to methods of making the dehydrogenation catalyst composite. Another aspect of the invention relates to method of dehydrogenating a dehydrogenatable hydrocarbon involving contacting the dehydrogenatable hydrocarbon with a dehydrogenation catalyst composite containing alumina, chromium oxide, lithium oxide, and sodium oxide to provide a dehydrogenated hydrocarbon, such as an olefin.
    Type: Grant
    Filed: December 12, 2005
    Date of Patent: October 9, 2007
    Assignee: BASF Catalysts LLC
    Inventors: Saeed Alerasool, Harold E. Manning
  • Patent number: 7045671
    Abstract: A process for catalytic dehydrogenation of a dehydrogenatable hydrocarbon process stream to the corresponding olefin or olefins, the process comprising contacting the dehydrogenatable hydrocarbon process stream under dehydrogenation conditions with a mesoporous zeotype catalyst having an intra-crystalline, non-crystallographic mesopore system and a mesopore volume of the zeotype crystals above 0.25 ml/g and comprising at least one element belonging to Groups 5–14 in the Periodic Table of the Elements (new notation). The invention also comprises a catalyst for use in the above process.
    Type: Grant
    Filed: November 21, 2003
    Date of Patent: May 16, 2006
    Assignee: Haldor Topsoe A/S
    Inventors: Iver Schmidt, Anne Krogh, Claus Hviid Christensen
  • Publication number: 20040116760
    Abstract: A gel composition substantially contained within the pores of a solid material is disclosed for use as a catalyst or as a catalyst support in dehydrogenation and dehydrocyclization processes.
    Type: Application
    Filed: November 21, 2003
    Publication date: June 17, 2004
    Inventors: Kostantinos Kourtakis, Leo Ernest Manzer
  • Patent number: 5962757
    Abstract: Dehydrogenation catalysts are prepared by a predoping process comprising, mixing iron oxide materials with a predopant to form a blend of iron oxide and predopant and heating the blend to the predoping conditions and thereafter forming a catalyst. The catalysts so prepared are useful in the dehydrogenation of a composition having at least one carbon--carbon double bond. Such catalytic uses include the conversion of ethylbenzene to styrene.
    Type: Grant
    Filed: April 17, 1997
    Date of Patent: October 5, 1999
    Assignee: Shell Oil Company
    Inventors: Stanley Nemec Milam, Brent Howard Shanks
  • Patent number: 5866737
    Abstract: A process for the oxidation and oxidative dehydrogenation of hydrocarbons, in particular ethylbenzene, to form corresponding oxidized or olefinically unsaturated compounds, in particular styrene, over an oxygen-conferring, oxygen-regenerable catalyst involving a working period, a time-displaced regenerating period and at least one intermediate rinsing period comprises effecting a partial regeneration during the working period by time-displaced addition of a substoichiometric amount of oxygen.
    Type: Grant
    Filed: January 7, 1997
    Date of Patent: February 2, 1999
    Assignee: BASF Aktiengesellschaft
    Inventors: Alfred Hagemeyer, Jurgen Schweinzer, Otto Watzenberger
  • Patent number: 5639926
    Abstract: A process for producing a branched chain olefin which comprises isomerising and transhydrogenating a hydrocarbon stream containing at least one straight chain paraffin of 4 or more carbon atoms by contacting the same at elevated temperature with a stream containing a hydrogen acceptor that is more highly unsaturated than a mono-olefin to produce a stream containing at least one branched chain olefin product. The product is separated to give a stream depleted of the product. The thus depleted stream is recycled to the isomerising and transhydrogenating stages. The hydrogen acceptor stream may comprise a diene and/or acetylene.
    Type: Grant
    Filed: January 4, 1995
    Date of Patent: June 17, 1997
    Assignee: Institut Francais Du Petrole
    Inventors: Stephen Keith Turner, Arthur Gough
  • Patent number: 5585530
    Abstract: A process for the production of olefins comprises dehydrogenating at least one hydrogen-donor hydrocarbon that is essentially free from olefinic unsaturation, e.g. a paraffin, in the presence of a dehydrogenation catalyst and in the presence of at least one hydrogen-acceptor hydrocarbon that is more highly unsaturated than a mono-olefin, e.g. a diene and/or acetylene, under conditions effective to cause at least part of said hydrogen-donor hydrocarbon to be dehydrogenated and at least part of the hydrogen-acceptor to be hydrogenated. The amount of hydrogen-acceptor is such that there are 0.5 to 20 moles of said hydrogen-donor for each mole of hydrogen-acceptor. Preferably the amount of said hydrogen-acceptor hydrocarbon hydrogenated is such that the heat of hydrogenation of said hydrogen-acceptor hydrocarbon provides at least 25% of the heat required for dehydrogenation of said hydrogen-donor hydrocarbon. In a preferred form of the invention, a hydrocarbon stream containing a hydrogen-acceptor is a C.sub.
    Type: Grant
    Filed: June 8, 1994
    Date of Patent: December 17, 1996
    Assignee: Institut Francais Du Petrole
    Inventors: Arthur Gough, Stephen K. Turner
  • Patent number: 5545787
    Abstract: A continuous process for the dehydrogenation of a hydrocarbon and/or oxygenated hydrocarbon feed, comprising contacting the hydrocarbon and/or oxygenated hydrocarbon feed with a dehydrogenation catalyst at elevated temperature in a reaction zone characterized in that the catalyst is capable of retaining hydrogen and (a) is contacted with a feed to form a dehydrogenated product and hydrogen, at least some of the hydrogen formed being adsorbed by the catalyst and/or reacting therewith to reduce at least part of the catalyst; (b) the dehydrogenated product and any unadsorbed/unreacted hydrogen is removed from the reaction zone; (c) at least some of the adsorbed hydrogen is removed from the catalyst and/or at least some of the reduced catalyst is oxidized; and (d) reusing the catalyst from step (c) in step (a).
    Type: Grant
    Filed: May 31, 1994
    Date of Patent: August 13, 1996
    Assignee: BP Chemicals Limited
    Inventors: Jeremy B. Cooper, Jonathon C. Frost, Stephen R. Partington
  • Patent number: 5354935
    Abstract: A catalyst comprising a preshaped porous support material having applied thereto in finely divided form an active compound chosen from at least one compound of vanadium, chromium, manganese, iron, cobalt, nickel, copper and zinc, and optionally a promoter chosen from at least an alkali or alkaline earth metal compound, method for the preparation thereof and use thereof in the dehydrogenation of hydrocarbons.
    Type: Grant
    Filed: August 12, 1993
    Date of Patent: October 11, 1994
    Assignee: The Dow Chemical Company
    Inventors: Frederik R. Van Buren, Dick E. Stobbe, John W. Geus, Adrianus J. Van Dillen
  • Patent number: 5302773
    Abstract: A process for preparing olefins and diolefins in high productivity which involves contacting an aliphatic hydrocarbon, such as butane, with a heterogeneous catalyst composition containing reactive oxygen under reaction conditions sufficient to produce a more highly unsaturated aliphatic hydrocarbon, such as 1,3-butadiene. The catalyst composition contains a glassy silica matrix of specified surface area and macro-porosity into which are encapsulated domains of a catalyst component containing oxides of magnesium and molybdenum. The catalyst has high crush strength and is useful in transport reactors.
    Type: Grant
    Filed: November 26, 1991
    Date of Patent: April 12, 1994
    Assignee: The Dow Chemical Company
    Inventors: G. Edwin Vrieland, Stephen J. Doktycz, Bijan Khazai
  • Patent number: 5258347
    Abstract: A process for the production of olefins and diolefins, such as 1,3-butadiene, comprising contacting an aliphatic hydrocarbon, such as butane, with a heterogeneous catalyst composition containing reactive oxygen under reaction conditions such that a more highly unsaturated aliphatic hydrocarbon is selectively formed in a high productivity. The catalyst is a composition comprising (a) a support component of magnesia and alumina and/or magnesium aluminate spinel, and (b) a catalyst component of magnesia, an oxide of molybdenum, a Group IA metal oxide promoter, and optionally vanadium oxide. Catalysts of high surface area and high attrition resistance are claimed.
    Type: Grant
    Filed: May 29, 1992
    Date of Patent: November 2, 1993
    Assignee: The Dow Chemical Company
    Inventors: Bijan Khazai, Craig B. Murchison, G. Edwin Vrieland
  • Patent number: 5146031
    Abstract: A process for the production of olefins and diolefins, such as 1,3-butadiene, comprising contacting an aliphatic hydrocarbon, such as butane, with a heterogeneous catalyst composition containing reactive oxygen under reaction conditions such that a more highly unsaturated aliphatic hydrocarbon is selectively formed in a high productivity. The catalyst is a composition comprising (a) a support component of magnesia and alumina and/or magnesium aluminate spinel, and (b) a catalyst component of magnesia, an oxide of molybdenum, a Group IA metal oxide promoter, and optionally vanadium oxide. Catalysts of high surface area and high attrition resistance are claimed.
    Type: Grant
    Filed: April 6, 1990
    Date of Patent: September 8, 1992
    Assignee: The Dow Chemical Company
    Inventors: Bijan Khazai, G. Edwin Vrieland, Craig B. Murchison, Ravi S. Dixit, Edwin D. Weihl
  • Patent number: 5053580
    Abstract: Metal oxide powders comprised of Cr(III) oxide, Ti(IV) oxide, V(V) oxide, or mixtures of these, or metal mixed oxides comprised of Cr(III) oxide and Ti(IV) oxide and V(V) oxide, or their mixtures. They have BET surfaces of 5-50m.sup.2 /g and mean particle diameters of 25-350 nm and are useful to increase conversion and selectivity in the manufacture of mono-olefins by catalytic dehydrogenation of saturated hydrocarbons. The metal oxide powders are produced from mixtures of the vaporized metal compounds chromyl chloride, titanium tetrachloride, and vanadyl chloride, in the presence of certain gases by laser pyrolysis.
    Type: Grant
    Filed: May 7, 1990
    Date of Patent: October 1, 1991
    Assignee: Veba Oel Aktiengesellschaft
    Inventors: Bernhard Schramm, Jurgen Kern, Harald Schwahn, August-Wilhelm Preuss, Klaus Gottlieb, Hartmut Bruderreck
  • Patent number: 4973791
    Abstract: A process for the production of unsaturated aliphatic hydrocarbons, such as diolefins, comprising contacting an aliphatic hydrocarbon, such as an alkane or a monoolefin, with a solid heterogeneous catalyst containing labile oxygen under reaction conditions such that a more highly unsaturated aliphatic hydrocarbon is selectively formed in a high space-time yield. The catalyst comprises an oxide of magnesium, an oxide of molybdenum, an alkali metal promoter, and optionally an oxide of vanadium. For example, butane is oxidized in the presence of magnesium molybdate doped with alkali metal oxide to a mixture of products including predominantly butadiene and cis-2-butene and trans-2-butene.
    Type: Grant
    Filed: July 20, 1989
    Date of Patent: November 27, 1990
    Assignee: The Dow Chemical Company
    Inventors: G. Edwin Vrieland, Craig B. Murchison
  • Patent number: 4902845
    Abstract: Catalyst activity life of an iron oxide-containing catalyst is extended by contacting such catalyst with a feedstream containing about 0.0001 to about 0.01 mole of oxygen per mole of feed in the substantial absence of an oxidation catalyst.
    Type: Grant
    Filed: November 21, 1988
    Date of Patent: February 20, 1990
    Assignee: Amoco Corporation
    Inventors: Dae K. Kim, George A. McConaghy
  • Patent number: 4762961
    Abstract: The vapor phase dehydrogenation of hydrocarbons is achieved with a spinel of the formula AV.sub.2-x C.sub.x O.sub.4 where A is a bivalent metal, V is vanadium substantially in +3 oxidation state, C is a trivalent metal, or with a crystalline perovskite DV.sub.1-y C.sub.y O.sub.3 where D is one or more of Y, the rare earths and Bi, and V is again vanadium in +3 oxidation state.
    Type: Grant
    Filed: August 21, 1987
    Date of Patent: August 9, 1988
    Assignee: Standard Oil Company
    Inventors: Andrew T. Guttmann, James F. Brazdil, Robert K. Grasselli
  • Patent number: 4746753
    Abstract: Bismuth cerium molybdate catalysts promoted with alkali metal and other optional ingredients provide high yields of acrylonitrile in the ammoxidation of propylene.
    Type: Grant
    Filed: July 1, 1986
    Date of Patent: May 24, 1988
    Assignee: The Standard Oil Company
    Inventors: James F. Brazdil, Jr., Dev D. Suresh, Robert K. Grasselli
  • Patent number: 4532083
    Abstract: Certain multiply promoted Sn/Sb oxides are superior catalysts for the ammoxidation of olefins to the corresponding unsaturated nitriles, the selective oxidation of olefins to unsaturated aldehydes and acids, and the oxydehydrogenation of olefins to diolefins.
    Type: Grant
    Filed: October 29, 1982
    Date of Patent: July 30, 1985
    Assignee: The Standard Oil Company
    Inventors: Dev D. Suresh, Robert K. Grasselli, James F. Brazdil, Frances I. Ratka
  • Patent number: 4473506
    Abstract: Oxide complex catalysts of iron, selenium and tellurium provide good yields of acrylonitrile in the ammoxidation of propylene with high selectivities at low temperature.
    Type: Grant
    Filed: October 18, 1982
    Date of Patent: September 25, 1984
    Assignee: The Standard Oil Company
    Inventors: James D. Burrington, James F. Brazdil, Robert K. Grasselli
  • Patent number: 4395579
    Abstract: The preparation of a compound of formula R.sup.1 --C(R.sup.2).dbd.CH.sub.2 (R.sup.1 and R.sup.2 are a phenyl, alkyl or alkenyl group or a hydrogen atom) by contacting a mixture of steam and a compound of formula R.sup.1 --C(R.sup.2)(H)--CH.sub.3 at elevated temperature under non-oxidative dehydrogenation conditions with a catalyst having a spinel structure allows lower ratios steam to compound of formula R.sup.1 --C(R.sup.2)(H)--CH.sub.3, a higher selectivity to the compound of formula R.sup.1 --C(R.sup.2).dbd.CH.sub.2 and a lower temperature when lithium is present in the spinel structure.
    Type: Grant
    Filed: November 4, 1982
    Date of Patent: July 26, 1983
    Assignee: Shell Oil Company
    Inventors: Gilbert R. Germaine, Jean P. Darnanville
  • Patent number: 4336409
    Abstract: In a process for producing a conjugated diolefin which comprises oxidatively dehydrogenating a monolefin having at least 4 carbon atoms in the vapor phase with molecular oxygen to form the corresponding conjugated diolefin; the improvement wherein the oxidative dehydrogenation is carried out in the presence of a catalyst having the general composition formulaMo.sub.a Bi.sub.b Cr.sub.c Ni.sub.d X.sub.e Y.sub.f O.sub.gwherein X represents at least one element selected from Li, Na, K, Rb, Cs, Tl and P, Y represents at least one element selected from metal elements of Group II of the periodic table, and a, b, c, d, e, f and g respectively represent the number of Mo, Bi, Cr, Ni, X, Y and O atoms, and when a=12, b=0.05-20, c=0.05-20, d=0.1-30, e=0.01-10, f=0.01-20, and g is the number of oxygen atoms which satisfies the atomic valences of the other elements.
    Type: Grant
    Filed: April 17, 1981
    Date of Patent: June 22, 1982
    Assignee: Nippon Zeon Co. Ltd.
    Inventors: Haruhisa Yamamoto, Shinji Matumoto
  • Patent number: 4327238
    Abstract: The catalytic dehydrogenation of at least one dehydrogenatable organic compound which has at least one ##STR1## grouping is carried out in the presence of a zinc titanate catalyst. The selectivity of the zinc titanate catalyst is improved by at least one promoter selected from the group consisting of chromium oxide, antimony oxide, bismuth oxide, oxides of the lanthanides, oxides of the actinides, oxides thereof, and compounds convertible to the oxides thereof.
    Type: Grant
    Filed: February 28, 1980
    Date of Patent: April 27, 1982
    Assignee: Phillips Petroleum Company
    Inventor: Alan D. Eastman
  • Patent number: 4316855
    Abstract: Certain multiply promoted Sn-Sb oxides are superior catalysts for the ammoxidation of olefins to the corresponding unsaturated nitriles, the selective oxidation of olefins to unsaturated aldehydes and acids, and the oxydehydrogenation of olefins to diolefins.
    Type: Grant
    Filed: December 28, 1979
    Date of Patent: February 23, 1982
    Assignee: The Standard Oil Co.
    Inventors: Robert K. Grasselli, Dev D. Suresh, James F. Brazdil, Frances I. Ratka
  • Patent number: 4316856
    Abstract: Molybdenum-promoted antimony phosphates also containing at least one of tellurium and bismuth have been found to exhibit significant catalytic activity in various oxidation-type reactions.
    Type: Grant
    Filed: December 28, 1979
    Date of Patent: February 23, 1982
    Assignee: The Standard Oil Co.
    Inventors: Andrew T. Guttmann, Robert K. Grasselli
  • Patent number: 4172854
    Abstract: Magnesium chromite dehydrogenation catalysts are improved by incorporation therein up to about 10% of an alkali metal.
    Type: Grant
    Filed: January 9, 1975
    Date of Patent: October 30, 1979
    Assignee: Petro-Tex Chemical Corporation
    Inventors: Michael C. Ellis, Harold E. Manning