Alcohol, Ester, Or Ether Patents (Class 585/639)
  • Patent number: 7378563
    Abstract: The invention relates to a conversion process of a feedstock, preferably an oxygenated feedstock, into one or more olefin(s), preferably ethylene and/or propylene, in the presence of a molecular sieve catalyst composition that includes a molecular sieve and a Group 3 metal oxide and/or an oxide of a Lanthanide or Actinide series element. The invention is also directed to methods of making and formulating the molecular sieve catalyst composition useful in a conversion process of a feedstock into one or more olefin(s).
    Type: Grant
    Filed: December 6, 2004
    Date of Patent: May 27, 2008
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Doron Levin, James Clark Vartuli
  • Patent number: 7375050
    Abstract: Disclosed are methods and compositions of synthesis mixtures for the synthesis of aluminophosphates and silicoaluminophosphate molecular sieves, which enable the control and adjustment of the crystal particle size of aluminophosphates and silicoaluminophosphate molecular sieves. The synthesis mixture compositions used have two or more organic templates present at a molar ratio of total template to aluminum of ?1.25; such a synthesis mixture is susceptible to control of product particle size through variation in the amount of seeds used in the synthesis.
    Type: Grant
    Filed: April 28, 2003
    Date of Patent: May 20, 2008
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Machteld M. Mertens, Marcel J. G. Janssen, Teng Xu
  • Publication number: 20080108857
    Abstract: A process for producing an ElAPO molecular sieve with essentially pure CHA framework is disclosed. When El is silicon the process allows for a broad range of silicon content, and produces a catalyst with a high selectivity for the conversion of methanol to olefins.
    Type: Application
    Filed: June 20, 2005
    Publication date: May 8, 2008
    Inventor: Stephen T. Wilson
  • Patent number: 7368621
    Abstract: The invention relates to a process for preparing 1-octene from a C4 fraction from a cracker by telomerization of the 1,3-butadiene present in the C4 fraction from a cracker by means of methanol in the presence of a catalyst, hydrogenation of the telomer obtained in this way, dissociation of the hydrogenated telomer and work-up of the resulting dissociation product to give pure 1-octene.
    Type: Grant
    Filed: May 6, 2004
    Date of Patent: May 6, 2008
    Assignee: OXENO Olefinchemie GmbH
    Inventors: Joerg Krissmann, Dirk Roettger, Cornelia Borgmann, Kerstin Kaemper, Franz Nierlich, Alfred Kaizik, Udo Knippenberg, Rainer Malzkorn
  • Patent number: 7361799
    Abstract: A process is described for producing olefins from a vapor product stream from an oxygenate to olefin conversion reaction, the vapor product stream comprising C2 to C4 olefins, C5+ hydrocarbons, at least one oxygenate and water. In the process, the vapor product stream is cooled to remove water therefrom and produce a first vapor effluent stream. The first vapor effluent stream is then cooled and compressed to produce a condensed liquid effluent stream comprising C5+ hydrocarbons and at least one oxygenate, and a residual vapor effluent stream comprising C2 to C4 olefins. At least part of the condensed liquid effluent stream is contacted with a liquid water-containing stream in a liquid-liquid contacting device to at least partly separate said condensed liquid effluent stream, or portion thereof, into an aqueous phase rich in said at least one oxygenate and an organic phase rich in said C5+ hydrocarbons.
    Type: Grant
    Filed: March 25, 2005
    Date of Patent: April 22, 2008
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Keith H. Kuechler, Jeffrey L. Brinen, Philip Andrew Ruziska
  • Patent number: 7358412
    Abstract: Disclosed is a method for making molecular sieve catalyst particles. Dried molecular sieve catalyst particles are used to make the catalyst. The dried molecular sieve catalyst particles are put into an aqueous solution and stirred to make a slurry. The slurry is dried to make the molecular sieve catalyst particles. Optionally, the dried molecular sieve catalyst particles made from the slurry are calcined.
    Type: Grant
    Filed: February 26, 2004
    Date of Patent: April 15, 2008
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Yun-Feng Chang, Stephen N. Vaughn, Jeffery W. Sprinkle, Fran A. Shipley, Kenneth R. Clem
  • Patent number: 7355086
    Abstract: A method for maintaining the activity of silicoaluminophosphate (SAPO) molecular sieve catalyst particles during oxygenate to olefin conversion reactions. After regeneration of SAPO catalyst particles, the regenerated particles are mixed with particles having coke on their surface in a manner that maintains their catalytic activity at a predetermined level.
    Type: Grant
    Filed: February 27, 2006
    Date of Patent: April 8, 2008
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Shun C. Fung, Richard B. Hall, Hafedh Kochkar, Karl G. Strohmaier, Nicolas P. Coute, Kenneth R. Clem
  • Patent number: 7354883
    Abstract: The present invention relates to a process for preparing 1-olefins from 2-hydroxyalkanes by catalytic elimination of water under nonisomerizing conditions and to a catalyst which is particularly well-suited for this process and formally comprises yttrium oxide (Y2O3), zirconium dioxide (ZrO2) and an alkali metal oxide and/or alkaline earth metal oxide.
    Type: Grant
    Filed: October 21, 2004
    Date of Patent: April 8, 2008
    Assignee: OXENO Olefinchemie GmbH
    Inventors: Alfred Kaizik, Dietrich Maschmeyer, Klaus-Diether Wiese, Wilfried Bueschken, Kurt-Alfred Gaudschun
  • Publication number: 20080081936
    Abstract: Processing schemes and arrangements for the production of olefins and, more particularly, for the production of light olefins from a methanol feedstock are provided. Such processing schemes and arrangements integrate oxygenate conversion at higher pressures and with subsequent heavy olefins conversion processing to produce additional light olefin products.
    Type: Application
    Filed: September 29, 2006
    Publication date: April 3, 2008
    Inventors: Andrea G. Bozzano, Bipin V. Vora
  • Patent number: 7351871
    Abstract: Process for producing poly-?-olefins are described wherein the processes comprise: (a) providing a primary alcohol; and (b) polymerizing the primary alcohol in the presence of an acidic alumino layer silicate to form a poly-?-olefin. Water formed during the polymerization can be removed, optionally during the polymerization, and subsequent hydrogenation may be performed.
    Type: Grant
    Filed: October 11, 2002
    Date of Patent: April 1, 2008
    Assignee: Cognis Deutschland GmbH & Co. KG
    Inventors: Lars Zander, Alfred Westfechtel, Elke Grundt, Markus Dierker
  • Patent number: 7345213
    Abstract: This invention is directed to a method of making an olefin product from an oxygenate feedstock and a method of protecting catalytic activity of a silicoaluminophosphate molecular sieve. The methods comprise providing a silicoaluminophosphate molecular sieve having catalytic sites within the molecular sieve; shielding the catalytic sites to protect from loss of catalytic activity; and contacting the protected sieve in its activated state with an oxygenate feedstock under conditions effective to produce an olefin product before undesirable loss of catalytic activity. Undesirable loss in catalytic activity occurs when activated molecular sieve contacting the oxygenate feedstock has a methanol uptake index of at least 0.15.
    Type: Grant
    Filed: July 9, 2003
    Date of Patent: March 18, 2008
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Marcel J. G. Janssen, Cornelius W. M. Van Oorschot, Shun C. Fung, Luc R. M. Martens, Wilfried J. Mortier, Ronald G. Searle, Machteld M. Mertens, Stephen N. Vaughn
  • Patent number: 7342144
    Abstract: The present invention relates to a process for preparing 1-olefins from 1-alkoxyalkanes, in particular to the preparation of 1-octene from 1-alkoxyoctane, by base-catalyzed alcohol cleavage.
    Type: Grant
    Filed: October 28, 2003
    Date of Patent: March 11, 2008
    Assignee: OXENO Olefinchemie GmbH
    Inventors: Alfred Kaizik, Dietrich Maschmeyer, Dirk Roettger, Franz Nierlich, Cornelia Borgmann
  • Publication number: 20080058569
    Abstract: A process for the dissociation of methyl tert-butyl ether (MTBE), which includes at least a) catalytic dissociation of MTBE which is present in two streams I and VII over a catalyst to give a dissociation product II, b) separation by distillation of the dissociation product II obtained in a) into an overhead stream III containing more than 90% by mass and a bottom stream IV containing diisobutene, MTBE and more than 80% of the methanol present in the dissociation product II, c) separation by distillation of the bottom stream IV obtained in b) into a methanol-containing bottom stream V, a side stream VI containing diisobutene, methanol and MTBE and an overhead stream VII containing MTBE and methanol and d) recirculation of the overhead stream VII to a).
    Type: Application
    Filed: June 5, 2007
    Publication date: March 6, 2008
    Applicant: OXENO OLEFINCHEMIE GMBH
    Inventors: Markus Winterberg, Franz Nierlich, Silvia Santiago Fernandez, Walter Luh, Stephan Houbrechts, Dietrich Maschmeyer, Horst-Werner Zanthoff, Wilfried Buschken
  • Publication number: 20080058570
    Abstract: Isobutene is prepared by a process in which a) an MTBE-containing stream I is separated by distillation into an MTBE-containing overhead stream II and a bottom stream III which comprises compounds having boiling points higher than that of MTBE; and b) the MTBE present in the overhead stream II is dissociated over a catalyst to give a dissociation product IV; wherein the stream I has a proportion of 2-methoxybutane (MSBE) of greater than 1000 ppm by mass, based on MTBE, and wherein the separation by distillation in step a) and/or the dissociation in step b) is carried out so that the dissociation product IV has a concentration of less than 1000 ppm by mass of linear butenes, based on a C4-olefin fraction.
    Type: Application
    Filed: August 16, 2007
    Publication date: March 6, 2008
    Applicant: OXENO OLEFINCHEMIE GMBH
    Inventors: Markus Winterberg, Walter Luh, Silvia Santiago Fernandez, Franz Nierlich, Stephan Houbrechts, Dietrich Maschmeyer, Horst-Werner Zanthoff, Wilfried Bueschken
  • Publication number: 20080058572
    Abstract: A continuous process for preparing an isoolefin having 4 to 6 carbon atoms is performed by cleaving a compound of the formula I R1—O—R2 ??(I) wherein R1=a tertiary alkyl radical having 4 to 6 carbon atoms, and R2=H or an alkyl radical, in a gas phase over a solid catalyst, in the temperature range of 200 to 400° C., at a pressure of 0.1 to 1.2 MPa, in a reactor which is equipped with a heating jacket and is heated with a liquid heat carrier, wherein the cleavage is carried out in such a way that a temperature drop in the catalyst zone at any point in relation to the entrance temperature is less than 50° C., wherein (i) a reaction mixture in the reactor and (ii) the heat carrier in the jacket flow through the reactor in cocurrent, and wherein a temperature difference of the heat carrier between a feed point to the reactor and an outlet from the reactor is adjusted to less than 40° C.
    Type: Application
    Filed: August 16, 2007
    Publication date: March 6, 2008
    Applicant: OXENO OLEFINCHEMIE GMBH
    Inventors: Silvia Santiago Fernandez, Markus Winterberg, Franz Nierlich, Stephan Houbrechts, Horst-Werner Zanthoff, Wilfried Bueschken, Walter Luh, Georg Skillas
  • Patent number: 7338645
    Abstract: Disclosed is a method and system for reducing the formation of metal catalyzed side-reaction byproducts formed in the feed vaporization and introduction system of a methanol to olefin reactor system by forming and/or coating one or more of the heating devices, feed lines or feed introduction nozzles of/with a material that is resistant to the formation of metal catalyzed side reaction byproducts. The invention also may include monitoring and/or maintaining the temperature of at least a portion of the feed vaporization and introduction system and/or of the feedstock contained therein below about 400° C., 350° C., 300° C., 250° C., 200° C. or below about 150° C. The temperature can be maintained in the desired range by jacketing at least a portion of the feed vaporization and introduction system, such as at least a portion of the feed introduction nozzle, with a thermally insulating material or by implementing a cooling system.
    Type: Grant
    Filed: January 21, 2004
    Date of Patent: March 4, 2008
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Jeffrey P. Jones, Kenneth Ray Clem, Stephen N. Vaughn, Teng Xu, Jeffrey L. White
  • Patent number: 7332636
    Abstract: The invention provides low metal content molecular sieve catalyst compositions, processes for making such catalysts, and processes for using such catalysts in the conversion of an oxygenate into one or more light olefins. Preferably, the catalyst composition comprises a matrix material having a low metal content. By utilizing matrix materials having low metal contents, the amount of metal-catalyzed side reaction byproducts formed in a reaction system, particularly in an oxygenate-to-olefin reaction system, can be advantageously reduced.
    Type: Grant
    Filed: October 16, 2006
    Date of Patent: February 19, 2008
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Teng Xu, Stephen Neil Vaughn, Richard B. Hall, Kenneth Ray Clem, Jack W. Johnson
  • Patent number: 7332639
    Abstract: A process is described for producing an olefins stream from a first vapor effluent stream from an oxygenate to olefin conversion reaction, said first vapor effluent stream comprising C2 and C3 olefins, C4 hydrocarbons, and C2 to C6 carbonyl compounds. In the process, the temperature and pressure of the first vapor effluent stream are adjusted to produce a second vapor effluent stream having a pressure ranging from about 100 psig to about 350 psig (790 to 2514 kPa) and a temperature ranging from about 70° F. to about 120° F. (21 to 49° C.), said second vapor effluent stream containing about 50 wt. % or more C4 hydrocarbons based upon the total weight of C4 hydrocarbons in the first vapor effluent stream. The second vapor effluent stream is then washed with a liquid alcohol-containing stream to produce a third vapor effluent stream, whereafter the third vapor effluent stream is washed with liquid water to provide a fourth vapor effluent stream comprising the C2 and C3 olefins and about 1.0 wt.
    Type: Grant
    Filed: June 18, 2004
    Date of Patent: February 19, 2008
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Keith H. Kuechler, Jeffrey L. Brinen, Philip A. Ruziska
  • Publication number: 20080039670
    Abstract: Processing schemes and arrangements are provided for producing light olefins from an oxygenate-containing feedstock and using methanol-water mixtures to recover oxygenates such as for further processing to form additional light olefins.
    Type: Application
    Filed: August 10, 2006
    Publication date: February 14, 2008
    Inventors: Lawrence W. Miller, Sterling T. Miller, Andrea A. Bozzano
  • Patent number: 7329790
    Abstract: The economics of a catalytic process using a fluidized conversion zone and a relatively expensive catalyst for converting an oxygenate to light olefins are substantially improved by recovering and recycling effluent contaminating catalyst particles from the product effluent stream withdrawn from the conversion zone which are present despite the use of one or more vapor-solid cyclone separating means to clean up this effluent stream. The contaminating catalyst particles are separated from this product effluent stream using a wet scrubbing zone and an optional dewatering zone to recover a slurry containing the contaminated particles which, quite surprisingly, can be successfully directly recycled to the oxygenate conversion zone or to the associated catalyst regeneration zone without loss of any substantial amount of catalytic activity thereby decreasing the amount of fresh catalyst addition required to make up for this source of catalyst loss.
    Type: Grant
    Filed: April 15, 2004
    Date of Patent: February 12, 2008
    Assignee: Uop LLC
    Inventors: Bradford L. Bjorklund, John Q. Chen
  • Patent number: 7329625
    Abstract: This invention provides a process for making an attrition resistant molecular sieve catalyst composition. The formation of highly attrition resistant catalyst particles is accomplished by initially mixing together catalyst components to form a slurry at a relatively low viscosity and high solids content. Preferably, a slurry having characteristics of high solids content and low viscosity is achieved using a rotor-stator mixer. Once the desired slurry characteristics are obtained, the slurry is dried, preferably by spray drying and calcining, to form a highly attrition resistant catalyst.
    Type: Grant
    Filed: October 27, 2006
    Date of Patent: February 12, 2008
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventor: Yun-feng Chang
  • Patent number: 7326821
    Abstract: This invention is to a process for removing dimethyl ether from an olefin stream. The process includes contacting the olefin stream with a molecular sieve that has improved capacity to adsorb the dimethyl ether from the olefin stream. The molecular sieve used to remove the dimethyl ether has low or no activity in converting the olefin in the olefin stream to other products.
    Type: Grant
    Filed: June 16, 2003
    Date of Patent: February 5, 2008
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Michael A. Risch, John Di-Yi Ou
  • Patent number: 7323612
    Abstract: This invention is directed to a process for condensing and removing condensable compounds from an olefin stream containing light olefin compounds, and recovering the light olefin compounds. The process of the invention is particularly effective in removing water and heavy hydrocarbons, particularly aromatic hydrocarbons, from an olefin stream made from the catalytic conversion of oxygenate, and recovering light olefins such as ethylene, propylene, butylene, or a mixture thereof.
    Type: Grant
    Filed: August 27, 2004
    Date of Patent: January 29, 2008
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Cor F. Egmond, James R. Lattner, Zhong Yi Ding
  • Patent number: 7319178
    Abstract: The invention relates to a catalyst composition, a method of making the same and its use in the conversion of a feedstock, preferably an oxygenated feedstock, into one or more olefin(s), preferably ethylene and/or propylene. The catalyst composition comprises a molecular sieve and at least one oxide of a metal selected from Group 3 of the Periodic Table of Elements, the Lanthanide series of elements and the Actinide series of elements.
    Type: Grant
    Filed: April 19, 2005
    Date of Patent: January 15, 2008
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Doron Levin, James Clark Vartuli
  • Patent number: 7312369
    Abstract: This invention provides an attrition resistant metalloaluminophosphate molecular sieve catalyst composition, methods of making the catalyst composition and processes for using the catalyst composition. The metalloaluminophosphate molecular sieve catalyst composition is highly attrition resistant in dried as well as fully calcined forms.
    Type: Grant
    Filed: April 28, 2004
    Date of Patent: December 25, 2007
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Yun-Feng Chang, Stephen N. Vaughn, Kenneth R. Clem, Luc R. Martens, Alistair D. Westwood, Jeffery W. Sprinkle
  • Patent number: 7309383
    Abstract: Catalyst losses are prevented in riser reactor systems by using a low inlet velocity for the first cyclone separator in each multi-stage cyclone separator in the reactor. Catalyst particles not separated from the product output flow in an oxygenate-to-olefin reactor are also recaptured by cooling the product output flow and passing the flow through an electrostatic precipitator.
    Type: Grant
    Filed: September 23, 2004
    Date of Patent: December 18, 2007
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: James H. Beech, Jr., James R. Lattner, Nicolas P. Coute, Jeff S. Smith
  • Patent number: 7309806
    Abstract: The invention is directed to methods for protecting metalloaluminophosphate molecular sieves, particularly silicoaluminophosphate (SAPO) molecular sieves, from loss of catalytic activity due to contact with a gas containing water. The methods of the invention provide procedures that enable activated sieve to contact water vapor, within a certain range of time, temperature, and water partial pressure conditions, before the sieve becomes substantially deactivated.
    Type: Grant
    Filed: November 22, 2005
    Date of Patent: December 18, 2007
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Peter N. Loezos, Shun Chong Fung, Stephen Neil Vaughn, Kenneth Ray Clem, James H. Beech, Nicolas P. Coute, Marcel Johannes Janssen, Luc Roger Marc Martens, Karl G. Strohmaier
  • Publication number: 20070284284
    Abstract: The present invention relates to new crystalline molecular sieve SSZ-75 prepared using a tetramethylene-1,4-bis-(N-methylpyrrolidinium)dication as a structure-directing agent, and its use in catalysts for hydrocarbon conversion reactions.
    Type: Application
    Filed: June 1, 2007
    Publication date: December 13, 2007
    Inventors: Stacey I. Zones, Allen W. Burton, Theodorus Ludovicus Michael Maesen, Berend Smit, Edith Beerdsen
  • Patent number: 7307196
    Abstract: The invention relates to a catalyst composition, a method of making the same and its use in the conversion of a feedstock, preferably an oxygenated feedstock, into one or more olefin(s), preferably ethylene and/or propylene The catalyst composition comprises a molecular sieve and at least one oxide of a metal from Group 4, optionally in combination with at least one metal from Groups 2 and 3, of the Periodic Table of Elements.
    Type: Grant
    Filed: August 3, 2004
    Date of Patent: December 11, 2007
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Doron Levin, James Clark Vartuli
  • Patent number: 7304197
    Abstract: A process and apparatus are provided for converting oxygenate to olefins which comprises: contacting a feedstock comprising oxygenate with a catalyst comprising a molecular sieve under conditions effective to produce a vaporous product comprising the olefins, water and unreacted oxygenate; condensing the vaporous product to provide a liquid stream rich in the water and unreacted oxygenate, and an olefins-rich vapor stream; introducing at least part of the liquid stream to a feed tray in a fractionation tower which provides an oxygenate-rich overhead product and a water-rich liquid bottoms product; providing a liquid, oxygenate-rich stream comprising at least about 20 wt % oxygenate above the feed tray; and passing the olefins-rich vapor stream through a recovery train to recover at least some of the olefins.
    Type: Grant
    Filed: November 24, 2003
    Date of Patent: December 4, 2007
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Keith H. Kuechler, Jeffrey L. Brinen, James Richardson Lattner, Allen Scott Gawlik
  • Patent number: 7304188
    Abstract: The invention relates to a process for preparing methyl tert-butyl ether (MTBE) in qualities which are suitable for organic syntheses and for use as a specialty solvent from MTBE in fuel quality.
    Type: Grant
    Filed: June 14, 2003
    Date of Patent: December 4, 2007
    Assignee: OXENO Olefinchemie GmbH
    Inventors: Fritz Obenaus, Wilhelm Droste, Bernhard Scholz, Franz Nierlich, Rainer Malzkorn, Udo Peters, Jochen Praefke, Richard Filipiak, Joachim Neumeister
  • Publication number: 20070276174
    Abstract: In a method of synthesizing a crystalline molecular sieve, a reaction mixture is formed comprising a source of phosphorus, a source of aluminum, at least one organic directing agent and, optionally, a source of silicon and crystallization of the reaction mixture is induced to form a slurry comprising the desired crystalline molecular sieve. The slurry is then maintained in contact with a flocculant for a period of 12 hours to 30 days before the crystalline molecular sieve is recovered from said slurry.
    Type: Application
    Filed: April 6, 2007
    Publication date: November 29, 2007
    Inventors: Luc R.M. Martens, Machteld Maria Mertens, Goetz Burgfels, Marcus Breuninger, Andreas Pritzl
  • Patent number: 7301065
    Abstract: The invention relates to a molecular sieve catalyst composition, to a method of making or forming the molecular sieve catalyst composition, and to a conversion process using the catalyst composition. In particular, the invention is directed to making a formulated molecular sieve catalyst composition from a slurry of formulation composition of a synthesized molecular sieve that has not been fully dried, a binder and an optional matrix material. In a more preferred embodiment, the weight ratio of the binder to the molecular sieve and/or the solid content of the slurry is controlled to provide an improved attrition resistant catalyst composition, particularly useful in a conversion process for producing olefin(s), preferably ethylene and/or propylene, from a feedstock, preferably an oxygenate containing feedstock.
    Type: Grant
    Filed: July 16, 2004
    Date of Patent: November 27, 2007
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Stephen N. Vaughn, Yun-feng Chang, Luc R. M. Martens, Kenneth R. Clem, Machteld M. Mertens, Albert E. Schweizer
  • Patent number: 7288689
    Abstract: The present invention provides various processes for producing C1 to C4 alcohols, optionally in a mixed alcohol stream, and optionally converting the alcohols to light olefins. In one embodiment, the invention includes directing a first portion of a syngas stream to a methanol synthesis zone wherein methanol is synthesized. A second portion of the syngas stream is directed to a fuel alcohol synthesis zone wherein fuel alcohol is synthesized. The methanol and at least a portion of the fuel alcohol are directed to an oxygenate to olefin reaction system for conversion thereof to ethylene and propylene.
    Type: Grant
    Filed: November 19, 2003
    Date of Patent: October 30, 2007
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Marcel Johannes Janssen, Cornelis F. Van Egmond, Luc R. M. Martens, Jaimes Sher
  • Patent number: 7288692
    Abstract: A process is described for producing olefins from a vapor product stream from an oxygenate to olefin conversion reaction, the vapor product stream comprising C2 to C4 olefins, C5+ hydrocarbons, at least one oxygenate and water. In the process, the vapor product stream is cooled to remove water therefrom and produce a first vapor effluent stream. The first vapor effluent stream is then cooled and compressed to produce a condensed liquid effluent stream comprising C5+ hydrocarbons and at least one oxygenate, and a residual vapor effluent stream comprising C2 to C4 olefins. At least part of the condensed liquid effluent stream is contacted with a liquid water-containing stream in a liquid-liquid contacting device to at least partly separate said condensed liquid effluent stream, or portion thereof, into an aqueous phase rich in said at least one oxygenate and an organic phase rich in said C5+ hydrocarbons.
    Type: Grant
    Filed: July 14, 2004
    Date of Patent: October 30, 2007
    Assignee: ExxonMobil Chemcial Patents Inc.
    Inventors: Keith H. Kuechler, Jeffrey L. Brinen, Philip A. Ruziska
  • Patent number: 7279012
    Abstract: A process for producing olefins comprises providing a vapor product stream from an oxygenate to olefin reaction, the vapor product stream comprising C2 to C4 olefins, C2 to C6 carbonyl compounds and water. The vapor product stream is cooled to provide a first vapor effluent stream comprising no more than 10 wt. % water, and a liquid water-rich stream. The first vapor effluent stream, and a first wash flash vapor stream, are compressed from a first pressure to a second pressure greater than said first pressure to form a second vapor effluent stream, which is then cooled to form a cooled second effluent stream that is at least partially in the vapor state.
    Type: Grant
    Filed: July 1, 2004
    Date of Patent: October 9, 2007
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Keith H. Kuechler, Jeffrey L. Brinen, Philip Andrew Ruziska
  • Publication number: 20070227356
    Abstract: A gas-solids reaction system is provided for improving product recovery in a multiple reactor reaction system. The solids of the product gas-solids flows from the multiple reactors are separated out in a separation vessel having a baffled transition zone. Additional product vapor is stripped from the solids as the solids pass through the baffled transition zone. The solids are then returned to the multiple reactors.
    Type: Application
    Filed: March 28, 2007
    Publication date: October 4, 2007
    Inventor: James H. Beech
  • Publication number: 20070232844
    Abstract: A gas-solids reaction system is provided for improving product recovery in a multiple reactor reaction system. An oxygenate feedstock, desirably of high concentration in oxygenate, is reacted with a catalyst having a low to modest acidity and a Si/Al2 ratio of from 0.10 to 0.32. The reaction occurs in a reaction zone of a fluidized bed reactor at an oxygenate partial pressure of at least 45 psia and a reactor gas superficial velocity of at least 10 ft/s, conveying catalyst through the reaction zone to a circulation zone. The catalyst undergoes displacement with an inert gas in the circulation zone at a displacement gas superficial velocity of at least 0.03 m/s, after which at least a portion, preferably a large portion is returned to the reaction zone. The catalyst has a residence time in the circulation zone of at least twice that of the residence time of catalyst in the reaction zone.
    Type: Application
    Filed: January 26, 2007
    Publication date: October 4, 2007
    Inventors: Keith H. Kuechler, James H. Beech, Doron Levin, Stephen N. Vaughn, Stephen H. Brown
  • Patent number: 7273960
    Abstract: A reactor apparatus and related method for controlling at least one process variable in a circulating fluid bed oxygenates to olefins reactor system comprising a riser are provided. The process variable is selected from at least one of (i) space velocity, (ii) average reaction temperature, (iii) conversion of reactant, and (iv) average coke level on catalyst. Typically, a corresponding set point for at least one process variable is selected from (1) reactant feed rate, (2) feed enthalpy, (3) reactor temperature-related function, e.g., mid-temperature or rate of temperature rise along a portion of the reactor, and (4) catalyst hold-up in the riser of the reactor. A corresponding manipulated variable is selected from (a) feed flow control valve(s), (b) feed preheat rate, (c) activity of the catalyst in the reactor, and (d) amount of catalyst in the reaction zone.
    Type: Grant
    Filed: October 25, 2002
    Date of Patent: September 25, 2007
    Assignee: ExxonMobil Chemical Patents Inc
    Inventor: James R. Lattner
  • Patent number: 7273961
    Abstract: The present invention is a process for quenching a reactor effluent stream. The reactor effluent stream comprises water, olefin product, and methanol and is further entrained with catalyst fines. The process removes water, catalyst fines, and methanol. Particularly, methanol removal from the reactor effluent stream is improved.
    Type: Grant
    Filed: January 22, 2004
    Date of Patent: September 25, 2007
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Malcolm G. Pettigrew, Wadie Malaty, Ram Mohan Lai Mallik
  • Patent number: 7268265
    Abstract: The present invention relates to a process and apparatus for the production of light olefins comprising olefins having from 2 to 3 carbon atoms per molecule from a feedstock containing heavier olefins. An intermediate cut from a fractionation column is used as olefinic feed to an olefin cracking process preferably after undergoing selective hydrogenation of diolefins. In one embodiment, a liquid side draw from a fractionation column is selectively hydrogenated and then returned to the fractionation column from which a vapor side draw containing olefins is cracked in the olefin cracking reactor.
    Type: Grant
    Filed: June 30, 2004
    Date of Patent: September 11, 2007
    Assignee: UOP LLC
    Inventors: Douglas G. Stewart, Joseph E. Zimmermann, Angelo P. Furfaro, Bipin V. Vora
  • Publication number: 20070203385
    Abstract: This invention provides a process for manufacturing a catalyst with a desired attrition index, comprising the steps of selecting at least one molecular sieve having a morphology and size index (MSI) of from 1 to about 1000 to secure said desired attrition index of said catalyst.
    Type: Application
    Filed: January 12, 2007
    Publication date: August 30, 2007
    Inventors: Yun-feng Chang, Machteld Maria Mertens, Stephen N. Vaughn
  • Publication number: 20070197845
    Abstract: This invention provides a process for limiting the loss of catalyst particles through olefin product streams and regenerator flue gas streams exiting the reaction system. In particular, this invention provides for removing catalyst particles from the reactor using a water stream and from the regenerator using a two step separation process. The two step process involves the use of a catalyst fine separation unit.
    Type: Application
    Filed: January 10, 2007
    Publication date: August 23, 2007
    Inventors: James H. Beech, Yun-feng Chang, Michael P. Nicoletti
  • Patent number: 7259287
    Abstract: The invention is directed to methods of starting up reaction systems. The reaction systems are those that use catalysts that comprise molecular sieves, particularly metalloaluminophosphate molecular sieves, especially metalloaluminophosphate molecular sieves which are susceptible to loss of catalytic activity due to contact with water molecules. The methods provide appropriate mechanisms of heating and loading the activated molecular sieves to protect against loss of catalytic activity that can occur due to contact with water molecules.
    Type: Grant
    Filed: August 15, 2003
    Date of Patent: August 21, 2007
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: James H. Beech, Richard E. Walter, Shun Chong Fung, Peter N. Loezos, Marcel Johannes Janssen, Luc Roger Marc Martens, Kenneth Ray Clem, Stephen Neil Vaughn
  • Publication number: 20070191660
    Abstract: A method of crystallizing a crystalline molecular sieve having a pore size in the range of from about 2 to about 19 ?, said method comprising the steps of (a) providing a mixture comprising at least one source of ions of tetravalent element (Y), at least one hydroxide source (OH?), and water, said mixture having a solid-content in the range of from about 15 wt. % to about 50 wt. %; and (b) treating said mixture to form the desired crystalline molecular sieve with stirring at crystallization conditions sufficient to obtain a weight hourly throughput from about 0.005 to about 1 hr?1, wherein said crystallization conditions comprise a temperature in the range of from about 200° C. to about 500° C. and a crystallization time less than 100 hr.
    Type: Application
    Filed: January 29, 2007
    Publication date: August 16, 2007
    Inventors: Ivy D. Johnson, Wenyih Frank Lai
  • Publication number: 20070191657
    Abstract: A method of manufacturing a molecular sieve of the MCM-22 family, said method comprising the steps of (a) providing a mixture comprising at least one source of ions of tetravalent element, at least one source of alkali metal hydroxide, at least one directing-agent (R), water, and optionally at least one source of ions of trivalent element, said mixture having the following mole composition: Y:X2=10 to infinity H2O:Y=1 to 20 OH?:Y=0.001 to 2 M+:Y=0.001 to 2 R:Y=0.001 to 0.34 wherein Y is a tetravalent element, X is a trivalent element, M is an alkali metal; (b) treating said mixture at crystallization conditions for less than 72 hr to form a treated mixture having said molecular sieve, wherein said crystallization conditions comprise a temperature in the range of from about 160° C. to about 250° C.; and (c) recovering said molecular sieve.
    Type: Application
    Filed: January 24, 2007
    Publication date: August 16, 2007
    Inventors: Wenyih Frank Lai, Robert Ellis Kay
  • Publication number: 20070191663
    Abstract: A method of making a crystalline molecular sieve of MFS framework type, said method comprising the steps of (a) adding at least one source of ions of tetravalent element (Y), at least one source of ions of trivalent element (X), at least one hydroxide source (OH?), at least one structure-directing-agent (R), at least one seed source (Seed), and water (H2O) to form a mixture having the following mole composition (expressed in term of oxide): YO2:(n)X2O3:(x)OH?:(y)R:(z)H2O+(m)Seed wherein the m is in the range of from about 10 wtppm to about 2 wt. % (based on total weight of the synthesis mixture), the n is in the range of from about 0.005 to 0.05, the x is in the range of from about 0.01 to about 0.3, the y is in the range of from about 0.
    Type: Application
    Filed: January 29, 2007
    Publication date: August 16, 2007
    Inventors: Ivy D. Johnson, Machteld M. Mertens, An Verberckmoes
  • Patent number: 7256318
    Abstract: This invention is directed to controlling regenerator temperature in an oxygenate to olefin process. Because a significant amount of heat can produced in the regenerator during the regeneration process, at least a portion of the heat must be removed to keep the system from getting too hot. This invention removes heat during the regeneration of the catalyst, using appropriate circulation of catalyst between the reactor and the regenerator. Sufficient circulation can eliminate the need for the use of a catalyst cooler in the regeneration system.
    Type: Grant
    Filed: March 28, 2003
    Date of Patent: August 14, 2007
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: James R. Lattner, Keith Holroyd Kuechler, Nicolas P. Coute, Paul N. Chisholm
  • Patent number: 7253331
    Abstract: The invention relates to a molecular sieve catalyst composition, to a method of making or forming the molecular sieve catalyst composition, and to a conversion process using the catalyst composition. In particular, the invention is directed to a conversion process for producing olefin(s), preferably ethylene and/or propylene, from a feedstock, preferably an oxygenate containing feedstock in the presence of a molecular sieve having been synthesized in the presence of a flocculant.
    Type: Grant
    Filed: May 12, 2004
    Date of Patent: August 7, 2007
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Luc R. M. Martens, Marcel J. Janssen, Machteld M. Mertens, An Verberckmoes, Guang Cao
  • Patent number: 7247764
    Abstract: The invention relates to a conversion process for making olefin(s) using a molecular sieve catalyst composition. More specifically, the invention is directed to a process for converting a feedstock comprising an oxygenate in the presence of a molecular sieve catalyst composition, wherein the feedstock is free of or substantially free of metal salts.
    Type: Grant
    Filed: June 16, 2003
    Date of Patent: July 24, 2007
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Marcel J. G. Janssen, Teng Xu, Cor F. Van Egmond, Keith H. Kuechler, Stephen N. Vaughn, James Harding Beech, Jr.