With Other Transition Metal Patents (Class 585/663)
  • Patent number: 6326523
    Abstract: Process for the dehydrogenation of a hydrocarbon feed comprising a step of dehydrogenating the hydrocarbon feed and a step of removing hydrogen being formed by dehydrogenation reactions, wherein the dehydrogenation and hydrogen removal steps are performed simultaneously in presence of a dehydrogenation catalyst being combined with a metal compound being reduced in presence of hydrogen.
    Type: Grant
    Filed: March 28, 2000
    Date of Patent: December 4, 2001
    Assignee: Haldor Topsoe A/S
    Inventors: Anni Stahl, Niels Jørgen Blom, Jens Perregaard, Poul Erik Højlund Nielsen
  • Publication number: 20010046942
    Abstract: A chromium catalyst is disclosed for use in dehydrogenation and dehydrocyclization processes.
    Type: Application
    Filed: March 15, 2001
    Publication date: November 29, 2001
    Inventors: Kostantinos Kourtakis, Leo E. Manzer
  • Publication number: 20010025129
    Abstract: Processes for oxidative dehydrogenation of alkane to one or more olefins, exemplified by ethane to ethylene, are disclosed using novel catalysts. The catalysts comprise a mixture of metal oxides having as an important component nickel oxide (NiO), which give high conversion and selectivity in the process. For example, the catalyst can be used to make ethylene by contacting it with a gas mixture containing ethane and oxygen. The gas mixture may optionally contain ethylene, an inert diluent such as nitrogen, or both ethylene and an inert diluent.
    Type: Application
    Filed: March 22, 2001
    Publication date: September 27, 2001
    Applicant: Symyx Technologies, Inc.
    Inventor: Yumin Liu
  • Patent number: 6258992
    Abstract: Lower hydrocarbons are converted to carboxylic acids and/or dehydrogenated hydrocarbon product by contacting a feed mixture containing lower hydrocarbons, oxygen source, diluent, and sulfur-containing compound, with a multifunctional, mixed metal catalyst at a temperature from about 150° C. up to about 400° C. The lower hydrocarbons include C2-C4, and the presence of sulfur compound in the feed mixture results in increased yield of carboxylic acid and/or dehydrogenated hydrocarbon product.
    Type: Grant
    Filed: September 17, 1999
    Date of Patent: July 10, 2001
    Assignee: Saudi Basic Industries Corporation
    Inventors: Khalid Karim, Asad Khan
  • Patent number: 6239325
    Abstract: The invention provides process for oxidative dehydrogenation of lower alkanes, by vapor phase oxidative dehydrogenation of C2-C5 lower alkanes in the presence of a catalyst and molecular oxygen to produce the corresponding olefins, in which the catalyst has a composition expressed by a general formula (1) below: A&agr;Sb&bgr;W&ggr;D&dgr;Ox   (1) in which A is at least one metal selected from the group consisting of molybdenum and chromium; Sb is antimony; W is tungsten; O is oxygen; and D is at least one metal selected from the group consisting of V, Nb, Ta, Fe, Co, Ni, Cu, Ag, Zn, B, Tl, Sn, Pb, Te, Li, Na, K, Rb, Cs, Mg, Ca, Sr, Ba, La, Ce and Sm; &agr;, &bgr;, &ggr;, &dgr; and x denote atomic numbers of A, Sb, W, D and O, respectively, where when &agr;=1, &bgr;=0.5-10, &ggr;=0.1-10 and &dgr;=0-3; and x is a numerical value determined by the state of oxidation of those elements other than oxygen.
    Type: Grant
    Filed: May 18, 1999
    Date of Patent: May 29, 2001
    Assignee: Nippon Shokubai Co Ltd
    Inventors: Nobuji Kishimoto, Etsushige Matsunami
  • Patent number: 6031143
    Abstract: Process for the production of styrene which comprises:a) feeding to an alkylation unit a stream of benzene and a stream of recycled product containing ethylene;b) mixing the stream at the outlet of the alkylation unit, containing ethylbenzene, with a stream consisting of ethane;c) feeding the mixture thus obtained to a dehydrogenation unit containing a catalyst capable of contemporaneously dehydrogenating ethane and ethylbenzene;d) feeding the product leaving the dehydrogenation unit to a separation section to produce a stream essentially consisting of styrene and a stream containing ethylene;e) recycling the stream containing ethylene to the alkylation unit.
    Type: Grant
    Filed: September 1, 1998
    Date of Patent: February 29, 2000
    Assignee: Snamprogetti S.p.A.
    Inventors: Franco Buonomo, Gianni Donati, Emilio Micheli, Lorenzo Tagliabue
  • Patent number: 6028027
    Abstract: Catalysts comprising iron and potassium and, if desired, further elements, which catalysts are suitable for dehydrogenating hydrocarbons to give the corresponding olefinically unsaturated hydrocarbons, are prepared by calcining a finely divided dry or aqueous mixture of an iron compound with a potassium compound and, if desired, compounds of further elements in a first step that agglomerates having a diameter of from 5 to 50 .mu.m and formed from smaller individual particles are obtained and, in a second step, preferably after shaping, calcining it at from 300 to 1000.degree. C., with the maximum calcination temperature in the second step preferably being at least 30.degree. below the calcination temperature in the first step. The catalysts thus prepared are useful, in particular, for dehydrogenating ethylbenzene to give styrene.
    Type: Grant
    Filed: March 17, 1998
    Date of Patent: February 22, 2000
    Assignee: BASF Aktiengesellschaft
    Inventors: Michael Baier, Christopher William Rieker, Otto Hofstadt, Wolfgang Buchele, Wolfgang Jurgen Popel, Hermann Petersen, Norbert Neth
  • Patent number: 5962757
    Abstract: Dehydrogenation catalysts are prepared by a predoping process comprising, mixing iron oxide materials with a predopant to form a blend of iron oxide and predopant and heating the blend to the predoping conditions and thereafter forming a catalyst. The catalysts so prepared are useful in the dehydrogenation of a composition having at least one carbon--carbon double bond. Such catalytic uses include the conversion of ethylbenzene to styrene.
    Type: Grant
    Filed: April 17, 1997
    Date of Patent: October 5, 1999
    Assignee: Shell Oil Company
    Inventors: Stanley Nemec Milam, Brent Howard Shanks
  • Patent number: 5895829
    Abstract: In a process for preparing olefinically unsaturated compounds such as styrene by oxidative dehydrogenation of corresponding hydrocarbons using a previously oxidized oxygen transferer acting as catalyst in the absence of molecular oxygen and reoxidation of the oxygen transferer in at least two reactors, the dehydrogenation and regeneration takes place alternately in time in the two reactors and the reactors are connected to one another in terms of heat via heat exchangers and a common circuit for heat transfer medium.
    Type: Grant
    Filed: June 18, 1997
    Date of Patent: April 20, 1999
    Assignee: BASF Aktiengesellschaft
    Inventors: Wolfgang Jurgen Popel, Alfred Hagemeyer, Wolfgang Buchele, Axel Deimling, Wolfgang Hoffmann
  • Patent number: 5866737
    Abstract: A process for the oxidation and oxidative dehydrogenation of hydrocarbons, in particular ethylbenzene, to form corresponding oxidized or olefinically unsaturated compounds, in particular styrene, over an oxygen-conferring, oxygen-regenerable catalyst involving a working period, a time-displaced regenerating period and at least one intermediate rinsing period comprises effecting a partial regeneration during the working period by time-displaced addition of a substoichiometric amount of oxygen.
    Type: Grant
    Filed: January 7, 1997
    Date of Patent: February 2, 1999
    Assignee: BASF Aktiengesellschaft
    Inventors: Alfred Hagemeyer, Jurgen Schweinzer, Otto Watzenberger
  • Patent number: 5672801
    Abstract: The present invention concerns a regeneration process for a catalyst containing at least one metallic element selected from the group formed by platinum, palladium, ruthenium, rhodium, osmium, iridium and nickel, preferably platinum, on a refractory oxide based support, which has been deactivated by coke deposition. The regeneration process is characterised in that said regeneration consists of treatment with a gas containing at least chlorine and molecular oxygen, at a temperature between 20.degree. C. and 800.degree. C. and a total gas flow rate, expressed in litres of gas per hour and per gram of catalyst, of between 0.05 and 20. The process at least restores the initial catalytic properties of the catalyst.
    Type: Grant
    Filed: August 6, 1996
    Date of Patent: September 30, 1997
    Assignee: Institut Francais Du Petrole
    Inventor: Blaise Didillon
  • Patent number: 5585530
    Abstract: A process for the production of olefins comprises dehydrogenating at least one hydrogen-donor hydrocarbon that is essentially free from olefinic unsaturation, e.g. a paraffin, in the presence of a dehydrogenation catalyst and in the presence of at least one hydrogen-acceptor hydrocarbon that is more highly unsaturated than a mono-olefin, e.g. a diene and/or acetylene, under conditions effective to cause at least part of said hydrogen-donor hydrocarbon to be dehydrogenated and at least part of the hydrogen-acceptor to be hydrogenated. The amount of hydrogen-acceptor is such that there are 0.5 to 20 moles of said hydrogen-donor for each mole of hydrogen-acceptor. Preferably the amount of said hydrogen-acceptor hydrocarbon hydrogenated is such that the heat of hydrogenation of said hydrogen-acceptor hydrocarbon provides at least 25% of the heat required for dehydrogenation of said hydrogen-donor hydrocarbon. In a preferred form of the invention, a hydrocarbon stream containing a hydrogen-acceptor is a C.sub.
    Type: Grant
    Filed: June 8, 1994
    Date of Patent: December 17, 1996
    Assignee: Institut Francais Du Petrole
    Inventors: Arthur Gough, Stephen K. Turner
  • Patent number: 5563314
    Abstract: There is provided a process for the net catalytic oxidative dehydrogenation of alkanes to produce alkenes. The process involves simultaneous equilibrium dehydrogenation of alkanes to alkenes and combustion of the hydrogen formed to drive the equilibrium dehydrogenation reaction further to the product alkenes. In the present reaction, the alkane feed is dehydrogenated over an equilbrium dehydrogenation catalyst in a first reactor, and the effluent from the first reactor is then passed into a second reactor containing a reducible metal oxide which serves to selectively combust hydrogen in an oxidation/reduction (REDOX) reaction. This particular mode of operation is termed a separate reactor, REDOX mode.
    Type: Grant
    Filed: May 25, 1995
    Date of Patent: October 8, 1996
    Inventors: Pradyot A. Agaskar, Robert K. Grasselli, James N. Michaels, P. Thomas Reischman, David L. Stern, John G. Tsikoyiannis
  • Patent number: 5510558
    Abstract: Oxidative dehydrogenation of alkanes and alkylaromatic hydrocarbons is achieved by contact with an active carbon catalyst. In various aspects of the invention, the oxidative dehydrogenation is performed at a pressure above about 100 psia, and/or at a temperature in the range from about 500.degree. C. to about 800.degree. C., and/or the active carbon catalyst contains a metal, for example, molybdenum.
    Type: Grant
    Filed: December 29, 1993
    Date of Patent: April 23, 1996
    Assignee: Sun Company, Inc. (R&M)
    Inventors: Benjamin S. Umansky, Kevin A. Boyer, Chao-Yang Hsu
  • Patent number: 5482616
    Abstract: This invention relates to a catalyst for hydrogenation and/or dehydrogenation having an improved resistance against deactivation by sulfur compounds, comprising at least one hydrogenation component, at least one metal-oxide containing component and at least one component acting as a support material, in which at least a part of the hydrogenation component and a part of the metal-oxide containing component are present on said support material as separate particles, the particles of the hydrogenation component and the particles of the metal-oxide containing component being homogeneously distributed in the catalyst.
    Type: Grant
    Filed: May 26, 1992
    Date of Patent: January 9, 1996
    Assignee: Engelhard De Meern B. V.
    Inventors: Nilanjan Brahma, John W. Geus, Eugene G. M. Kuijpers
  • Patent number: 5378350
    Abstract: Process and catalyst for dehydrogenation or dehydrocyclization of hydrocarbons. The catalyst consists of an aluminum oxide/chromium oxide support with promotors consisting of compounds of alkali metals and/or alkaline earth metals and compounds of metals from the third and/or fourth subgroups of the periodic table. Coke formation and side reactions can be substantially suppressed by the use of these catalysts under special operating conditions and special reactors.
    Type: Grant
    Filed: August 9, 1991
    Date of Patent: January 3, 1995
    Assignee: Linde Aktiengesellschaft
    Inventors: Heinz Zimmermann, Frederik Versluis
  • Patent number: 5302773
    Abstract: A process for preparing olefins and diolefins in high productivity which involves contacting an aliphatic hydrocarbon, such as butane, with a heterogeneous catalyst composition containing reactive oxygen under reaction conditions sufficient to produce a more highly unsaturated aliphatic hydrocarbon, such as 1,3-butadiene. The catalyst composition contains a glassy silica matrix of specified surface area and macro-porosity into which are encapsulated domains of a catalyst component containing oxides of magnesium and molybdenum. The catalyst has high crush strength and is useful in transport reactors.
    Type: Grant
    Filed: November 26, 1991
    Date of Patent: April 12, 1994
    Assignee: The Dow Chemical Company
    Inventors: G. Edwin Vrieland, Stephen J. Doktycz, Bijan Khazai
  • Patent number: 5258347
    Abstract: A process for the production of olefins and diolefins, such as 1,3-butadiene, comprising contacting an aliphatic hydrocarbon, such as butane, with a heterogeneous catalyst composition containing reactive oxygen under reaction conditions such that a more highly unsaturated aliphatic hydrocarbon is selectively formed in a high productivity. The catalyst is a composition comprising (a) a support component of magnesia and alumina and/or magnesium aluminate spinel, and (b) a catalyst component of magnesia, an oxide of molybdenum, a Group IA metal oxide promoter, and optionally vanadium oxide. Catalysts of high surface area and high attrition resistance are claimed.
    Type: Grant
    Filed: May 29, 1992
    Date of Patent: November 2, 1993
    Assignee: The Dow Chemical Company
    Inventors: Bijan Khazai, Craig B. Murchison, G. Edwin Vrieland
  • Patent number: 5254779
    Abstract: A catalyst of the following formulaNi.sub.a MoO.sub.x (I)in which:a is a number from 0.6 to 1.3, andx is a number determined by the valency requirements of nickel and of molybdenum.The manufacture of this catalyst comprises the preparation of a solvated precursor and the thermal decomposition of the solvated precursor over a period of from 1 to 4 hours and at a temperature T.sub.1 of from 520.degree. to 600.degree. C. The catalyst is utilized in the oxidative dehydrogenation of propane at a temperature of from 400.degree. to 700.degree. C.
    Type: Grant
    Filed: October 1, 1991
    Date of Patent: October 19, 1993
    Inventors: Carlo Mazzocchia, Ezio Tempesti, Chafic Aboumrad
  • Patent number: 5210293
    Abstract: A process and catalyst for the production of ethylene and/or acetic acid by oxidation of ethane and/or ethylene with a molecular oxygen-containing gas in the presence of a catalyst composition comprising the elements A, X and Y in combination with oxygen, the gram-atom ratios of the elements A:X:Y being a:b:c, wherein A=Mo.sub.d Re.sub.e W.sub.f ; X=Cr, Mn, Nb, Ta, Ti, V and/or W; Y=Bi, Ce, Co, Cu, Fe, K, Mg, Ni, P, Pb, Sb, Si, Sn, Tl and/or U; a=1; b=0 to 2; c=0 to 2; d+e+f=a; d is either zero or greater than zero; e is greater than zero; and f is either zero or greater than zero.
    Type: Grant
    Filed: June 11, 1992
    Date of Patent: May 11, 1993
    Assignee: BP Chemicals Limited
    Inventor: Melanie Kitson
  • Patent number: 5210358
    Abstract: Solid solution catalyst in particulate form consisting of attrition resistant .alpha.-Al.sub.2 0.sub.3 particles with 0.5 to 10% by weight, expressed as the oxide, of iron cations substituted for aluminum cations in said catalyst support stabilized with 0.5 to 10% by weight, expressed as the oxide, of lanthanum and modified with at least two, preferably three, metal cations selected from the metals consisting of chromium, cobalt, magnesium, manganese, and barium; wherein one of said metal cations is barium and said catalyst has X-ray diffraction pattern with peak positions different than that of the .alpha.-Al.sub.2 0.sub.3 structure. A process is disclosed which produces ethylene from ethane while producing reduced amounts of vinyl chloride from said ethane to ethylene process.
    Type: Grant
    Filed: February 27, 1992
    Date of Patent: May 11, 1993
    Assignee: The B.F. Goodrich Company
    Inventor: Angelo J. Magistro
  • Patent number: 5146031
    Abstract: A process for the production of olefins and diolefins, such as 1,3-butadiene, comprising contacting an aliphatic hydrocarbon, such as butane, with a heterogeneous catalyst composition containing reactive oxygen under reaction conditions such that a more highly unsaturated aliphatic hydrocarbon is selectively formed in a high productivity. The catalyst is a composition comprising (a) a support component of magnesia and alumina and/or magnesium aluminate spinel, and (b) a catalyst component of magnesia, an oxide of molybdenum, a Group IA metal oxide promoter, and optionally vanadium oxide. Catalysts of high surface area and high attrition resistance are claimed.
    Type: Grant
    Filed: April 6, 1990
    Date of Patent: September 8, 1992
    Assignee: The Dow Chemical Company
    Inventors: Bijan Khazai, G. Edwin Vrieland, Craig B. Murchison, Ravi S. Dixit, Edwin D. Weihl
  • Patent number: 5105044
    Abstract: There is provided a catalyst and a process for the direct partial oxidation of methane with oxygen, whereby hydrocarbons having at least two carbon atoms are produced. The catalyst used in this reaction is a spinel oxide, such as MgMn.sub.2 O.sub.4 or CaMn.sub.2 O.sub.4, modified with an alkali metal, such as Li or Na.
    Type: Grant
    Filed: October 15, 1990
    Date of Patent: April 14, 1992
    Assignee: Mobil Oil Corp.
    Inventors: Scott Han, Lorenzo C. DeCaul, Robert E. Palermo, Dennis E. Walsh
  • Patent number: 5095161
    Abstract: Methane is upgraded to higher molecular weight hydrocarbons in a process using a novel catalyst comprising oxides of boron, tin and zinc. The feed admixture also comprises oxygen. The novel catalyst may comprise one or more Group I-A or II-A elements, preferably potassium and is characterized by its method of manufacture.
    Type: Grant
    Filed: August 6, 1990
    Date of Patent: March 10, 1992
    Assignee: UOP
    Inventors: Hayim Abrevaya, Tamotsu Imai, Lisa M. Lane
  • Patent number: 5086032
    Abstract: A catalyst of the following formulaNi.sub.a MoO.sub.x (I)in which:a is a number from 0.6 to 1.3, andx is a number determined by the valency requirements of nickel and of molybdenum.The manufacture of this catalyst comprises the preparation of a solvated precursor and the thermal decomposition of the solvated precursor over a period of from 1 to 4 hours and at a temperature T.sub.1 of from 520.degree. to 600.degree. C. The catalyst is utilized in the oxidative dehydrogenation of propane at a temperature of from 400.degree. to 700.degree. C.
    Type: Grant
    Filed: February 5, 1991
    Date of Patent: February 4, 1992
    Assignee: Norsolor
    Inventors: Carlo Mazzocchia, Ezio Tempesti, Chafic Aboumrad
  • Patent number: 5025109
    Abstract: There is provided a process for the direct partial oxidation of methane with oxygen, whereby hydrocarbons having at least two carbon atoms are produced. The catalyst used in this reaction is a spinel oxide such as ZnMn.sub.2 O.sub.4.
    Type: Grant
    Filed: December 29, 1989
    Date of Patent: June 18, 1991
    Assignee: Mobil Oil Corporation
    Inventors: Lorenzo C. DeCaul, Scott Han, Robert E. Palermo, Dennis E. Walsh
  • Patent number: 5008481
    Abstract: There is provided a process for the aromatization of non-aromatic hydrocarbons having at least six carbon atoms. The non-aromatic feed is contacted with a catalyst which includes a base metal or noble metal which is incorporated into or onto a pillared layered silicate. A preferred pillared layered silicate is kenyaite containing interspathic silica, and a preferred base metal or noble metal is chromium.
    Type: Grant
    Filed: December 29, 1989
    Date of Patent: April 16, 1991
    Assignee: Mobil Oil Corporation
    Inventors: Ivy D. Johnson, Pochen Chu, Charles T. Kresge
  • Patent number: 5004856
    Abstract: There is provided a process for the direct partial oxidation of methane with oxygen, whereby hydrocarbons having at least two carbon atoms are produced. The catalyst used in this reaction is a cadmium-manganese oxide catalyst.
    Type: Grant
    Filed: December 29, 1989
    Date of Patent: April 2, 1991
    Assignee: Mobil Oil Corporation
    Inventors: Lorenzo C. DeCaul, Scott Han, Robert E. Palermo, Dennis E. Walsh
  • Patent number: 4973791
    Abstract: A process for the production of unsaturated aliphatic hydrocarbons, such as diolefins, comprising contacting an aliphatic hydrocarbon, such as an alkane or a monoolefin, with a solid heterogeneous catalyst containing labile oxygen under reaction conditions such that a more highly unsaturated aliphatic hydrocarbon is selectively formed in a high space-time yield. The catalyst comprises an oxide of magnesium, an oxide of molybdenum, an alkali metal promoter, and optionally an oxide of vanadium. For example, butane is oxidized in the presence of magnesium molybdate doped with alkali metal oxide to a mixture of products including predominantly butadiene and cis-2-butene and trans-2-butene.
    Type: Grant
    Filed: July 20, 1989
    Date of Patent: November 27, 1990
    Assignee: The Dow Chemical Company
    Inventors: G. Edwin Vrieland, Craig B. Murchison
  • Patent number: 4956517
    Abstract: There is provided a process for the dehydrogenation of saturated hydrocarbons having from 2 to 5 carbon atoms. The feed is contacted with a catalyst which includes a base metal or noble metal which is incorporated into or onto a pillared layered silicate. A preferred pillared layered silicate is kenyaite containing interspathic silica, and a preferred base metal or noble metal is chromium.
    Type: Grant
    Filed: December 29, 1989
    Date of Patent: September 11, 1990
    Assignee: Mobil Oil Corporation
    Inventors: Ivy D. Johnson, Pochen Chu, Charles T. Kresge
  • Patent number: 4762961
    Abstract: The vapor phase dehydrogenation of hydrocarbons is achieved with a spinel of the formula AV.sub.2-x C.sub.x O.sub.4 where A is a bivalent metal, V is vanadium substantially in +3 oxidation state, C is a trivalent metal, or with a crystalline perovskite DV.sub.1-y C.sub.y O.sub.3 where D is one or more of Y, the rare earths and Bi, and V is again vanadium in +3 oxidation state.
    Type: Grant
    Filed: August 21, 1987
    Date of Patent: August 9, 1988
    Assignee: Standard Oil Company
    Inventors: Andrew T. Guttmann, James F. Brazdil, Robert K. Grasselli
  • Patent number: 4620052
    Abstract: Novel compositions of matter include: mixed oxides of (a) at least one oxide of chromium, at least one oxide of manganese and at least one oxide of magnesium, Lanthanum Series metals, preferably lanthanum and cerium, and/or niobium; (b) at least one oxide of chromium, at least one oxide of calcium, strontium, tin and/or antimony, at least one oxide of manganese and at least one oxide of magnesium, Lanthanum Series metals and/or niobium; (c) at least one oxide of chromium, at least one oxide of iron and at least one oxide of magnesium, Lanthanum Series metals and/or niobium; and (d) at least one oxide of chromium, at least one oxide of iron, at least one oxide of manganese and at least one oxide of magnesium, Lanthanum Series metals and/or niobium. These compositions are particularly effective as catalyst compositions for the conversion of C.sub.3 and C.sub.
    Type: Grant
    Filed: July 25, 1985
    Date of Patent: October 28, 1986
    Assignee: Phillips Petroleum Company
    Inventors: John H. Kolts, Gary A. Delzer
  • Patent number: 4620051
    Abstract: A method of selectively cracking C.sub.3 and C.sub.4 hydrocarbons to C.sub.2 hydrocarbons, particularly ethylene, in which a body of cracking catalyst is established in a reaction zone and the feed hydrocarbons are passed through the body of catalyst while maintaining the conditions sufficient to convert the feed hydrocarbons to product hydrocarbons, including, a temperature in the upstream end of the body of catalyst at least about 100.degree. C. below the temperature in the downstream end of the body of catalyst. The cracking catalyst is preferably selected from the group consisting of: at least one oxide of manganese and at least one oxide of magnesium; at least one oxide of manganese and at least one oxide of at least one metal selected from the group consisting of Lanthanum Series metals, preferably lanthanum or cerium, and niobium; at least one oxide of iron and at least one oxide of magnesium; and at least one oxide of iron and at least one oxide of a Lanthanum Series metals or niobium.
    Type: Grant
    Filed: July 25, 1985
    Date of Patent: October 28, 1986
    Assignee: Philips Petroleum Company
    Inventors: John H. Kolts, Gary A. Delzer
  • Patent number: 4581339
    Abstract: A method for reheating of a catalytic reactor by successive oxidations and reductions of a multiple oxidation state catalyst.Heat is added to the catalyst bed by a series of successive oxidation and reduction reactions occurring on the catalyst. Both catalyst oxidation and catalyst reduction are exothermic reactions, and both reactions generate heat to increase the temperature of the catalyst bed.
    Type: Grant
    Filed: March 18, 1985
    Date of Patent: April 8, 1986
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Bharat L. Bhatt, John F. Kirner, Pradip Rao, William A. Schwartz
  • Patent number: 4568790
    Abstract: A process for the low temperature oxydehydrogenation of ethane to ethylene uses a calcined oxide catalyst containing Mo, V, Nb, and Sb.
    Type: Grant
    Filed: June 28, 1984
    Date of Patent: February 4, 1986
    Assignee: Union Carbide Corporation
    Inventor: James H. McCain
  • Patent number: 4476344
    Abstract: An oxidative dehydrogenation process for a paraffin or mixture of paraffins having from 2 to 5 carbon atoms employing a catalyst composition comprising lithium, titanium and a promoter selected from the group consisting of molybdenum, tin and antimony.
    Type: Grant
    Filed: October 14, 1983
    Date of Patent: October 9, 1984
    Assignee: Phillips Petroleum Company
    Inventor: James B. Kimble
  • Patent number: 4410752
    Abstract: The invention herein is directed toward a process for the oxydehydrogenation of ethane in fixed-bed or fluid-bed reactors at temperatures of less than about 600.degree. C. The process includes the step of contacting ethane and an oxygen-containing gas with a catalyst composition having the formula V.sub.1.0 P.sub.a O.sub.x. The catalyst can be employed in supported or unsupported form. A promoter metal can optionally be present in the catalyst.
    Type: Grant
    Filed: February 5, 1982
    Date of Patent: October 18, 1983
    Assignee: The Standard Oil Company
    Inventors: Patricia R. Blum, Ernest C. Milberger
  • Patent number: 4395579
    Abstract: The preparation of a compound of formula R.sup.1 --C(R.sup.2).dbd.CH.sub.2 (R.sup.1 and R.sup.2 are a phenyl, alkyl or alkenyl group or a hydrogen atom) by contacting a mixture of steam and a compound of formula R.sup.1 --C(R.sup.2)(H)--CH.sub.3 at elevated temperature under non-oxidative dehydrogenation conditions with a catalyst having a spinel structure allows lower ratios steam to compound of formula R.sup.1 --C(R.sup.2)(H)--CH.sub.3, a higher selectivity to the compound of formula R.sup.1 --C(R.sup.2).dbd.CH.sub.2 and a lower temperature when lithium is present in the spinel structure.
    Type: Grant
    Filed: November 4, 1982
    Date of Patent: July 26, 1983
    Assignee: Shell Oil Company
    Inventors: Gilbert R. Germaine, Jean P. Darnanville
  • Patent number: 4334116
    Abstract: Dehydrogenatable hydrocarbons are dehydrogenated by contacting them at dehydrogenation conditions in the presence of a complex oxide catalyst comprising molybdenum, copper and tin and at least one element selected from the group consisting of Li, Na, K, Rb, Cs, Mg, Ca, Sr, Ba, La, Ce, Th and U. For example, an alkyl aromatic hydrocarbon, e.g. ethylbenzene, can be dehydrogenated to an alkenyl aromatic hydrocarbon, e.g. styrene, in the presence of an oxide complex catalyst comprising molybdenum, copper, tin and at least one element selected from the group consisting of K, Cs, Ba, Mg and Ca.
    Type: Grant
    Filed: April 27, 1981
    Date of Patent: June 8, 1982
    Assignee: Standard Oil Company
    Inventors: Louis J. Velenyi, Andrew S. Krupa
  • Patent number: 4327238
    Abstract: The catalytic dehydrogenation of at least one dehydrogenatable organic compound which has at least one ##STR1## grouping is carried out in the presence of a zinc titanate catalyst. The selectivity of the zinc titanate catalyst is improved by at least one promoter selected from the group consisting of chromium oxide, antimony oxide, bismuth oxide, oxides of the lanthanides, oxides of the actinides, oxides thereof, and compounds convertible to the oxides thereof.
    Type: Grant
    Filed: February 28, 1980
    Date of Patent: April 27, 1982
    Assignee: Phillips Petroleum Company
    Inventor: Alan D. Eastman
  • Patent number: 4229609
    Abstract: A continuous process for dehydrogenating hydrocarbons comprising repetitively carrying out dehydrogenation using a steam active dehydrogenation catalyst and regenerating of said catalyst with steam and oxygen-containing gas wherein the flow rate of steam is maintained constant during both the dehydrogenation and the regeneration and wherein the catalyst is purged with steam prior to each dehydrogenation and each regeneration.
    Type: Grant
    Filed: March 8, 1979
    Date of Patent: October 21, 1980
    Assignee: Phillips Petroleum Company
    Inventors: Thomas Hutson, Jr., Francis M. Brinkmeyer
  • Patent number: 4220560
    Abstract: Spinels promoted with an alkali metal oxide and vanadium, oxide are useful catalysts for the dehydrogenation of hydrocarbons to the corresponding more unsaturated hydrocarbons and result in an improved catalyst.
    Type: Grant
    Filed: December 4, 1978
    Date of Patent: September 2, 1980
    Assignee: Shell Oil Company
    Inventors: Jean-Pierre Anquetil, Michel Deflin, Jean-Claude Clement, Emmanuel E. A. Neel
  • Patent number: 4172854
    Abstract: Magnesium chromite dehydrogenation catalysts are improved by incorporation therein up to about 10% of an alkali metal.
    Type: Grant
    Filed: January 9, 1975
    Date of Patent: October 30, 1979
    Assignee: Petro-Tex Chemical Corporation
    Inventors: Michael C. Ellis, Harold E. Manning