From Nonhydrocarbon Feed Patents (Class 585/733)
  • Publication number: 20140256999
    Abstract: Algae oil feeds comprise a wide range of molecular species forming a complex mixture of molecules having varying sizes and therefore varying boiling points, comprise high nitrogen, oxygen, and fatty acid content, but comprise low sulfur, saturated hydrocarbons, and triglycerides. The wide range of molecular species in the algae oil feeds, very unusual compared to conventional refinery feedstocks and vegetable oils, may be upgraded into fuels by conventional refining approaches such as thermal and/or catalytic-hydroprocessing. Hydrotreating at high pressure over large-pore catalyst, and optionally followed by FCC cracking, has shown a beneficial product slate including coke yield. Thermal treatment prior to hydrotreating may improve hydrotreating feedstock quality.
    Type: Application
    Filed: October 29, 2012
    Publication date: September 11, 2014
    Inventors: Stilianos G. Roussis, Richard J. Cranford, Daniel J. Sajkowski
  • Patent number: 8829258
    Abstract: Integrating a biomass pyrolysis and upgrading process into a fluid catalytic cracking unit. The process uses conventional FCC feed and a mixture of a solvent and biomass to produce upgraded fuel products. A slurry stream composed of solid biomass particles and a solvent is fed into an FCC riser through a slurry pump to achieve biomass pyrolysis and in situ pyrolysis oil upgrading. The catalytic cracking of the conventional petroleum feed also occurs in the riser.
    Type: Grant
    Filed: November 16, 2011
    Date of Patent: September 9, 2014
    Assignee: Phillips 66 Company
    Inventors: Kening Gong, Alexandru Platon, Terry S. Cantu, Daren E. Daugaard
  • Publication number: 20140243541
    Abstract: The use of bio oil from at least one renewable source in a hydrotreatment process, in which process hydrocarbons are formed from said glyceride oil in a catalytic reaction, and the iron content of said bio oil is less than 1 w-ppm calculated as elemental iron. A bio oil intermediate including bio oil from at least one renewable source and the iron content of said bio oil is less than 1 w-ppm calculated as elemental iron.
    Type: Application
    Filed: May 8, 2014
    Publication date: August 28, 2014
    Applicant: Neste Oil Oyj
    Inventors: Tuomas OUNI, Väinö SIPPOLA, Petri LlNDQVIST
  • Publication number: 20140242867
    Abstract: Lignin compositions, products produced from them or containing them, methods to produce them, spinning methods, methods to convert lignin to a conversion product and conversion products produced by the methods are described.
    Type: Application
    Filed: April 4, 2012
    Publication date: August 28, 2014
    Inventors: Robert Jansen, Aharon Eyal, Noa Lapidot, Bassem Hallac, Ziv-Vladimir Belman, Shmuel Kenig
  • Patent number: 8815198
    Abstract: A method of purifying a gas stream formed from a process wherein a glyceride containing raw material is converted to hydrocarbon paraffins. The gas stream contains hydrogen or carbon dioxide as a major component and at least one sulphurous component selected from sulphide compounds as an impurity. The gas is contacted with an acidic aqueous wash solution of transition metal ions capable of binding to sulphide ions. A significant portion of the sulphide compounds contained in the gas are bound into practically insoluble transition metal sulphide compounds to remove sulphide compounds from the gas to produce a purified gas. The obtained purified gas is recovered. The method efficiently lowers sulphide concentrations to ppm or sub-ppm level and it can be implemented on an industrial scale with low investment costs. The metal can be recovered.
    Type: Grant
    Filed: August 8, 2013
    Date of Patent: August 26, 2014
    Assignee: Neste Oil OYJ
    Inventors: Juhani Aittamaa, Kari Keskinen, Jukka Keyriläinen
  • Patent number: 8816144
    Abstract: Multistage processing of biomass to produce at least two separate fungible fuel streams, one dominated by gasoline boiling-point range liquids and the other by diesel boiling-point range liquids. The processing involves hydrotreating the biomass to produce a hydrotreatment product including a deoxygenated hydrocarbon product of gasoline and diesel boiling materials, followed by separating each of the gasoline and diesel boiling materials from the hydrotreatment product and each other.
    Type: Grant
    Filed: October 4, 2012
    Date of Patent: August 26, 2014
    Assignee: Gas Technology Institute
    Inventors: Larry G. Felix, Martin B. Linck, Terry L. Marker, Michael J. Roberts
  • Patent number: 8809605
    Abstract: Technologies to convert biomass to liquid hydrocarbon fuels are currently being developed to decrease our carbon footprint and increase use of renewable fuels. Since sugars/sugar derivatives from biomass have high oxygen content and low hydrogen content, coke becomes an issue during zeolite upgrading to liquid hydrocarbon fuels. A process was designed to reduce the coke by co-feeding sugars/sugar derivatives with a saturated recycle stream containing hydrogenated products.
    Type: Grant
    Filed: April 19, 2011
    Date of Patent: August 19, 2014
    Assignee: Phillips 66 Company
    Inventors: Yun Bao, Edward L. Sughrue, II, Jianhua Yao, TiePan Shi, Kristi A. Fjare, Lisa L. Myers, Ronald E. Brown
  • Patent number: 8809603
    Abstract: A method of producing a hydrocarbon fuel from a hydrocarbon-containing gas is disclosed and described. A hydrocarbon-containing gas is produced (10) containing from about 25% to about 50% carbon dioxide and can be reformed (12) with a steam gas to form a mixture of hydrogen, carbon monoxide and carbon dioxide. The reforming can be a composite dry-wet reforming or a tri-reforming step. The mixture of hydrogen, carbon monoxide and carbon dioxide can be at least partially converted (14) to a methanol product. The methanol product can be converted to the hydrocarbon fuel (18), optionally via UME synthesis (16). The method allows for effective fuel production with low catalyst fouling rates and for operation in an unmanned, self-contained unit at the source of the hydrocarbon-producing gas.
    Type: Grant
    Filed: February 15, 2013
    Date of Patent: August 19, 2014
    Assignee: Oberon Fuels, Inc.
    Inventors: Andrew Corradini, Jarod McCormick
  • Patent number: 8809610
    Abstract: A process for producing paraffinic hydrocarbons from a feedstock comprising triglycerides, diglycerides, monoglycerides and/or fatty acids, the process comprising the following steps: (a) hydrode oxygenating the triglycerides, diglycerides, monoglycerides and/or fatty acids in the feedstock by contacting hydrogen and the feedstock with a hydrogenation catalyst at a temperature in the range of from 250 to 380° C.
    Type: Grant
    Filed: June 24, 2009
    Date of Patent: August 19, 2014
    Assignee: Shell Oil Company
    Inventors: Johannes Van Beijnum, Edward Julius Creyghton, Andries Hendrik Janssen
  • Patent number: 8809604
    Abstract: A method of hydrotreating liquefied biomass feedstock with diesel feedstock to produce alkanes is demonstrated that prevents damage to the reactor catalyst, reduces coke production, and converts nearly all of the polyols to alkanes. In order to mitigate the potential coking issue and to moderate the temperature of the catalyst bed while maintaining high conversion for sugar alcohol to hydrocarbon via a hydrotreating process, a diesel feedstock is fed over the reactor catalyst with multiple injections of polyol feedstock along the reactor.
    Type: Grant
    Filed: September 9, 2010
    Date of Patent: August 19, 2014
    Assignee: Phillips 66 Company
    Inventors: Jianhua Yao, Edward L. Sughrue, II, Ronald E. Brown
  • Patent number: 8802908
    Abstract: Process and systems for alkane bromination and, in one or more embodiments, to separate, parallel methane and higher alkanes bromination in a bromine-based process. An embodiment discloses a bromine-based process for converting alkanes to liquid hydrocarbons that includes alkanes bromination, the process comprising: brominating a methane stream comprising methane and having less than about 2 mol % of ethane to form methane bromination products comprising brominated methane and a first fraction of hydrogen bromide; separately brominating a C2+ alkane stream comprising an alkane having 2 or more carbon atoms to form C2+ methane bromination products comprising brominated alkanes having 2 or more carbon atoms and a second fraction of hydrogen bromide; and catalytically reacting at least a portion of the brominated methane and the brominated alkanes to form higher molecular hydrocarbons.
    Type: Grant
    Filed: October 8, 2012
    Date of Patent: August 12, 2014
    Assignee: Marathon GTF Technology, Ltd.
    Inventors: John J. Waycullis, Sagar B. Gadewar, Raphael Thomas
  • Patent number: 8771601
    Abstract: The present invention relates to a method and apparatus for intensifying the energy content of an organic material by converting the material into hydrocarbons and the resulting product thereof. A method for converting an organic material into hydrocarbon fuels is disclosed. The method comprising the steps of pressurising said organic material being in a fluid to a pressure above 225 bar, heating said organic material in said fluid to a temperature above 200 C in the presence of a homogeneous catalyst comprising a compound of at least one element of group IA of the periodic table of elements. The disclosed method further comprises the steps of contacting said organic material in said fluid with a heterogeneous catalyst comprising a compound of at least one element of group IVB of the periodic table and/or alpha-alumina assuring that said fluid has initially a pH value of above 7.
    Type: Grant
    Filed: September 10, 2012
    Date of Patent: July 8, 2014
    Assignee: Altaca Insaat ve dis Ticaret A.S.
    Inventors: Steen Brummerstedt Iversen, Karsten Felsvang, Tommy Larsen, Viggo Lüthje
  • Patent number: 8766025
    Abstract: A process has been developed for producing fuel from renewable feedstocks such as plant and animal oils and greases. The process involves treating a first portion of a renewable feedstock by hydrogenating and deoxygenating in a first reaction zone and a second portion of a renewable feedstock by hydrogenating and deoxygenating in a second reaction zone to provide a diesel boiling point range fuel hydrocarbon product. If desired, the hydrocarbon product can be isomerized to improve cold flow properties. A portion of the hydrocarbon product is recycled to the first reaction zone to increase the hydrogen solubility of the reaction mixture.
    Type: Grant
    Filed: September 14, 2012
    Date of Patent: July 1, 2014
    Assignee: UOP LLC
    Inventors: Charles P. Luebke, Stanley J. Frey
  • Patent number: 8754275
    Abstract: Embodiments of methods and apparatuses for producing and aromatic hydrocarbon-rich effluent from a lignocellulosic material are provided herein. The method comprises the step of combining the lignocellulosic material and an aromatic hydrocarbon-rich diluent to form a slurry. Hydrogen in the presence of a catalyst is contacted with the slurry at reaction conditions to form the aromatic hydrocarbon-rich effluent.
    Type: Grant
    Filed: July 26, 2011
    Date of Patent: June 17, 2014
    Assignee: UOP LLC
    Inventors: Timothy A. Brandvold, Mark Koch
  • Publication number: 20140163249
    Abstract: A hydroconversion process comprises contacting a feedstock comprising renewable materials under hydroprocessing conditions with a promoted catalyst selected from a self-supported catalyst, a supported catalyst and combinations thereof, wherein the reaction conditions can be tailored to directly convert the renewable feedstock to the desired product(s) including fatty alcohols, esters, normal paraffins, or combinations thereof. The catalyst comprising at least a Group VIB metal selected from molybdenum and tungsten, a Group VIII metal selected from cobalt and nickel to convert the feedstock into any of fatty alcohols, esters, and normal paraffins. In some embodiments, the process further comprising additional steps to generate various desirable products, including ?-olefins (or PAO, by dehydrating the fatty alcohol products), lubricants and bright stocks (from the oligomerizing of the PAO), and Group 3 lubricants (from co-oligomerizing of the PAO with some short chain olefins).
    Type: Application
    Filed: December 7, 2012
    Publication date: June 12, 2014
    Inventors: Cong-Yan Chen, Alexander E. Kuperman, William James Cannella, Theodorus Ludovicus Michaael Maesen
  • Publication number: 20140163268
    Abstract: A process for converting triacylglycerides-containing oils into crude oil precursors and/or distillate hydrocarbon fuels is disclosed. The process may include reacting a triacylglycerides-containing oil-carbon dioxide mixture at a temperature in the range from about 250° C. to about 525° C. and a pressure greater than about 75 bar to convert at least a portion of the triacylglycerides to a hydrocarbon or mixture of hydrocarbons comprising one or more of isoolefins, isoparaffins, cycloolefins, cycloparaffins, and aromatics.
    Type: Application
    Filed: December 11, 2012
    Publication date: June 12, 2014
    Applicant: LUMMUS TECHNOLOGY INC.
    Inventor: Marvin I. Greene
  • Patent number: 8748687
    Abstract: The present invention relates to a steam-integrated and heat-integrated process for preparing gaseous products, and in particular methane and/or other value added gaseous products such as hydrogen, via the hydromethanation of non-gaseous carbonaceous feedstocks in the presence of steam, carbon monoxide, hydrogen, oxygen and a hydromethanation catalyst.
    Type: Grant
    Filed: August 17, 2011
    Date of Patent: June 10, 2014
    Assignee: GreatPoint Energy, Inc.
    Inventor: Avinash Sirdeshpande
  • Publication number: 20140155670
    Abstract: The present invention provides a catalyst including a mesoporous silica nanoparticle and a catalytic material comprising iron. In various embodiments, the present invention provides methods of using and making the catalyst. In some examples, the catalyst can be used to hydrotreat fatty acids or to selectively remove fatty acids from feedstocks.
    Type: Application
    Filed: August 30, 2013
    Publication date: June 5, 2014
    Applicant: IOWA STATE UNIVERSITY RESEARCH FOUNDATION, INC.
    Inventors: Igor Ivan Slowing, Kapil Kandel
  • Publication number: 20140155669
    Abstract: The present invention provides an adsorbent catalytic nanoparticle including a mesoporous silica nanoparticle having at least one adsorbent functional group bound thereto. The adsorbent catalytic nanoparticle also includes at least one catalytic material. In various embodiments, the present invention provides methods of using and making the adsorbent catalytic nanoparticles. In some examples, the adsorbent catalytic nanoparticles can be used to selectively remove fatty acids from feedstocks for biodiesel, and to hydrotreat the separated fatty acids.
    Type: Application
    Filed: November 30, 2012
    Publication date: June 5, 2014
    Inventors: Igor Ivan Slowing, Kapil Kandel
  • Patent number: 8741258
    Abstract: Disclosed herein is a method of generating hydrogen from a bio-oil, comprising hydrogenating a water-soluble fraction of the bio-oil with hydrogen in the presence of a hydrogenation catalyst, and reforming the water-soluble fraction by aqueous-phase reforming in the presence of a reforming catalyst, wherein hydrogen is generated by the reforming, and the amount of hydrogen generated is greater than that consumed by the hydrogenating. The method can further comprise hydrocracking or hydrotreating a lignin fraction of the bio-oil with hydrogen in the presence of a hydrocracking catalyst wherein the lignin fraction of bio-oil is obtained as a water-insoluble fraction from aqueous extraction of bio-oil. The hydrogen used in the hydrogenating and in the hydrocracking or hydrotreating can be generated by reforming the water-soluble fraction of bio-oil.
    Type: Grant
    Filed: September 18, 2009
    Date of Patent: June 3, 2014
    Assignee: University of Massachusetts
    Inventors: George W. Huber, Tushar P. Vispute, Kamalakanta Routray
  • Patent number: 8742184
    Abstract: Process for hydrogenating a carboxylic acid or derivative thereof by feeding a carboxylic acid or derivative thereof and hydrogen to a reactor, maintaining conditions therein such that hydrogen reacts with the carboxylic acid and/or derivative thereof to form a product stream including one or more hydrocarbons and one or more oxides of carbon and feeding the product stream to a flash separator. A vapor fraction including the one or more oxides of carbon is separated from a liquid fraction having the one or more hydrocarbons. The concentration of carbon oxides in the flash separator is at or below a predetermined value.
    Type: Grant
    Filed: October 4, 2007
    Date of Patent: June 3, 2014
    Assignee: BP Oil International Limited
    Inventors: Nicholas John Gudde, James Adam Townsend
  • Patent number: 8734547
    Abstract: Processes are provided for preparing a substantially free-flowing alkali metal gasification catalyst-loaded carbonaceous particulate suitable for use as a feedstock for the production of gaseous products, and in particular methane, via the catalytic gasification of the catalyst-loaded carbonaceous particulate in the presence of steam.
    Type: Grant
    Filed: December 29, 2009
    Date of Patent: May 27, 2014
    Assignee: Greatpoint Energy, Inc.
    Inventors: Alkis S. Rappas, Robert A. Spitz
  • Patent number: 8735638
    Abstract: A method for processing biomass comprising heating an aqueous slurry comprising biomass, water and a phosphate catalyst in a pressure vessel at a temperature of about 150° C. to about 500° C. to produce a mixture comprising a dispersion of an organic phase and an aqueous phase.
    Type: Grant
    Filed: September 11, 2009
    Date of Patent: May 27, 2014
    Assignee: Aquaflow Bionomic Corporation Limited
    Inventors: Ian James Miller, Rhys Antony Batchelor
  • Patent number: 8734548
    Abstract: Processes are provided for preparing a substantially free-flowing alkali metal gasification catalyst-loaded coal particulate suitable for use as a feedstock for the production of gaseous products, and in particular methane, via the catalytic gasification of the catalyst-loaded coal particulate in the presence of steam.
    Type: Grant
    Filed: December 29, 2009
    Date of Patent: May 27, 2014
    Assignee: Greatpoint Energy, Inc.
    Inventors: Alkis S. Rappas, Robert A. Spitz, George Frederick Salem
  • Patent number: 8729330
    Abstract: Non-hydrotreated biocomponent feeds can be mixed with mineral feeds and processed under catalytic isomerization/dewaxing conditions. The catalytic isomerization/dewaxing conditions can be selected to advantageously also substantially deoxygenate the mixed feed. Diesel fuel products with improved cold flow properties can be produced.
    Type: Grant
    Filed: March 9, 2011
    Date of Patent: May 20, 2014
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Patrick L. Hanks, Timothy L. Hilbert, William J. Novak, Christopher G. Oliveri
  • Publication number: 20140100404
    Abstract: A method for converting an alcohol to a hydrocarbon, the method comprising contacting said alcohol with a metal-loaded zeolite catalyst at a temperature of at least 100° C. and up to 550° C., wherein said alcohol can be produced by a fermentation process, said metal is a positively-charged metal ion, and said metal-loaded zeolite catalyst is catalytically active for converting said alcohol to said hydrocarbon.
    Type: Application
    Filed: June 14, 2012
    Publication date: April 10, 2014
    Applicant: UT-BATTELLE, LLC
    Inventors: Chaitanya K. Narula, Brian H. Davison, Martin Keller
  • Publication number: 20140094636
    Abstract: The present invention relates generally to processes for preparing agglomerated particulate low-rank coal feedstocks of a particle size suitable for reaction in a fluidized-bed reactor and certain other gasification reactors and, in particular, for coal gasification and combustion applications. The present invention also relates to an integrated coal hydromethanation process including preparing and utilizing such agglomerated particulate low-rank coal feedstocks.
    Type: Application
    Filed: September 27, 2013
    Publication date: April 3, 2014
    Applicant: GreatPoint Energy, Inc.
    Inventors: Earl T. Robinson, Kenneth P. Keckler, Pattabhi K. Raman, Avinash Sirdeshpande
  • Publication number: 20140093929
    Abstract: The present disclosure provides methods useful for producing fatty alcohol compositions from recombinant host cells. The disclosure further provides variant fatty acyl-CoA reductase (FAR) enzymes, polynucleotides encoding the variant FAR enzymes, and vectors and host cells comprising the same.
    Type: Application
    Filed: September 27, 2013
    Publication date: April 3, 2014
    Inventors: Behnaz Behrouzian, Louis Clark, Yihui Zhu, Michael Clay, Kristian Karlshoej
  • Patent number: 8686203
    Abstract: A process for preparing fuels, such as diesel fuels or jet fuels, by hydrotreating vegetable oils or fatty acid derivatives that may be applied to existing equipment for treating fossil fuels. The process comprises feeding hydrotreating a combined oxygenate feed stream, such as FAME, and a hydrocarbon feed stream until not more than 86 wt % of the esters in the oxygenate feed stream are converted to hydrocarbons, and optionally further hydrotreating the product stream within at least a second hydrotreatment reaction zone until at least 90 wt % of the esters in the oxygenate feed stream are converted to hydrocarbons, before removing and separating a hydrocarbon stream suitable for use as fuel.
    Type: Grant
    Filed: June 4, 2010
    Date of Patent: April 1, 2014
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Patrick L. Hanks, Kathryn Y. Cole, William E. Lewis
  • Patent number: 8686210
    Abstract: A process for obtaining gaseous hydrocarbons from a starting material which contains oxygen-containing hydrocarbons. The process includes providing the starting material and contacting the starting material with a porous catalyst at a temperature of 300-850° C. in the absence of oxygen in a converting reactor so as to form a hydrocarbon-containing product gas mixture in which a proportion by weight of gaseous hydrocarbons is greater than a proportion by weight of liquid hydrocarbons in the gas mixture. Additionally, the process includes collecting a hydrocarbon-containing product gas stream of the hydrocarbon-containing product gas mixture and introducing the product gas stream into a separation apparatus in which product fractionation is carried out.
    Type: Grant
    Filed: September 29, 2009
    Date of Patent: April 1, 2014
    Assignee: Fraunhofer-Gesellschaft zur Foerderung der Angewandten Forschung E.V.
    Inventors: Volker Heil, Wolfgang Urban, Axel Kraft, Christoph Unger, Karl Meller, Joachim Danzig, Ulrich Seifert, Anna Fastabend, Silvana Rossow, Andreas Menne
  • Patent number: 8680352
    Abstract: A method for producing a linear paraffin product from natural oil and kerosene includes providing a first feed stream comprising kerosene, pre-fractionating the first feed stream to produce a heart cut paraffin stream comprising paraffins in a heart cut range, and combining the heart cut paraffin stream with a second feed stream comprising natural oil to form a combined stream. The method further includes deoxygenating the natural oil and fractionating the combined stream to remove paraffins that are heavier than the heart cut range.
    Type: Grant
    Filed: April 2, 2013
    Date of Patent: March 25, 2014
    Assignee: UOP LLC
    Inventors: Andrea G. Bozzano, Stephen W. Sohn
  • Patent number: 8680348
    Abstract: A method for producing a linear paraffin product from natural oil and kerosene includes providing a first feed stream comprising kerosene, pre-fractionating the first feed stream to produce a heart cut paraffin stream comprising paraffins in a heart cut range, and combining the heart cut paraffin stream with a second feed stream comprising natural oil to form a combined stream. The method further includes deoxygenating the natural oil and fractionating the combined stream to remove paraffins that are heavier than the heart cut range.
    Type: Grant
    Filed: April 2, 2013
    Date of Patent: March 25, 2014
    Assignee: UOP LLC
    Inventors: Andrea G. Bozzano, Stephen W. Sohn
  • Publication number: 20140081057
    Abstract: Paraffin compositions including mainly even carbon number paraffins, and a method for manufacturing the same, is disclosed herein. In one embodiment, the method involves contacting naturally occurring fatty acid/glycerides with hydrogen in a slurry bubble column reactor containing bimetallic catalysts with equivalent particle diameters from about 10 to about 400 micron. The even carbon number compositions are particularly useful as phase change material.
    Type: Application
    Filed: September 11, 2013
    Publication date: March 20, 2014
    Applicant: Syntroleum Corporation
    Inventors: Ramin Abhari, H. Lynn Tomlinson, Vladimir Gruver
  • Publication number: 20140081065
    Abstract: A hydrodeoxygenation process for producing a linear alkane from a feedstock comprising a saturated or unsaturated C10-18 oxygenate that comprises an ester group, carboxylic acid group, carbonyl group and/or alcohol group is disclosed. The process comprises contacting the feedstock with a catalyst comprising (i) about 0.1% to 10% by weight of a metal selected from Group IB or VIII of the Periodic Table, and (ii) about 0.5% to 15% by weight of tungsten, rhenium, molybdenum, vanadium, manganese, zinc, chromium, germanium, tin, titanium, gold, and/or zirconium, at a temperature between about 150° C. to 250° C. and a hydrogen gas pressure of at least 300 psig. By contacting the feedstock with the catalyst under these temperature and pressure conditions, the C10-18 oxygenate is hydrodeoxygenated to a linear alkane that has the same carbon chain length as the C10-18 oxygenate.
    Type: Application
    Filed: September 19, 2013
    Publication date: March 20, 2014
    Applicant: EI DU PONT DE NEMOURS AND COMPANY
    Inventors: Sourav Kumar Sengupta, Manish S. Kelkar, Kenneth Chad Manning, Kenneth Gene Moloy, Andrea M. Perticone, Joachim C. Ritter
  • Patent number: 8674160
    Abstract: Feeds containing a hydrotreated biocomponent portion, and optionally a mineral portion, can be processed under catalytic conditions for isomerization and/or dewaxing. The sulfur content of the feed for dewaxing can be selected based on the hydrogenation metal used for the catalyst. Diesel fuel products with improved cold flow properties can be produced.
    Type: Grant
    Filed: March 9, 2011
    Date of Patent: March 18, 2014
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Patrick L. Hanks, Timothy L. Hilbert, William J. Novak, Christopher G. Oliveri
  • Patent number: 8668823
    Abstract: This invention relates to methods and units for mitigation of carbon oxides during hydrotreating hydrocarbons including mineral oil based streams and biological oil based streams. A hydrotreating unit includes a first hydrotreating reactor for receiving a mineral oil based hydrocarbon stream and forming a first hydrotreated product stream, and a second hydrotreating reactor for receiving a biological oil based hydrocarbon stream and forming a second hydrotreated product stream.
    Type: Grant
    Filed: February 15, 2013
    Date of Patent: March 11, 2014
    Assignee: BP Corporation North America Inc.
    Inventors: Nicholas J. Gudde, John W. Shabaker
  • Publication number: 20140058182
    Abstract: A process for hydrogenation of oxygen-containing organic products, oil refinery products or mixtures thereof, wherein the process comprises bringing the organic products, oil refinery products, or mixtures thereof into contact with a catalyst according to claim 1 in the presence of hydrogen gas at a temperature in the range of 200 to 500° C. and at a pressure in the range of 10 to 1000 bar.
    Type: Application
    Filed: February 13, 2013
    Publication date: February 27, 2014
    Applicant: Aggregate Energy, LLC
    Inventor: Aggregate Energy, LLC
  • Patent number: 8652222
    Abstract: Particulate compositions are described comprising an intimate mixture of a biomass, such as switchgrass or hybrid poplar, a non-biomass carbonaceous material, such as petroleum coke or coal, and a gasification catalyst, where the gasification catalyst is loaded onto at least one of the biomass or non-biomass for gasification in the presence of steam to yield a plurality of gases including methane and at least one or more of hydrogen, carbon monoxide, and other higher hydrocarbons are formed. Processes are also provided for the preparation of the particulate compositions and converting the particulate composition into a plurality of gaseous products.
    Type: Grant
    Filed: February 27, 2009
    Date of Patent: February 18, 2014
    Assignee: GreatPoint Energy, Inc.
    Inventors: Pattabhi K. Raman, Edwin J. Hippo, Nelson Yee
  • Publication number: 20140046101
    Abstract: Catalytic processes for converting carboxylic acids obtained from biomass and other natural or industrial sources into paraffinic or olefinic hydrocarbons through decarboxylation, along with products formed from such hydrocarbons, in which the carbon chain length, the ratio of carbon-14 to carbon-12, and the ratio of odd number to even number of carbons in the chain are among factors which are indicative or otherwise useful for the detection of hydrocarbons formed by undergoing the claimed processes.
    Type: Application
    Filed: August 8, 2013
    Publication date: February 13, 2014
    Applicant: University of Louisville Research Foundation, Inc.
    Inventors: Paul Ratnasamy, Sanjay Wagle, Gregory Dicosola
  • Patent number: 8648226
    Abstract: The present invention provides a process for producing gasoline components from syngas. Syngas is converted to one or more of methanol, ethanol, mixed alcohols, and dimethyl ether, followed by various combinations of separations and reactions to produce gasoline components with oxygenates, such as alcohols. The syngas is preferably derived from biomass or another renewable carbon-containing feedstock, thereby providing a biorefining process for the production of renewable gasoline.
    Type: Grant
    Filed: November 10, 2010
    Date of Patent: February 11, 2014
    Assignee: Range Fuels, Inc.
    Inventors: Shakeel H. Tirmizi, John D. Winter, David T. Gallaspy
  • Patent number: 8648224
    Abstract: A process for making a bio-naphtha and optionally bio-propane from a complex mixture of natural occurring fats & oils, wherein said complex mixture is subjected to a refining treatment for removing the major part of non-triglyceride and non-fatty acid components, thereby obtaining refined fats & oils; said refined fats & oils are transformed into linear or substantially linear paraffin's as the bio-naphtha by an hydrodeoxygenation or from said refined fats & oils are obtained fatty acids that are transformed into linear or substantially linear paraffin's as the bio-naphtha by hydrodeoxygenation or decarboxylation of the free fatty acids or from said refined fats & oils are obtained fatty acids soaps that are transformed into linear or substantially linear paraffin's as the bio-naphtha by decarboxylation of the soaps.
    Type: Grant
    Filed: July 13, 2010
    Date of Patent: February 11, 2014
    Assignee: Total Petrochemicals Research Feluy
    Inventors: Walter Vermeiren, Nicolas Van Gyseghem
  • Patent number: 8647398
    Abstract: A process and system for separating and upgrading bio-oil into renewable fuels is provided. The process comprises separating bio-oil into a light fraction and heavy fraction based on their boiling points. The heavy fraction is then subjected to hydrotreatment, while the light fraction is not subjected to hydrotreatment. At least a portion of the un-hydrotreated light fraction and at least a portion of the hydrotreated heavy fraction are blended with petroleum-derived gasoline to thereby provide a renewable gasoline, and at least a portion of the hydrotreated heavy fraction is blended with petroleum-derived diesel to thereby provide a renewable diesel.
    Type: Grant
    Filed: October 6, 2011
    Date of Patent: February 11, 2014
    Assignee: KiOR, Inc.
    Inventors: Maria Magdalena Ramirez Corredores, Vicente Sanchez Iglesias
  • Patent number: 8642822
    Abstract: A process for converting gaseous alkanes to olefins, higher molecular weight hydrocarbons or mixtures thereof wherein a gaseous feed containing alkanes may be thermally or catalytically reacted with a dry bromine vapor to form alkyl bromides and hydrogen bromide. Poly-brominated alkanes present in the alkyl bromides may be further reacted with methane over a suitable catalyst to form mono-brominated species. The mixture of alkyl bromides and hydrogen bromide may then be reacted over a suitable catalyst at a temperature sufficient to form olefins, higher molecular weight hydrocarbons or mixtures thereof and hydrogen bromide. Various methods and reactions are disclosed to remove the hydrogen bromide from the higher molecular weight hydrocarbons, to generate bromine from the hydrogen bromide for use in the process, to store and subsequently release bromine for use in the process, and to selectively form mono-brominated alkanes in the bromination step.
    Type: Grant
    Filed: May 27, 2011
    Date of Patent: February 4, 2014
    Assignee: Marathon GTF Technology, Ltd.
    Inventors: Raymond T. Brickey, Greg A. Lisewsky, John J. Waycuilis, Stephen D. York
  • Patent number: 8629308
    Abstract: A method for producing hydrocarbons from biomass is provided. The method involves supplying a feed stream; supplying a heated hydrocarbon solvent; combining the feed stream and the heated hydrocarbon solvent to produce a reactor feed, and hydrodeoxygenating the reactor feed to produce hydrocarbons; where the feed stream includes a synthetic polymer as well as biomass having fatty acids, glycerides, or combinations thereof.
    Type: Grant
    Filed: April 22, 2013
    Date of Patent: January 14, 2014
    Assignee: Syntroleum Corporation
    Inventors: Ramin Abhari, E. Gary Roth, Peter Z. Havlik, H. Lynn Tomlinson
  • Patent number: 8629073
    Abstract: A catalyst is described which comprises at least one IZM-2 zeolite, at least one matrix and at least one metal selected from metals from groups VIII, VIB and VIIB, said zeolite having a chemical composition expressed as the anhydrous base in terms of moles of oxides by the following general formula: XO2:aY2O3:bM2/nO, in which X represents at least one tetravalent element, Y represents at least one trivalent element and M is at least one alkali metal and/or alkaline-earth metal with valency n, a and b respectively representing the number of moles of Y2O3 and M2/nO; and a is in the range 0.001 to 0.5 and b is in the range 0 to 1.
    Type: Grant
    Filed: July 21, 2009
    Date of Patent: January 14, 2014
    Assignee: IFP Energies Nouvelles
    Inventors: Emmanuelle Guillon, Nicolas Cadran, Sylvie Maury, Amandine Cabiac
  • Patent number: 8629310
    Abstract: Oxygenate feedstocks derived from biomass are converted to a variety of fuels including gas, jet, and diesel fuel range hydrocarbons. General methods are provided including hydrolysis, dehydration, hydrogenation, condensation, oligomerization, and/or a polishing hydrotreating.
    Type: Grant
    Filed: March 9, 2012
    Date of Patent: January 14, 2014
    Assignee: Phillips 66 Company
    Inventors: Edgar Lotero, Kristi Fjare, TiePan Shi, Sourabh Pansare, Yun Bao
  • Publication number: 20140007497
    Abstract: The invention provides new methods for the direct umpolung self-condensation of 5-hydroxymethylfurfural (HMF) by organocatalysis, thereby upgrading the readily available substrate into 5,5?-di(hydroxymethyl)furoin (DHMF). While many efficient catalyst systems have been developed for conversion of plant biomass resources into HMF, the invention now provides methods to convert such nonfood biomass directly into DHMF by a simple process as described herein. The invention also provides highly effective new methods for upgrading other biomass furaldehydes and related compound to liquid fuels. The methods include the organocatalytic self-condensation (umpolung) of biomass furaldehydes into (C8-C12)furoin intermediates, followed by hydrogenation, etherification or esterification into oxygenated biodiesel, or hydrodeoxygenation by metal-acid tandem catalysis into premium hydrocarbon fuels.
    Type: Application
    Filed: July 2, 2013
    Publication date: January 9, 2014
    Inventors: Eugene Y. CHEN, Dajiang LIU
  • Publication number: 20140005031
    Abstract: Inorganic material having at least two elementary spherical particles, each of said spherical metallic particles: a polyoxometallate with formula (XxMmOyHh)q?, where H is hydrogen, O is oxygen, X is phosphorus, silicon, boron, nickel or cobalt and M is one or more vanadium, niobium, tantalum, molybdenum, tungsten, iron, copper, zinc, cobalt and nickel, x is 0, 1, 2 or 4, m is 5, 6, 7, 8, 9, 10, 11, 12 or 18, y is 17 to 72, h is 0 to 12 and q is 1 to 20.
    Type: Application
    Filed: December 15, 2011
    Publication date: January 2, 2014
    Applicants: CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE, IFP ENERGIES NOUVELLES, UNIVERSITE PIERRE ET MARIE CURIE
    Inventors: Alexandra Chaumonnot, Clement Sanchez, Cedric Boissiere, Frederic Colbeau-Justin, Karin Marchand, Elodie Devers, Audrey Bonduelle, Denis Uzio, Antoine Daudin, Bertrand Guichard, Denis Uzio, Antoine Daudin
  • Publication number: 20140005452
    Abstract: A new family of crystalline microporous metallophosphates designated AlPO-59 has been synthesized. These metallophosphates are represented by the empirical formula R+rMm2+EPxSiyOz where R is an organoammonium cation such as the ETMA+, M is a framework metal alkaline earth or transition metal of valence 2+, and E is a trivalent framework element such as aluminum or gallium. The AlPO-59 compositions are characterized by a new unique ABC-6 net structure and compositions and have catalytic properties for carrying out various hydrocarbon conversion processes, and separation properties for separating at least one component.
    Type: Application
    Filed: June 29, 2012
    Publication date: January 2, 2014
    Applicant: UOP LLC
    Inventors: Gregory J. Lewis, Lisa M. Knight, Paulina Jakubczak, Justin E. Stanczyk
  • Patent number: 8604263
    Abstract: The disclosure relates to energy and the production of cost-effective power sources as hydrocarbons and hydrogen, as well as an oxidizer, such as oxygen. In an embodiment, the method of hydrocarbons, hydrogen and oxygen production includes a number of stages, including water saturation with carbon dioxide to form a saturated carbonated water; passing of the carbonated water through the reactor, which contains a catalyst, with the formation of hydrocarbons, hydrogen and oxygen, that subsequently flow into a separator; separation of reaction products from the initial carbonated water in the separator by liquid and gaseous phase separation, while hydrocarbons are separated from the liquid and gaseous phases, and hydrogen and oxygen are additionally separated from the gaseous phase.
    Type: Grant
    Filed: December 26, 2011
    Date of Patent: December 10, 2013
    Assignee: Galadigma LLC
    Inventors: Azary Aleksandrovich Barenbaum, Sumbat Nabievich Zakirov, Ernest Sumbatovich Zakirov, Vladimir Aleksandrovich Serebryakov