With Metal Oxide Or Elemental Carbon, E.g., Supported, Etc. Patents (Class 585/744)
  • Patent number: 8323478
    Abstract: A process, comprising: a. taking a sample from a continuous alkylation reactor process; b. measuring a content of a halide in the sample; and c. within 45 minutes from the taking a sample, adjusting a flow of a halide containing additive comprising the halide to control a ratio of a yield of an alkylate gasoline and a yield of a middle distillate. Also a process, comprising: a. taking a sample from an effluent of an alkylation reactor in an alkylation reactor process; b. measuring a content of a halide in the sample; and c. in response to the measured content of the halide, adjusting a flow of a halide containing additive to a predetermined range that has been selected to obtain a ratio of a yield of an alkylate gasoline and a yield of a middle distillate from 0.31 to 4.0 in a product from the alkylation reactor.
    Type: Grant
    Filed: July 21, 2011
    Date of Patent: December 4, 2012
    Assignee: Chevron U.S.A. Inc.
    Inventors: Sven Ivar Hommeltoft, Howard S. Lacheen
  • Patent number: 8142725
    Abstract: An apparatus comprising: a) an alkylation reactor holding an ionic liquid catalyst and a reactant mixture, b) a means for measuring levels of a halide in an effluent from the alkylation reactor, and c) a control system that receives a signal in response to the measuring and communicates changes in an operating condition that influences the yield of products from the reactant mixture. The control system is responsive to deviations outside a predetermined range of halide level that has been selected to obtain a ratio of a yield of an alkylate gasoline and a yield of a middle distillate from 0.31 to 4.0 in the product from the alkylation reactor.
    Type: Grant
    Filed: July 8, 2011
    Date of Patent: March 27, 2012
    Assignee: Chevron U.S.A. Inc.
    Inventors: Sven Ivar Hommeltoft, Howard S. Lacheen
  • Patent number: 8070939
    Abstract: A process comprising: a) taking a sample from a continuous reactor process, b)measuring a content of a halide in the sample, and c) in response to the measured content of the halide, adjusting a flow of a halide containing additive comprising the halide to control the process. Also, an apparatus comprising: a) a reactor holding an ionic liquid catalyst and a reactant mixture, b) a means for measuring levels of a halide in an effluent from the reactor, and c) a control system that receives a signal in response to the measuring and communicates changes in an operating condition that influences the yield of a product in the reactant mixture.
    Type: Grant
    Filed: September 18, 2008
    Date of Patent: December 6, 2011
    Assignee: Chevron U.S.A. Inc.
    Inventors: Sven Ivar Hommeltoft, Howard S. Lacheen
  • Patent number: 7601881
    Abstract: A catalyst and process is disclosed to selectively upgrade a paraffinic feedstock to obtain an isoparaffin-rich product for blending into gasoline. The catalyst comprises a support of a tungstated oxide or hydroxide of a Group IVB (IUPAC 4) metal, a phosphorus component, and at least one platinum-group metal component which is preferably platinum. The catalyst has a structure other than a heteropoly anion structure.
    Type: Grant
    Filed: January 30, 2008
    Date of Patent: October 13, 2009
    Assignee: UOP LLC
    Inventors: Ralph D. Gillespie, Feng Xu
  • Patent number: 7384538
    Abstract: A process for the hydroisomerization of a waxy feed having a major portion boiling above 650° F. to produce a lubricating base oil having a lower pour point, said process comprising (a) passing the waxy feed along with hydrogen gas through a hydroisomerization zone maintained at a hydrogen partial pressure of between about 100 psia and about 400 psia, said hydroisomerization zone comprising a catalyst bed containing at least two active wax hydroisomerization catalysts, said catalysts comprising at least (i) a first catalyst comprising an active hydrogenation component and a 1-D, 10-ring molecular sieve having a maximum crystallographic free diameter of the channels equal to 6.2 ? units or greater and (ii) a second catalyst comprising an active hydrogenation component and a 1-D, 10-ring molecular sieve having a maximum crystallographic free diameter of the channels equal to 5.
    Type: Grant
    Filed: November 2, 2004
    Date of Patent: June 10, 2008
    Assignee: Chevron U.S.A. Inc.
    Inventor: Stephen J. Miller
  • Publication number: 20040249230
    Abstract: A process for the isomerization of a feedstream comprising C5-C6 hydrocarbons where the process involves charging hydrogen and a feedstream comprising at least normal C5-C6 hydrocarbons into an isomerization zone and contacting said hydrogen and feedstream with an isomerization catalyst at isomerization conditions to increase the branching of the feedstream hydrocarbons and produce an isomerization effluent stream comprising at least normal pentane, normal hexane, methylbutane, dimethylbutane, and methylpentane has been discovered. The catalyst used is a solid acid catalyst comprising a support comprising a sulfated oxide or hydroxide of at least an element of Group IVB (IUPAC 4) of the Periodic Table, a first component selected from the group consisting of at least one lanthanide-series element, mixtures thereof, and yttrium, and a second component selected from the group of platinum-group metals and mixtures thereof.
    Type: Application
    Filed: March 19, 2004
    Publication date: December 9, 2004
    Inventors: Ralph D. Gillespie, Michelle J. Cohn, Lynn H. Rice
  • Patent number: 6573417
    Abstract: The fractional distillation performed as part of the isomerization of C5-C6 paraffins is heat integrated. A portion of a sidedraw recycle stream is employed to cool the feed to a deisohexanizer column and then returned to a lower portion of the column. This reduces the reflux demand of the column and the operating cost of the process.
    Type: Grant
    Filed: November 5, 2001
    Date of Patent: June 3, 2003
    Assignee: UOP LLC
    Inventor: Lynn H. Rice
  • Patent number: 6320089
    Abstract: An improved catalyst is disclosed for the conversion of hydrocarbons. The catalyst comprises an alumina support, a Friedel-Crafts metal halide, and a platinum-group metal component, wherein the support comprises primarily eta alumina and a small amount of gamma alumina and has a defined pore-size and acidity characteristics. An isomerization process also is disclosed which is particularly effective for the conversion of C4-C7 alkanes.
    Type: Grant
    Filed: January 9, 2001
    Date of Patent: November 20, 2001
    Assignee: UOP LLC
    Inventor: Ralph D. Gillespie
  • Patent number: 6118036
    Abstract: A process to isomerize at least one normal or mono-methyl-branched alkane to form at least one multi-methyl-branched alkane has been developed. At least one normal or mono-methyl-branched is introduced to a reaction zone to form at least one multi-methyl-branched alkane. The reaction zone is located between a first and a second adsorption zone with the adsorption zones containing an adsorbent effective to selectively adsorb normal and mono-methyl-branched alkanes relative to multi-methyl-branched alkanes. A desorbent is introduced to the first adsorption zone and an effluent containing at least one multi-methyl-branched alkane is withdrawn from the second adsorption zone. After a period of time, the introduction of the desorbent is redirected to the second adsorption zone and concurrently the withdrawal of the effluent is moved to the first adsorption zone.
    Type: Grant
    Filed: September 24, 1998
    Date of Patent: September 12, 2000
    Assignee: UOP LLC
    Inventor: Herman A. Zinnen
  • Patent number: 5770783
    Abstract: A process to isomerize at least one normal or mono-methyl-branched alkane containing from about 6 to about 8 carbon atoms to form at least one multi-methyl-branched alkane has been developed. The normal or mono-methyl-branched alkane is introduced to a reaction and adsorption zone operating under conditions effective to isomerize the normal or mono-methyl-branched alkane and containing a catalyst effective to isomerize the normal or mono-methyl-branched alkane and an adsorbent effective to selectively adsorb normal and mono-methyl-branched alkanes relative to multi-methyl-branched alkanes. Hydrogen and a desorbent comprising at least one alkane having from about 4 to about 8 carbon atoms is introduced to a first portion of the reaction and adsorption zone and an effluent containing at least one multi-methyl-branched alkane is withdrawn from a second portion of the reaction and adsorption zone.
    Type: Grant
    Filed: February 3, 1997
    Date of Patent: June 23, 1998
    Assignee: UOP LLC
    Inventors: Herman A. Zinnen, Charles P. McGonegal
  • Patent number: 5763730
    Abstract: A process for the continuous isomerization of an alkane to produce an isomerized product through contacting the alkane with a simulated moving bed acting as a catalyst for isomerization and an adsorbent for the alkanes has been developed. The alkane may be n-butane and the isomerized product 2-methylpropane, the alkane may be n-pentane and the isomerized product 2-methylbutane or 2,2-dimethylpropane, the alkane may have from 6 up to about 8 carbon atoms with no more than one methyl branch and the isomerized product having the same number of carbon atoms and at least two methyl branches, or the reactant may be a mixture of the foregoing alkanes with the corresponding isomerized products being formed. In a zone of the simulated moving bed, the alkanes are catalytically isomerized to form the isomerized products. The unreacted alkanes are adsorbed, and the isomerized products are collected.
    Type: Grant
    Filed: June 18, 1996
    Date of Patent: June 9, 1998
    Assignee: UOP
    Inventors: Hemant W. Dandekar, Gregory A. Funk, Ralph D. Gillespie, Herman A. Zinnen, Charles P. McGonegal, Masami Kojima, Simon H. Hobbs
  • Patent number: 5744683
    Abstract: A process for the continuous isomerization of an alkane to produce an isomerized product through contacting the alkane with a simulated moving bed acting as a catalyst for isomerization and an adsorbent for the alkanes has been developed. The alkane may be n-butane and the isomerized product 2-methylpropane, the alkane may be n-pentane and the isomerized product 2-methylbutane or 2,2-dimethylpropane, the alkane may have from 6 up to about 8 carbon atoms with no more than one methyl branch and the isomerized product having the same number of carbon atoms and at least two methyl branches, or the reactant may be a mixture of the foregoing alkanes with the corresponding isomerized products being formed. In a zone of the simulated moving bed, the alkanes are catalytically isomerized to form the isomerized products. The unreacted alkanes are adsorbed, and the isomerized products are collected.
    Type: Grant
    Filed: June 18, 1996
    Date of Patent: April 28, 1998
    Assignee: UOP
    Inventors: Hemant W. Dandekar, Gregory A. Funk, Simon H. Hobbs, Masami Kojima, Ralph D. Gillespie, Herman A. Zinnen, Charles P. McGonegal
  • Patent number: 5744684
    Abstract: A process for isomerizing a mixture of alkanes containing pentanes and at least one alkane having from 6 to about 8 carbon atoms and no more than one methyl branch has been developed.
    Type: Grant
    Filed: June 18, 1996
    Date of Patent: April 28, 1998
    Assignee: UOP
    Inventors: Herman A. Zinnen, Charles P. McGonegal, Hemant W. Dandekar, Gregory A. Funk, Ralph D. Gillespie
  • Patent number: 5672264
    Abstract: A class of highly stable supergallery pillared clay compositions that have a basal spacing up to 55 .ANG. corresponding a gallery height of 35 .ANG. for samples dried at room temperature and a basal spacing up to 45 .ANG. corresponding a gallery height of 255 .ANG. for samples steamed at 800.degree. C. for 17 hours. Said compositions are prepared by special procedures including pillaring reaction in presence of poly (vinyl alcohol) as a pillaring precursor, an aging process at pH of around 4 to 9, and a calcinating or steaming treatment at high temperature. The new compositions exhibit catalytic properties and adsorption properties superior to prior art pillared clays. Said compositions are useful as catalysts for carbonium-ion reaction, and as adsorbents and catalyst carriers. They are especially suitable for preparing microspheric cracking catalysts for heavy oil or residual feedstock.
    Type: Grant
    Filed: July 1, 1996
    Date of Patent: September 30, 1997
    Assignee: Board of Trustees operating Michigan State University
    Inventors: Thomas J. Pinnavaia, Jingjie Guan
  • Patent number: 5639933
    Abstract: A catalyst composition is prepared by a method comprising impregnating alumina with at least one platinum compound, followed by calcining, reducing treatment, and heating with gaseous aluminum chloride and gaseous titanium tetrachloride. The thus-prepared catalyst composition is employed in the isomerization of saturated C.sub.4 -C.sub.8 hydrocarbons (alkanes and/or cycloalkanes), preferably n-butane.
    Type: Grant
    Filed: April 12, 1996
    Date of Patent: June 17, 1997
    Assignee: Phillips Petroleum Company
    Inventor: An-hsiang Wu
  • Patent number: 5602292
    Abstract: Disclosed is an active catalyst in the hydroisomerization of waxes (paraffins), which catalyst is constituted by a carrier of acidic nature, of silica-alumina gel, and one or more metals belonging to Group VIIIA.Also a process for preparing said catalyst is disclosed.
    Type: Grant
    Filed: May 25, 1995
    Date of Patent: February 11, 1997
    Assignee: Eniricerche S.p.A.
    Inventors: Carlo Perego, Laura Zanibelli, Cristina Flego, Alberto Del Bianco, Giuseppe Bellussi
  • Patent number: 5557029
    Abstract: In a process for isomerizing saturated C.sub.4- C.sub.10 hydrocarbons (preferably n-pentane) in the presence of a platinum/zeolite catalyst, wherein sulfur compounds are present in the feed as impurities and cause catalyst deactivating, at least one volatile chlorine compound (preferably tetrachloroethylene or carbon tetrachloride) is added to the feed in an amount sufficient to counteract the catalyst deactivation. A correlation between effective amounts of chloride additive(s) required to counteract the catalyst deactivating effect caused by specific sulfur compound(s) and a specific parameter of various sulfur compounds has been established. The water content in the isomerization feed is not to exceed about 60 ppm H.sub.2 O (based on the weight of the at least one feed hydrocarbons.
    Type: Grant
    Filed: September 6, 1995
    Date of Patent: September 17, 1996
    Assignee: Phillips Petroleum Company
    Inventors: Fan-Nan Lin, Nak J. Sung, Stephen L. Ege, Thomas A. Lessard
  • Patent number: 5530172
    Abstract: A process for the continuous isomerization of an alkane to produce an isomerized product through contacting the alkane with a simulated moving bed acting as a catalyst for isomerization and an adsorbent for the alkanes has been developed. The alkane may be n-butane and the isomerized product 2-methylpropane, the alkane may be n-pentane and the isomerized product 2-methylbutane or 2,2-dimethylpropane, the alkane may have from 6 up to about 8 carbon atoms with no more than one methyl branch and the isomerized product having the same number of carbon atoms and at least two methyl branches, or the reactant may be a mixture of the foregoing alkanes with the corresponding isomerized products being formed. In a zone of the simulated moving bed, the alkanes are catalytically isomerized to form the isomerized products. The unreacted alkanes are adsorbed, and the isomerized products are collected.
    Type: Grant
    Filed: November 3, 1994
    Date of Patent: June 25, 1996
    Assignee: UOP
    Inventors: Gregory A. Funk, Hermant W. Dandekar, Masami Kojima, Simon H. Hobbs
  • Patent number: 5530173
    Abstract: A process for isomerizing a mixture of alkanes containing pentanes and at least one alkane having from 6 to about 8 carbon atoms and no more than one methyl branch has been developed.
    Type: Grant
    Filed: November 3, 1994
    Date of Patent: June 25, 1996
    Inventors: Gregory A. Funk, Hemant W. Dandekar
  • Patent number: 5245103
    Abstract: In one embodiment, C.sub.4 -C.sub.10 alkanes and/or C.sub.5 -C.sub.10 cycloalkanes are isomerized in the presence of a catalyst which has been prepared by heating AlCl.sub.3, at least one aluminum sulfate-containing support material and at least one chlorinated hydrocarbon (preferably CCl.sub.4) at about 40.degree.-90.degree. C., followed by separating the formed solid from the chlorinated hydrocarbon.In another embodiment, C.sub.5 -C.sub.10 cycloalkane(s) are isomerized in the presence of a catalyst which has been prepared by heating AlCl.sub.3, at least one sulfur-containing acid (H.sub.2 SO.sub.4 and/or ClSO.sub.3 H and/or FSO.sub.3 H and/or CF.sub.3 SO.sub.3 H) and at least one chlorinated hydrocarbon (preferably CCl.sub.4) at about 40.degree.-90.degree. C., followed by separating the formed solid from the chlorinated hydrocarbon.
    Type: Grant
    Filed: October 19, 1992
    Date of Patent: September 14, 1993
    Assignee: Phillips Petroleum Company
    Inventor: An-hsiang Wu
  • Patent number: 5004859
    Abstract: An improved catalyst particle is disclosed for the conversion of hydrocarbons which comprises a refractory inorganic-oxide support, a Friedel-Crafts metal halide, and a surface-layer platinum-group metal component, wherein the concentration of platinum-group metal component on the surface layer of each catalyst particle is at least 1.5 times the concentration in the central core of the catalyst particle. An isomerization process also is disclosed which is particularly effective for the conversion of C.sub.4 -C.sub.7 alkanes.
    Type: Grant
    Filed: November 13, 1989
    Date of Patent: April 2, 1991
    Assignee: UOP
    Inventors: Robert J. Schmidt, Robert S. Haizmann, Mark R. Ford, C. David Low, Frank H. Adams
  • Patent number: 4929800
    Abstract: Hydrocarbon conversion processes are disclosed using a catalyst prepared by a method comprising reacting an adsorbent containing surface hydroxyl groups with a Lewis acid in a halogenated organic solvent.
    Type: Grant
    Filed: August 9, 1988
    Date of Patent: May 29, 1990
    Assignee: University of Florida
    Inventors: Russell S. Drago, Edward E. Getty
  • Patent number: 4719190
    Abstract: Method of preparing a hydrocarbon conversion and polymerization catalyst comprising reacting an adsorbent containing surface hydroxyl groups with a Lewis acid in a halogenated organic solvent.
    Type: Grant
    Filed: October 22, 1986
    Date of Patent: January 12, 1988
    Assignee: University of Florida
    Inventors: Russell S. Drago, Edward E. Getty
  • Patent number: 4327240
    Abstract: Isomerizable hydrocarbons are isomerized using a catalytic composite comprising a combination of a catalytically effective amount of a pyrolyzed rhenium carbonyl component with a porous carrier material containing a uniform dispersion of catalytically effective amounts of a platinum group component, which is maintained in the elemental metallic state during the incorporation and pyrolysis of the rhenium carbonyl component, of a tin component, and of a halogen component.
    Type: Grant
    Filed: December 3, 1980
    Date of Patent: April 27, 1982
    Assignee: UOP Inc.
    Inventor: George J. Antos
  • Patent number: 4283585
    Abstract: Hydrocarbon isomerization catalysts comprising typically refractory mineral oxide carrier such as alumina and a halogen element present in combined form, together with, in the free or combined state:A platinum-group metal;second element from the group consisting of titanium, zirconium, tungsten and molybdenum; anda metal halide such as AlCl.sub.3.
    Type: Grant
    Filed: April 14, 1980
    Date of Patent: August 11, 1981
    Assignee: Compagnie Francaise de Raffinage
    Inventors: Michel Legendre, Philippe Engelhard
  • Patent number: 4207426
    Abstract: Isomerizable hydrocarbons including paraffins, cycloparaffins, olefins and alkyl aromatics are isomerized by contacting the hydrocarbon at isomerization conditions with a catalytic composite comprising a platinum group metal on an alpha-alumina monohydrate support wherein said support is prepared by admixing an alpha-alumina monohydrate with an aqueous amoniacal solution having a pH of at least about 7.5 to form a stable suspension and commingling said suspension with a salt of a strong acid to form an extrudable paste or dough. Upon extrusion, the extrudate is dried and calcined to form said alumina support.
    Type: Grant
    Filed: May 16, 1979
    Date of Patent: June 10, 1980
    Assignee: UOP Inc.
    Inventors: Roy T. Mitsche, George N. Pope
  • Patent number: 4201696
    Abstract: Hydrocarbon isomerization catalysts comprising typically refractory mineral oxide carrier such as alumina and a halogen element present in combined form, together with, in the free or combined state:a platinum-group metal;second element from the group consisting of titanium, zirconium, tungsten and molybdenum; anda metal halide such as AlCl.sub.3.
    Type: Grant
    Filed: November 27, 1978
    Date of Patent: May 6, 1980
    Assignee: Compagnie Francaise de Raffinage
    Inventors: Michel Legendre, Philippe Engelhard
  • Patent number: 4179581
    Abstract: Isomerizable hydrocarbons including paraffins, cycloparaffins, olefins and alkyl aromatics are isomerized by contacting the hydrocarbon at isomerization conditions with a catalytic composite comprising a platinum group metal on an alpha-alumina monohydrate support wherein said support is prepared by admixing an alpha-alumina monohydrate with an aqueous ammoniacal solution having a pH of at least about 7.5 to form a stable suspension and commingling said suspension with a salt of a strong acid to form an extrudable paste or dough. Upon extrusion, the extrudate is dried and calcined to form said alumina support.
    Type: Grant
    Filed: June 30, 1978
    Date of Patent: December 18, 1979
    Assignee: UOP Inc.
    Inventors: Roy T. Mitsche, George N. Pope