By Dehydrogenation Patents (Class 585/616)
  • Patent number: 10843985
    Abstract: Provided is a device for preparing butadiene. The device includes an oxidative dehydrogenation reaction part, in which oxidative dehydrogenation of reaction raw materials containing butene, oxygen (O2), steam, and a diluent gas is performed to obtain oxidative dehydrogenation reaction products containing butadiene; a cooling separation part for removing water from the reaction products; a condensation separation part for condensing hydrocarbons from the reaction products from which water is removed; an absorption separation part for recovering all hydrocarbons from the reaction products containing hydrocarbons not condensed in the condensation separation part; and a purification part for separating butadiene from crude hydrocarbons condensed in the condensation separation part, wherein n-butane remaining after butadiene is separated in the purification part is fed again into the oxidative dehydrogenation reaction part.
    Type: Grant
    Filed: May 27, 2020
    Date of Patent: November 24, 2020
    Assignee: LG CHEM, LTD.
    Inventors: Jae Ik Lee, Eun Kyo Kim, Mi Kyung Kim, Jeong Seok Lee
  • Patent number: 10703690
    Abstract: The present invention relates to a method of preparing butadiene and a device for preparing the same. According to the present invention, when butadiene is prepared by oxidative dehydrogenation of butene, unlike conventional methods, in which nitrogen is used as a diluent gas and an absorption method is used to separate butadiene from reaction products, butane is used as a diluent gas and a condensation method, in which butadiene is liquefied and separated from reaction products using a low-temperature refrigerant or cooling water, is used. In addition, an absorption method of recovering all hydrocarbons from an upper stream generated in a condensation process is used, so that loss of hydrocarbons is minimized. Therefore, the method and device of the present invention may provide high-purity butadiene while reducing raw material costs, production costs, and energy consumption, thereby improving economic efficiency of processes.
    Type: Grant
    Filed: December 18, 2017
    Date of Patent: July 7, 2020
    Assignee: LG CHEM, LTD.
    Inventors: Jae Ik Lee, Eun Kyo Kim, Mi Kyung Kim, Jeong Seok Lee
  • Patent number: 10391477
    Abstract: A multimetallic catalyst having a substrate, promoter and catalytic metal.
    Type: Grant
    Filed: August 30, 2017
    Date of Patent: August 27, 2019
    Assignee: UChicago Argonne, LLC
    Inventors: Jeffrey C. Bunquin, Magali S. Ferrandon, Massimiliano Delferro, Peter C. Stair
  • Patent number: 9751819
    Abstract: The present invention relates to a method of preparing butadiene. More particularly, the present invention relates to a method of preparing butadiene by feeding butene and oxygen into a reactor containing a composite metal oxide catalyst and performing oxidative dehydrogenation, wherein a mole ratio of the oxygen to the butene is 1.8 to 2.2. In accordance with the present invention, a method of preparing butadiene to secure long-term operation stability by maintaining the intensity of a catalyst despite oxidative dehydrogenation and not to decrease selectivity due to less side reaction is provided.
    Type: Grant
    Filed: November 25, 2015
    Date of Patent: September 5, 2017
    Assignee: LG CHEM, LTD.
    Inventors: Dae Heung Choi, Dong Hyun Ko, Myung Ji Suh, Kyong Yong Cha, Ye Seul Hwang, Jun Han Kang, Hyun Seok Nam, Joo Hyuck Lee, Sang Jin Han, Jun Kyu Han
  • Patent number: 8697016
    Abstract: A reactor in the form of an essentially horizontal cylinder for carrying out an autothermal gas-phase dehydrogenation of a hydrocarbon-comprising gas stream by means of an oxygen-comprising gas stream to give a reaction gas mixture over a heterogeneous catalyst configured as monolith is disclosed herein. The interior of the reactor is divided by a detachable, cylindrical or prismatic housing which is arranged in the longitudinal direction of the reactor, gastight in the circumferential direction and open at two end faces of the housing into an inner region, having one or more catalytically active zones. In each case, a packing composed of monoliths may be stacked on top of one another, next to one another, and above one another and before each catalytically active zone. Also in each case, a mixing zone having solid internals and an outer region arranged coaxially to the inner region are provided.
    Type: Grant
    Filed: December 1, 2010
    Date of Patent: April 15, 2014
    Assignee: BASF SE
    Inventors: Grigorios Kolios, Wilhelm Ruppel, Ulrike Wegerle, Jasmina Kessel, Wolfgang Gerlinger, Godwind Tafara Peter Mabande, Goetz-Peter Schindler, Albena Kostova, Gerhard Olbert, Peter Pfab
  • Patent number: 8674156
    Abstract: A method of producing a mixed manganese ferrite catalyst, and a method of preparing 1,3-butadiene using the mixed manganese ferrite catalyst. Specifically, a method of producing a mixed manganese ferrite catalyst through a coprecipitation method which is performed at a temperature of 10˜40° C., and a method of preparing 1,3-butadiene using the mixed manganese ferrite catalyst through an oxidative dehydrogenation reaction, in which a C4 mixture containing n-butene, n-butane and other impurities is directly used as reactants without performing additional n-butane separation process or n-butene extraction. 1,3-butadiene can be prepared directly using a C4 mixture including n-butane at a high concentration as a reactant through an oxidative hydrogenation reaction without performing an additional n-butane separation process, and 1,3-butadiene, having high activity, can be also obtained in high yield for a long period of time.
    Type: Grant
    Filed: November 7, 2008
    Date of Patent: March 18, 2014
    Assignees: SK Innovation Co., Ltd., SK Global Chemical Co. Ltd.
    Inventors: Young Min Chung, Yong Tak Kwon, Tae Jin Kim, Seong Jun Lee, Min Su Ko, Seung Hoon Oh, Yong Seung Kim, In Kyu Song
  • Patent number: 8524969
    Abstract: A method for the dehydrogenation of hydrocarbons to alkenes, such as n-pentene to piperylene and n-butane to butadiene at pressures less than atmospheric utilizing a dehydrogenation catalyst are disclosed. Embodiments involve operating the dehydrogenation reactor at a pressure of 1,000 mbar or less.
    Type: Grant
    Filed: July 21, 2009
    Date of Patent: September 3, 2013
    Assignee: Fina Technology, Inc.
    Inventors: James Butler, Olga Khabashesku, James T. Merrill
  • Patent number: 8513479
    Abstract: The present invention relates to a zinc ferrite catalyst, a method of producing the same, and a method of preparing 1,3-butadiene using the same. Specifically, the present invention relates to a zinc ferrite catalyst which is produced in a pH-adjusted solution using a coprecipitation method, a method of producing the same, and a method of preparing 1,3-butadiene using the same, in which the 1,3-butadiene can be prepared directly using a C4 mixture including n-butene and n-butane through an oxidative dehydrogenation reaction. The present invention is advantageous in that 1,3-butadiene can be obtained at a high yield directly using a C4 fraction without performing an additional process for separating n-butene, as a reactant, from a C4 fraction containing impurities.
    Type: Grant
    Filed: May 8, 2008
    Date of Patent: August 20, 2013
    Assignees: SK Global Chemical Co., Ltd, SK Innovation Co., Ltd.
    Inventors: Young Min Chung, Seong Jun Lee, Tae Jin Kim, Seung Hoon Oh, Yong Seung Kim, In Kyu Song, Hee Soo Kim, Ji Chul Jung, Ho Won Lee
  • Patent number: 8410328
    Abstract: A method of preparing multicomponent bismuth molybdate catalysts composed of four metal components and a method of preparing 1,3-butadiene using the catalyst, and particularly, to multicomponent bismuth molybdate catalysts composed of a divalent cationic metal, a trivalent cationic metal, bismuth and molybdenum, a preparation method thereof, and a method of preparing 1,3-butadiene from a C4 mixture including n-butene and n-butane using oxidative dehydrogenation are described.
    Type: Grant
    Filed: August 24, 2008
    Date of Patent: April 2, 2013
    Assignees: SK Innovation Co., Ltd., SK Global Chemical Co., Ltd.
    Inventors: Young Min Chung, Tae Jin Kim, Seong Jun Lee, Yong Seung Kim, Seung Hoon Oh, In Kyu Song, Hee Soo Kim, Ji Chul Jung, Ho Won Lee
  • Patent number: 8367885
    Abstract: This invention relates to a method of preparing a multicomponent bismuth molybdate catalyst by changing the pH of a coprecipitation solution upon coprecipitation and a method of preparing 1,3-butadiene using the catalyst. The multicomponent bismuth molybdate catalyst, coprecipitated using a solution having an adjusted pH, the preparation method thereof, and the method of preparing 1,3-butadiene through oxidative dehydrogenation using a C4 mixture including n-butene and n-butane as a reactant are provided. The C4 raffinate, containing many impurities, is directly used as a reactant without an additional process for separating n-butane or extracting n-butene, thus obtaining 1,3-butadiene at high yield. The activity of the multicomponent bismuth molybdate catalyst can be simply increased through precise pH adjustment upon coprecipitation, which is not disclosed in the conventional techniques.
    Type: Grant
    Filed: May 8, 2008
    Date of Patent: February 5, 2013
    Assignees: SK Innovation Co., Ltd, SK Global Chemical Co., Ltd.
    Inventors: Young Min Chung, Seong Jun Lee, Tae Jin Kim, Seung Hoon Oh, Yong Seung Kim, In Kyu Song, Hee Soo Kim, Ji Chul Jung, Ho Won Lee
  • Patent number: 8237000
    Abstract: Processes for using a combination of carbon dioxide and oxygen in the dehydrogenation of hydrocarbons are provided. A hydrocarbon feedstock, carbon dioxide and oxygen are fed to an oxidative dehydrogenation reactor system containing one or more catalysts that promote dehydrogenation of the hydrocarbon feedstock to produce a dehydrogenated hydrocarbon product. The processes of the present invention may be used, for example, to produce styrene monomer by dehydrogenation of ethylbenzene using carbon dioxide and oxygen as oxidants.
    Type: Grant
    Filed: June 19, 2008
    Date of Patent: August 7, 2012
    Assignee: Lummus Technology, Inc.
    Inventors: Stephen C. Arnold, Johannes Hendrik Koegler, Anne Mae Gaffney, Chuen Yuan Yeh, Ruozhi Song
  • Patent number: 8222472
    Abstract: A method of producing 1,3-butadiene by the oxidative dehydrogenation of n-butene using a continuous-flow dual-bed reactor designed such that two kinds of catalysts charged in a fixed-bed reactor are not physically mixed. More particularly, a method of producing 1,3-butadiene by the oxidative dehydrogenation of n-butene using a C4 mixture including n-butene and n-butane as reactants and using a continuous-flow dual-bed reactor in which a multi-component bismuth molybdate catalyst and a zinc ferrite catalyst having different reaction activity in the oxidative dehydrogenation reaction of n-butene isomers (1-butene, trans-2-butene, cis-2-butene).
    Type: Grant
    Filed: February 9, 2009
    Date of Patent: July 17, 2012
    Assignees: SK Innovation Co., Ltd., SNU R&DB Foundation
    Inventors: Young Min Chung, Yong Tak Kwon, Tae Jin Kim, Seong Jun Lee, Yong Seung Kim, Seung Hoon Oh, In Kyu Song, Hee Soo Kim, Ji Chul Jung, Ho Won Lee
  • Publication number: 20120157737
    Abstract: A reactor includes an essentially horizontal cylinder for carrying out an autothermal gas-phase dehydrogenation of a hydrocarbon-comprising gas stream using an oxygen-comprising gas stream to give a reaction gas mixture over a heterogeneous catalyst configured as monolith. The interior of the reactor is divided by a detachable, cylindrical or prismatic housing, which is arranged in the longitudinal direction of the reactor and is gastight in the circumferential direction, into an inner region having one or more catalytically active zones, each having a packing composed of monoliths stacked on top of one another, next to one another and behind one another and before each catalytically active zone in each case a mixing zone having solid internals are provided and into an outer region, which is supplied with an inert gas, arranged coaxially to the inner region. A heat exchanger is connected to the housing at one end of the reactor.
    Type: Application
    Filed: December 20, 2011
    Publication date: June 21, 2012
    Applicant: BASF SE
    Inventors: Gerhard Olbert, Ulrike Wegerle, Grigorios Kolios, Albena Kostova, Jasmina Kessel, Alexander Weck, Alireza Rezai
  • Patent number: 8188328
    Abstract: The present invention is an improved cyclic, endothermic hydrocarbon conversion process and a catalyst bed system for accomplishing the same. Specifically, the improved process comprises reacting a hydrocarbon with a multi-component catalyst bed in such a manner that the temperature within the catalyst bed remains within controlled temperature ranges throughout all stages of the process. The multi-component catalyst bed comprises a reaction-specific catalyst physically mixed with a heat-generating material.
    Type: Grant
    Filed: June 27, 2011
    Date of Patent: May 29, 2012
    Assignee: Sud-Chemie Inc.
    Inventors: Vladimir Fridman, Michael A. Urbancic
  • Patent number: 8106249
    Abstract: Methods of oxidative dehydrogenation (ODH) is provided wherein conducting ODH in microchannels has unexpectedly been found to yield superior performance when compared to the same reactions at the same conditions in larger reactors. ODH methods employing a Mo—V—Mg—O catalyst is also described. Microchannel apparatus for conducting ODH is also disclosed.
    Type: Grant
    Filed: June 28, 2010
    Date of Patent: January 31, 2012
    Assignee: Velocys
    Inventors: John H. Brophy, Kai Jarosch, Terry J. Mazanec, Matthew B. Schmidt, Laura J. Silva, Anna Lee Tonkovich, Fred Pesa, David J. Hesse
  • Patent number: 8088962
    Abstract: A process for preparing butadiene, comprising A) providing a stream (a) comprising n-butane; B) feeding stream (a) comprising into at least one first dehydrogenation zone and nonoxidatively catalytically dehydrogenating n-butane to obtain a stream (b) comprising n-butane, 1-butene, 2-butene, butadiene, hydrogen and low-boiling secondary constituents; C) feeding stream (b) and an oxygenous gas into at least one second dehydrogenation zone and oxidatively dehydrogenating n-butane, 1-butene and 2-butene to obtain a stream (c) comprising n-butane, 2-butene, butadiene, low-boiling secondary constituents, carbon oxides and steam, wherein stream (c) has a higher content of butadiene than stream (b); D) removing the low-boiling secondary constituents and steam to obtain a stream (d) substantially consisting of n-butane, 2-butene and butadiene; E) separating stream (d) into a stream (e1) consisting substantially of n-butane and 2-butene and a stream (e2) consisting substantially of butadiene by extractive distillation
    Type: Grant
    Filed: January 16, 2006
    Date of Patent: January 3, 2012
    Assignee: BASF SE
    Inventors: Catharina Klanner, Götz-Peter Schindler, Sven Crone, Frieder Borgmeier, Mark Duda, Falk Simon
  • Patent number: 7985706
    Abstract: Provided are: a uniformly, highly dispersed metal catalyst including a catalyst carrier and a catalyst metal being loaded thereon dispersed throughout the carrier, the uniformly, highly dispersed metal catalyst having excellent performances with respect to catalytic activity, selectivity, life, etc.; and a method of producing the same. The uniformly, highly dispersed metal catalyst includes a catalyst carrier made of a metal oxide and a catalyst metal having catalytic activity, the catalyst metal being loaded on the catalyst carrier, in which the catalyst carrier is a sulfur-containing catalyst carrier having sulfur or a sulfur compound almost evenly distributed throughout the carrier and the catalyst metal is loaded on the sulfur-containing catalyst carrier in a substantially evenly dispersed manner over the entire carrier substantially according to the distribution of the sulfur or the sulfur compound.
    Type: Grant
    Filed: June 19, 2006
    Date of Patent: July 26, 2011
    Assignee: Chiyoda Corporation
    Inventors: Yoshimi Okada, Toshiji Makabe, Masashi Saito, Takako Nishijima
  • Patent number: 7973207
    Abstract: The present invention is an improved cyclic, endothermic hydrocarbon conversion process and a catalyst bed system for accomplishing the same. Specifically, the improved process comprises reacting a hydrocarbon with a multi-component catalyst bed in such a manner that the temperature within the catalyst bed remains within controlled temperature ranges throughout all stages of the process. The multi-component catalyst bed comprises a reaction-specific catalyst physically mixed with a heat-generating material.
    Type: Grant
    Filed: October 16, 2007
    Date of Patent: July 5, 2011
    Assignee: Sud-Chemie Inc.
    Inventors: Vladimir Fridman, Michael A. Urbancic
  • Patent number: 7790650
    Abstract: The present invention relates to catalysts comprising at least one support and at least one layer applied to said support, said layer containing a) 20 to 95% by weight of at least one aluminum, silicon, titanium or magnesium oxide compound or a silicon carbide or a carbon support or mixtures thereof, and b) 5 to 50% by weight of at least one nanocarbon. The catalysts can be used to produce unsaturated hydrocarbons by means of the oxidative dehydrogenation of alkylaromatics, alkenes and alkanes in the gas phase.
    Type: Grant
    Filed: July 13, 2005
    Date of Patent: September 7, 2010
    Assignee: NanoC Sdn. Bhd.
    Inventors: Robert Schlogl, Gerhard Mestl
  • Patent number: 7626068
    Abstract: Catalysts and methods for alkane oxydehydrogenation are disclosed. The catalysts of the invention generally comprise (i) nickel or a nickel-containing compound and (ii) at least one or more of titanium (Ti), tantalum (Ta), niobium (Nb), hafnium (Hf), tungsten (W), yttrium (Y), zinc (Zn), zirconium (Zr), or aluminum (Al), or a compound containing one or more of such element(s). In preferred embodiments, the catalyst is a supported catalyst, the alkane is selected from the group consisting of ethane, propane, isobutane, n-butane and ethyl chloride, molecular oxygen is co-fed with the alkane to a reaction zone maintained at a temperature ranging from about 250° C. to about 350° C., and the ethane is oxidatively dehydrogenated to form the corresponding alkene with an alkane conversion of at least about 10% and an alkene selectivity of at least about 70%.
    Type: Grant
    Filed: April 11, 2007
    Date of Patent: December 1, 2009
    Assignee: Celanese International Corporation
    Inventor: Yumin Liu
  • Patent number: 7622623
    Abstract: An improved dehydrogenation catalyst bed system for olefin production utilizing classical processing techniques is disclosed.
    Type: Grant
    Filed: September 2, 2005
    Date of Patent: November 24, 2009
    Assignee: Sud-Chemie Inc.
    Inventors: Vladimir Fridman, Jay S. Merriam, Michael A. Urbancic
  • Patent number: 7518024
    Abstract: A process for preparing 1-butene from 1-butane, which includes providing a n-butane-containing feed gas stream; introducing of the n-butane-containing feed gas stream into at least one dehydrogenation zone and nonoxidative catalytic dehydrogenation of n-butane; removing hydrogen, the low-boiling secondary constituents and optionally water vapor to give a C4 product gas stream containing 10-80% by volume of n-butane, 5-40% by volume of 1-butene, 10-50% by volume of 2-butene, 0-40% by volume of butadiene and 0-10% by volume of further gas constituents; introducing the C4 product gas stream containing 10-80% by volume of n-butane, 10-60% by volume of 1-butene, 15-60% by volume of 2-butene, 0-5% by volume of butadiene and 0-10% by volume of further gas constituents, into a selective hydrogenation zone and selective hydrogenation of butadiene to 1- and/or 2-butene to give stream consisting essentially of n-butane, 1-butene and 2-butene; and separating of the stream distillation into a desired product.
    Type: Grant
    Filed: October 27, 2004
    Date of Patent: April 14, 2009
    Assignee: BASF Aktiengesellschaft
    Inventors: Götz-Peter Schindler, Andreas Brodhagen, Thorsten Johann, Thomas Hill
  • Patent number: 7495138
    Abstract: A process for preparing butadiene, comprising nonoxidatively dehydrogenating n-butane from a stream (a) in a first dehydrogenation zone to obtain stream (b) comprising 1-butene, 2-butene, and butadiene; oxidatively dehydrogenating the 1-butene and 2-butene of (b) in the presence of an oxygenous gas in a second dehydrogenation zone to obtain stream (c) comprising n-butane, butadiene, hydrogen, and steam; compressing and cooling (c) to obtain stream (d2) comprising n-butane, butadiene, hydrogen, and steam; extractively distilling (d2) into stream (e1) comprising butadiene and stream (e2) comprising n-butane, hydrogen, and steam; optionally compressing and cooling (e2) to obtain stream (f1) comprising n-butane and water and stream (f2) comprising n-butane and hydrogen and optionally recycling (f1) into the first dehydrogenation zone; separating (f2) into stream (g1) comprising n-butane and stream (g2) comprising hydrogen by contacting (f2) with a high boiling absorbent and subsequently desorbing the gas constitu
    Type: Grant
    Filed: December 19, 2005
    Date of Patent: February 24, 2009
    Assignee: BASF Aktiengesellschaft
    Inventors: Sven Crone, Catharina Klanner, Götz-Peter Schindler, Mark Duda, Frieder Borgmeier
  • Patent number: 7488858
    Abstract: The disclosure involves a process for preparing butadiene from n-butane. In the process, n-butane is first dehydrogenated autothermally under nonoxidative conditions to form a gas stream. The gas stream is then oxidatively dehydrogenated to form a second gas stream. From the second gas stream, a third gas stream containing n-butane, 2-butene and butadiene is obtained. From the third gas stream, a butadiene/butaine product stream is obtained and remaining n-butane and 2-butene is recycled into the first dehydrogenation zone.
    Type: Grant
    Filed: December 30, 2004
    Date of Patent: February 10, 2009
    Assignee: BASF Aktiengesellschaft
    Inventors: Thorsten Johann, Götz-Peter Schindler, Andreas Brodhagen, Sven Crone, Mark Duda
  • Patent number: 7488857
    Abstract: The disclosure involves a process for the preparation of butadiene and 1-butene. The process includes at least a first catalytic dehydrogenation of n-butane to obtain a gas stream which is followed by at least a second oxidative dehydrogenation to form a second gas stream. The second gas stream is then subjected to distillation and isomeration steps to obtain butadiene and 1-butene.
    Type: Grant
    Filed: December 30, 2004
    Date of Patent: February 10, 2009
    Assignee: BASF Aktiengesellschaft
    Inventors: Thorsten Johann, Götz-Peter Schindler, Andreas Brodhagen, Sven Crone, Regina Benfer, Marcus Sigl, Mark Duda
  • Patent number: 7485761
    Abstract: A process for preparing 1-butene, which includes nonoxidatively, catalytically dehydrogenating n-butane to obtain a product gas stream of n-butane, 1-butene, 2-butene, butadiene, hydrogen, and secondary constituents; removing hydrogen and the secondary constituents to obtain a C4 product gas stream; separating the C4 product stream into a recycle stream of n-butane and a stream of 1-butene, 2-butene and butadiene by extractive distillation, and recirculating the recycle stream to the dehydrogenation zone; introducing the 1 -butene, 2-butene and butadiene stream into a selective hydrogenation zone and selective hydrogenation of butadiene to 1-butene and/or 2-butene to obtain a stream of 1-butene and 2-butene; introducing the 1-butene and 2-butene stream, and a circulating stream of 1-butene and 2-butene into a distillation zone and isolation of a product stream; and introducing the 2-butene-containing stream into an isomerization zone to obtain a circulating stream of 1-butene and 2-butene, and recirculating t
    Type: Grant
    Filed: October 27, 2004
    Date of Patent: February 3, 2009
    Assignee: BASF Aktiengesellschaft
    Inventors: Götz-Peter Schindler, Andreas Brodhagen, Thorsten Johann, Thomas Hill, Marcus Sigl, Regina Benfer
  • Patent number: 7482500
    Abstract: The disclosure relates to a process for preparing butadiene. The process involves nonoxidatively catalytically dehydrogenating butane to obtain a product gas stream containing butane, 1-butene, 2-butene, butadiene, hydrogen and secondary constituents. The 1-butene and 2-butene of the product gas stream is then oxidatively dehydrogenated to give a second gas stream containing butane,2-butene, butadiene, hydrogen, steam and secondary constituents. Next, the butane,2-butene and butadiene are separated from the second gas stream and the butane and 2-butene are then separated from the butadiene product. The butane and 2-butene are then recycled into the nonoxidative catalytic dehydrogenating zone.
    Type: Grant
    Filed: December 30, 2004
    Date of Patent: January 27, 2009
    Assignee: BASF Aktiengesellschaft
    Inventors: Thorsten Johann, Götz-Peter Schindler, Andreas Brodhagen, Sven Crone, Regina Benfer, Thomas Hill, Mark Duda
  • Patent number: 7435860
    Abstract: A process for preparing butadiene, comprising nonoxidatively dehydrogenating n-butane from a stream (a) in a first dehydrogenation zone to obtain stream (b) comprising 1-butene and 2-butene; oxidatively dehydrogenating the 1-butene and 2-butene of (b) in the presence of an oxygenous gas in a second dehydrogenation zone to obtain stream (c) comprising n-butane, butadiene, hydrogen, carbon dioxide, and steam; compressing and cooling (c) to obtain stream (d2) comprising n-butane, butadiene, hydrogen, carbon dioxide, and steam; extractively distilling (d2) into stream (e1) comprising butadiene and stream (e2) comprising n-butane, hydrogen, carbon dioxide, and steam; compressing and cooling (e2) to obtain stream (f1) comprising n-butane and water and stream (f2) comprising n-butane, hydrogen, and carbon dioxide; cooling (f2) to obtain stream (g1) comprising n-butane and stream (g2) comprising carbon dioxide and hydrogen; phase separating water from (f1) to obtain stream (h1) comprising n-butane; and recycling (h1)
    Type: Grant
    Filed: December 7, 2005
    Date of Patent: October 14, 2008
    Assignee: BASF SE
    Inventors: Sven Crone, Catharina Klanner, Götz-Peter Schindler, Mark Duda, Frieder Borgmeier
  • Patent number: 7417173
    Abstract: Processes for producing butadiene from n-butane comprising: (a) providing a feed gas stream comprising n-butane; (b) non-oxidatively dehydrogenating the feed gas stream in the presence of a catalyst in a first dehydrogenation zone to form a first intermediate gas stream comprising n-butane, 1-butene, 2-butene, butadiene and hydrogen; (c) oxidatively dehydrogenating the first intermediate gas stream in the presence of an oxygenous gas having an oxygen content of at least 75% by volume in a second dehydrogenation zone to form a second intermediate gas stream comprising n-butane, butadiene, hydrogen, carbon dioxide and steam; (d) compressing and cooling the second intermediate gas to form a first condensate stream comprising water and a third intermediate gas stream comprising n-butane, butadiene, hydrogen, carbon dioxide and steam; (e) compressing and cooling the third intermediate gas to form a second condensate stream comprising n-butane, butadiene and water and a fourth intermediate gas stream comprising n-b
    Type: Grant
    Filed: November 11, 2005
    Date of Patent: August 26, 2008
    Assignee: BASF Aktiengesellschaft
    Inventors: Sven Crone, Catharina Klanner, Götz-Peter Schindler, Mark Duda, Frieder Borgmeier
  • Patent number: 7034195
    Abstract: The invention relates to a process for preparing butadiene from n-butane comprising the steps (A) providing an n-butane-containing feed gas stream, (B) feeding the n-butane-containing feed gas stream into a first dehydrogenation zone and nonoxidatively catalytically dehydrogenating n-butane to 1-butene, 2-butene and optionally butadiene to obtain a first product gas stream comprising n-butane, 1-butene and 2-butene, with or without butadiene and secondary components, (C) feeding the first product gas stream comprising n-butane, 1-butene and 2-butene, with or without butadiene and secondary components, into a second dehydrogenation zone and oxidatively dehydrogenating 1-butene and 2-butene to butadiene to give a second product gas stream comprising butadiene, n-butane and steam, with or without secondary components, (D) recovering butadiene from the second product gas stream.
    Type: Grant
    Filed: July 10, 2003
    Date of Patent: April 25, 2006
    Assignee: BASF Aktiengesellschaft
    Inventors: Götz-Peter Schindler, Christian Walsdorff, Klaus Harth, Hartmut Hibst
  • Patent number: 6706936
    Abstract: A process for making a lube base stock wherein a highly paraffinic feedstock is dehydrogenated to produce an olefinic feedstock. That olefinic feedstock is contacted with an oligomerization catalyst in an oligomerization zone to produce a product having a higher number average molecular weight than the olefinic feedstock. The product is separated into a light byproduct fraction and a heavy product fraction. The heavy product fraction comprises a lube base stock.
    Type: Grant
    Filed: January 11, 2001
    Date of Patent: March 16, 2004
    Assignee: Chevron U.S.A. Inc.
    Inventors: Dennis J. O'Rear, Thomas V. Harris, Stephen J. Miller, Russell R. Krug, Brent K. Lok
  • Patent number: 6667423
    Abstract: For the production of a diene a process in three stages comprises a stage a) for decomposition of at least one tertiary alkyl ether in a mixture that contains at least one tertiary olefin, at least one alcohol and at least one residual ether, in the presence of a catalyst that comprises at least one mineral solid that is grafted by at least one organic group such as alkyl sulfonic acid, sulfonic aryl and/or sulfonic alkylaryl, a stage b) for purification of the olefin that is obtained in stage a), and a stage c) for oxidizing dehydrogenation of the tertiary olefin that is obtained in stage b) in the presence of a catalyst under conditions for obtaining a diene.
    Type: Grant
    Filed: September 9, 1999
    Date of Patent: December 23, 2003
    Assignee: Institut Francais du Petrole
    Inventors: Claire Dumonteil, Alain Forestiere, Marie-Claire Marion
  • Publication number: 20030144567
    Abstract: The present invention provides compounds represented by formulas 1a and 1b; and photoresist polymers derived from the same.
    Type: Application
    Filed: December 26, 2002
    Publication date: July 31, 2003
    Applicant: Hyundai Electronics Industries Co., Ltd.
    Inventors: Geun Su Lee, Jae Chang Jung, Ki Ho Baik
  • Patent number: 6582589
    Abstract: The present invention relates to a new catalyst support material comprising a mixed oxide consisting essentially of a divalent metal and a trivalent metal in a substantially homogeneous phase, the mixed oxide being a calcination product of a hydrotalcite-like phase calcinated at a temperature of about 700-1200° C., wherein the divalent metal/trivalent metal molar ratio is greater than or equal to 2. The invention also relates to a process of preparing the support. The invention further provides a catalyst for dehydrogenation which includes a transition metal selected from the first row of transition metals of the periodic table and/or a Group VIII metal impregnated on the new catalyst support material. The invention also provides a process for dehydrogenation of light alkanes using the catalyst.
    Type: Grant
    Filed: November 6, 2001
    Date of Patent: June 24, 2003
    Assignee: Oen Norske Stats Oljeselskap A.S.
    Inventors: Erling Rytter, Duncan Akporiaye, Unni Olsbye
  • Publication number: 20030114725
    Abstract: For the production of a diene a process in three stages comprises
    Type: Application
    Filed: September 9, 1999
    Publication date: June 19, 2003
    Inventors: CLAIRE DUMONTEIL, ALAIN FORESTIERE, MARIE-CLAIRE MARION
  • Publication number: 20020183571
    Abstract: A radial reactor for utilization for catalytic reactions of gaseous or liquid feed streams including an annular catalyst bed, wherein the material contained within the catalyst bed includes an active catalyst material, contained within an outer ring-shaped layer of the catalyst bed, and a generally inert material, contained within an inner ring-shaped layer of the catalyst bed, wherein the generally inert material includes a potassium-containing compound, such as potassium oxide, hydroxide, carbonate or bicarbonate.
    Type: Application
    Filed: January 8, 2002
    Publication date: December 5, 2002
    Applicant: Sud-Chemie Inc.
    Inventors: David L. Williams, Andrzej Rokicki, Dennis J. Smith, Kyle Mankin
  • Publication number: 20020169348
    Abstract: Disclosed is a method of recovering olefin from purge streams in a polyolefin production process. The method includes reacting a purge stream containing olefin and impurities with water in the presence of a hydrating catalyst to produce an alcohol containing stream. The impurities can include methane, ethane, butylenes, and hydrogen. The alcohol containing stream can be used to produce olefins in an oxygenate to olefin production process.
    Type: Application
    Filed: July 9, 2002
    Publication date: November 14, 2002
    Inventor: Ronald G. Searle
  • Patent number: 6392113
    Abstract: The performance of an endothermic catalytic dehydrogenation process is increased without requiring additional catalyst regeneration and reheat air flow and compression by partially prereacting the preheated hydrocarbon feed and then reheating the partially dehydrogenated effluent from the prereactor to the same hydrocarbon preheat temperature prior to the main catalytic reactor. The preferable source of the heat for reheating is the effluent air from the reheat and regeneration of the catalyst in the main reactor. This same effluent air is used to regenerate the catalyst in the prereactor as needed.
    Type: Grant
    Filed: October 3, 2000
    Date of Patent: May 21, 2002
    Assignee: ABB Lummus Global Inc.
    Inventor: Robert J. Gartside
  • Publication number: 20020043479
    Abstract: A improved hydrocarbon conversion process, comprising applying a plating, cladding, paint or other coating to at least a portion of a hydrocarbon conversion reactor system which is used to convert hydrocarbons to products in the presence of steam, said coating being effective to reduce the amount of undesirable by-products in said process; and operating the hydrocarbon conversion process at a steam to hydrocarbon ratio that is lower than the steam to hydrocarbon ratio at which said process was operated prior to applying said coating. Preferred hydrocarbon conversion process includes steam cracking of hydrocarbons to produce ethylene and dehydrogenation of ethylbenzene to styrene.
    Type: Application
    Filed: June 21, 2001
    Publication date: April 18, 2002
    Applicant: Chevron Phillips Chemical Company LP.
    Inventors: John V. Heyse, Daniel P. Hagewiesche, Paul M. Spindler
  • Patent number: 5837127
    Abstract: A hydrocarbon feedstock is cracked, and then the cracker product is compressed and separated into various hydrocarbon fractions including a stream containing hydrocarbons more highly unsaturated than mono-olefins. That stream is used for transhydrogenation with at least one paraffin and the products from transhydrogenation are combined with the cracker product before the compression thereof.
    Type: Grant
    Filed: June 23, 1995
    Date of Patent: November 17, 1998
    Assignee: Institut Francais du Petrole
    Inventors: Arthur Gough, Stephen Keith Turner, Jane Mercer, Edmund Hugh Stitt
  • Patent number: 5801293
    Abstract: The invention includes a method for skeletal isomerization of C.sub.4-5 olefins. The method includes contacting in a FCC zone, at FCC conditions, an n-C.sub.4-5 olefins-containing etherification zone raffinate, with an FCC catalyst, where at least a portion of the n-C.sub.4-5 olefins in the n-C.sub.4-5 olefins-containing etherification zone raffinate are converted to iso-C.sub.4-5 olefins.
    Type: Grant
    Filed: January 10, 1997
    Date of Patent: September 1, 1998
    Assignee: Chevron U.S.A. Inc.
    Inventor: Stephen J. Miller
  • Patent number: 5792891
    Abstract: An alkene skeletal isomerization process is employed in an integrated process for the production of tertiary ether, e.g., tertiary amyl methyl ether (TAME) from the reaction of isoamylenes (iC.sub.5.sup.= 's) with methanol in the presence of an acid cation exchange resin. A light naphtha from a fluid catalytic cracking unit is used as the source of the iC.sub.5.sup.= 's in a process which separates the C.sub.5 containing fraction from the light naphtha, selectively hydrogenates the di-olefins contained in the C.sub.5 containing fraction, reacts the iC.sub.5.sup.= 's contained in the C.sub.5 containing fraction with methanol to form TAME, separates the TAME from the unreacted materials as a product, separates methanol from the unreacted materials, isomerizes a portion of the nC.sub.5.sup.= 's to iC.sub.5.sup.= 's , for example using a zeolite or an alumina treated with methanol, and use of the isomerization product as feed for a TAME reactor.
    Type: Grant
    Filed: February 3, 1997
    Date of Patent: August 11, 1998
    Assignee: Catalytic Distillation Technologies
    Inventors: John R. Adams, Lawrence A. Smith, Jr., Dennis Hearn, Edward M. Jones, Jr., Robert P. Arganbright
  • Patent number: 5772898
    Abstract: This invention relates to hydrocarbon conversion processes using a novel crystalline metallo manganese oxides that have the hollandite structure. The composition is represented by the formulaA.sub.y Mn.sub.8-x M.sub.x O.sub.16where A is a templating agent such as potassium, ammonium, and y varies from about 0.5 to about 2.0, M is a metal such as chromium, vanadium, gallium, antimony and x varies from about 0.01 to about 4.0. These oxides have a three-dimensional structure with manganese and the M metals forming the framework. Examples of the processes in which these compositions can be used are oxydehydrogenation and ammoxidation. These compositions are also effective for oxidizing cyanide in aqueous streams.
    Type: Grant
    Filed: May 2, 1997
    Date of Patent: June 30, 1998
    Assignee: UOP LLC
    Inventor: Gregory J. Lewis
  • Patent number: 5639926
    Abstract: A process for producing a branched chain olefin which comprises isomerising and transhydrogenating a hydrocarbon stream containing at least one straight chain paraffin of 4 or more carbon atoms by contacting the same at elevated temperature with a stream containing a hydrogen acceptor that is more highly unsaturated than a mono-olefin to produce a stream containing at least one branched chain olefin product. The product is separated to give a stream depleted of the product. The thus depleted stream is recycled to the isomerising and transhydrogenating stages. The hydrogen acceptor stream may comprise a diene and/or acetylene.
    Type: Grant
    Filed: January 4, 1995
    Date of Patent: June 17, 1997
    Assignee: Institut Francais Du Petrole
    Inventors: Stephen Keith Turner, Arthur Gough
  • Patent number: 5585530
    Abstract: A process for the production of olefins comprises dehydrogenating at least one hydrogen-donor hydrocarbon that is essentially free from olefinic unsaturation, e.g. a paraffin, in the presence of a dehydrogenation catalyst and in the presence of at least one hydrogen-acceptor hydrocarbon that is more highly unsaturated than a mono-olefin, e.g. a diene and/or acetylene, under conditions effective to cause at least part of said hydrogen-donor hydrocarbon to be dehydrogenated and at least part of the hydrogen-acceptor to be hydrogenated. The amount of hydrogen-acceptor is such that there are 0.5 to 20 moles of said hydrogen-donor for each mole of hydrogen-acceptor. Preferably the amount of said hydrogen-acceptor hydrocarbon hydrogenated is such that the heat of hydrogenation of said hydrogen-acceptor hydrocarbon provides at least 25% of the heat required for dehydrogenation of said hydrogen-donor hydrocarbon. In a preferred form of the invention, a hydrocarbon stream containing a hydrogen-acceptor is a C.sub.
    Type: Grant
    Filed: June 8, 1994
    Date of Patent: December 17, 1996
    Assignee: Institut Francais Du Petrole
    Inventors: Arthur Gough, Stephen K. Turner
  • Patent number: 4891464
    Abstract: The rate at which an oxygen-containing gas stream is admixed with hydrocarbons and hydrogen upstream of a catalytic hydrogen oxidation zone is controlled on the basis of temperature differentials across the oxidation zone and an upstream catalytic dehydrogenation zone. This control overrides the normal control mode based upon the outlet temperature of the oxidation zone effluent stream, which is the inlet temperature to a subsequent bed of hydrocarbon conversion catalyst. The control method can be used to apply oxidative reheat technology to a variety of processes.
    Type: Grant
    Filed: November 14, 1986
    Date of Patent: January 2, 1990
    Assignee: UOP
    Inventor: Darrell W. Staggs
  • Patent number: 4843178
    Abstract: The present invention relates to a process for producing an E,Z-9-alkenyl-1-aldehyde component which comprises:(a) disproportionating cyclooctene and an .alpha.-olefin in the presence of a suitable disproportionation catalyst under disproportionation conditions suitable to form a 1,9-alkadiene;(b) reacting the 1,9-alkadiene obtained in step (a) with a suitable metallating agent under conditions suitable to form a 1-metallo-9-alkene;(c) contacting the 1-metallo-9-alkene obtained in step (b) with oxygen under conditions suitable to form a 1-oxymetallo-9-alkene;(d) hydrolyzing the 1-oxymetallo-9-alkene suit a suitable hydrolyzing agent, under suitable hydrolyzing conditions to form E,Z-9-alkenyl-1-alcohol.(e) oxidizing said E,Z-9-alkenyl-1-alcohol with a suitable oxidizing agent under oxidizing conditions suitable to form E,Z-9-alkenyl-1-aldehyde.
    Type: Grant
    Filed: December 2, 1987
    Date of Patent: June 27, 1989
    Inventors: Jim D. Byers, Charles A. Drake
  • Patent number: 4751344
    Abstract: Saturated hydrocarbon is transformed catalytically into olefinic hydrocarbon of corresponding skeletal configuration by reacting the saturated hydrocarbon with a suitable alkene cyclopentadienyl or alkene arene transition metal molecular complex, such as bis(ethylene)pentamethylcyclopentadienyliridium, bis(ethylene)pentamethylcyclopentadienylrhodium and bis(ethylene)hexamethylbenzene osmium in the presence of free alkene as hydrogen acceptor. The reaction may be performed photochemically under irradiation with ultraviolet light or it may be performed thermolytically under application of heat. The catalyst may be charged to the reaction as a preformed alkene cyclopentadienyl or alkene arene transition metal molecular complex or the catalyst may be formed in situ in the reaction mixture via displacement of ligand from a suitable transition metal complex containing the displaceable ligand, such as dicarbonylpentamethylcyclopentadienyliridium or cyclooctadienepentamethylcyclopentadienyliridium.
    Type: Grant
    Filed: April 16, 1987
    Date of Patent: June 14, 1988
    Assignee: Ethyl Corporation
    Inventor: Howard W. Walker
  • Patent number: 4704497
    Abstract: A process for dehydrogenating saturated or unsaturated hydrocarbons wherein the flow direction of the oxygen-containing gas, employed for removing coke deposits on the catalyst surface, is opposite to that for the hydrocarbon feed undergoing dehydrogenation.
    Type: Grant
    Filed: July 14, 1986
    Date of Patent: November 3, 1987
    Assignee: Veba Oel AG
    Inventors: Klaus Gottlieb, Wilfried Graf, Heinz-Kuno Schadlich
  • Patent number: 4670621
    Abstract: Saturated hydrocarbon is transformed catalytically into olefinic hydrocarbon of corresponding skeletal configuration by reacting the saturated hydrocarbon with a suitable alkene cyclopentadienyl or alkene arene transition metal molecular complex, such as bis(ethylene)pentamethylcyclopentadienyliridium, in the presence of free alkene as hydrogen acceptor. The reaction may be performed photochemically under irradiation with ultraviolet light or it may be performed thermolytically under application of heat. The catalyst may be charged to the reaction as a preformed alkene cyclopentadienyl or alkene arene transition metal molecular complex or the catalyst may be formed in situ in the reaction mixture via displacement of ligand from a suitable transition metal complex containing the displaceable ligand, such as dicarbonylpentamethylcyclopentadienyliridium or cyclooctadienepentamethylcyclopentadienyliridium.
    Type: Grant
    Filed: May 5, 1986
    Date of Patent: June 2, 1987
    Assignee: Ethyl Corporation
    Inventor: Howard W. Walker