Metal Salt Agent Patents (Class 585/632)
  • Patent number: 9012709
    Abstract: The disclosure describes a new class of isomorphously metal-substituted aluminophosphate materials with high phase purity that are capable of performing selective Brönsted acid catalyzed chemical transformations, such as transforming alcohols to olefins, with high conversions and selectivities using mild conditions. Isomorphous substitutions of functional metal ions for both the aluminum ions and the phosphorous ions were successful in various AlPO structures, along with multiple metal substitutions into a single aluminum site and/or a phosphorous site. This invention can be used towards the catalytic conversion of hydroxylated compounds of linear and/or branched moiety with the possibility of being substituted to their respective hydrocarbon products, preferably light olefins containing 2 to 10 carbon atoms, among other chemistries.
    Type: Grant
    Filed: May 12, 2014
    Date of Patent: April 21, 2015
    Assignee: Signa Chemistry, Inc.
    Inventors: Michael Lefenfeld, Robert Raja, Alexander James Paterson, Matthew Edward Potter
  • Patent number: 8759599
    Abstract: The disclosure describes a new class of isomorphously metal-substituted aluminophosphate materials with high phase purity that are capable of performing selective Brönsted acid catalyzed chemical transformations, such as transforming alcohols to olefins, with high conversions and selectivities using mild conditions. Isomorphous substitutions of functional metal ions for both the aluminum ions and the phosphorous ions were successful in various AlPO structures, along with multiple metal substitutions into a single aluminum site and/or a phosphorous site. This invention can be used towards the catalytic conversion of hydroxylated compounds of linear and/or branched moiety with the possibility of being substituted to their respective hydrocarbon products, preferably light olefins containing 2 to 10 carbon atoms, among other chemistries.
    Type: Grant
    Filed: January 22, 2010
    Date of Patent: June 24, 2014
    Assignee: Signa Chemistry, Inc.
    Inventors: Michael Lefenfeld, Robert Raja, Alexander James Paterson, Matthew Edward Potter
  • Patent number: 6323383
    Abstract: A process for the synthesis of chemical industrial feedstock and high-octane fuel, wherein calcium phosphate which is controlled in the molar Ca/P ratio and/or one which contains an activating metal (M) at a molar (Ca+M)/P ratio of 1 to 2 is used as the catalyst and ethanol is used as the feedstock.
    Type: Grant
    Filed: September 27, 2000
    Date of Patent: November 27, 2001
    Assignee: Kabushiki Kaisha Sangi
    Inventors: Takashi Tsuchida, Kiminori Atsumi, Shuji Sakuma, Tomoyuki Inui
  • Patent number: 6004898
    Abstract: The present invention is directed to a catalyst composition comprising a non-zeolitic molecular sieve and one or more alkaline earth metals selected from the group consisting of strontium, calcium, barium, and mixtures thereof, wherein said non-zeolitic molecular sieve has a pore diameter size of less than about 5 Angstroms.
    Type: Grant
    Filed: September 15, 1998
    Date of Patent: December 21, 1999
    Assignee: Exxon Chemicals Patent Inc.
    Inventor: Hsiang-ning Sun
  • Patent number: 5245098
    Abstract: The monomer 5-methyl-1,4-hexadiene (5-MHD), uncontaminated with 4-methyl-1,4-hexadiene (4-MHD), or other hydrocarbons, is obtained by reacting 1-chloro-2-methylpropene with allylmagnesium bromide in equimolar amounts under gentle reflux at atmospheric pressure in an organic solvent medium (diethyl ether) and in the presence of a catalytic amount of a dichloro-[1,2-bis(dimethylphosphino)ethane]nickel (II) in an inert atmosphere. The allyl magnesium bromide is added dropwise with stirring with a mixture of 1-chloro-2-methylpropene and catalyst in the solvent at room temperature. The solvent is separated from the product by distillation, giving substantially pure product. Absence of other hydrocarbons in either the crude product or the pure product may be shown by .sup.1 H NMR, .sup.13 C NMR and GC analysis. Other nonconjugated diolefins can be prepared in an analogous manner using an alkenyl halide and an alkenyl Grignard reagent which upon cross coupling will give the desired nonconjugated diene.
    Type: Grant
    Filed: January 21, 1992
    Date of Patent: September 14, 1993
    Assignee: The University of Akron
    Inventors: Gabriel J. Summers, Fernando J. Hamilton
  • Patent number: 4926005
    Abstract: In a process for dehydrogenating alkanes having 2-5 carbon atoms per molecule in the presence of steam and a catalyst composition comprising Group IIA and/or IIB metal aluminate, Group VIII metal(s) and Group IVA metal compound(s), the improvement comprises the step of pretreating the alkane containing feed with a material comprising a Group IIA and/or Group IIB metal aluminate under non-dehydrogenating conditions.
    Type: Grant
    Filed: May 17, 1989
    Date of Patent: May 15, 1990
    Assignee: Phillips Petroleum Company
    Inventors: Michael E. Olbrich, Dwight L. McKay, Dean P. Montgomery, deceased, by B. Jean, administratrix Montgomery
  • Patent number: 4486547
    Abstract: A new catalyst composition comprising a platinum group component, a tin component, an indium component, an alkali or alkaline earth component and a porous support material wherein the atomic ratio of indium to platinum group component is more than 1.0 is disclosed. The catalyst is particularly useful for dehydrogenating hydrocarbons. In one embodiment of the invention, detergent range normal paraffins (C.sub.10 -C.sub.15 or higher) are dehydrogenated to the corresponding normal olefins in the presence of the subject catalyst and hydrogen.
    Type: Grant
    Filed: June 2, 1983
    Date of Patent: December 4, 1984
    Assignee: UOP Inc.
    Inventors: Tamotsu Imai, Chi-wen Hung