With Added Organic Agent Or In Complex With Organic Material Patents (Class 585/745)
  • Patent number: 10947463
    Abstract: Methods of reducing a phosphorus content of a liquid hydrocarbon. The liquid hydrocarbon may be co-fed with an olefin to an alkylation unit to produce a low-phosphorus content liquid hydrocarbon product.
    Type: Grant
    Filed: September 6, 2019
    Date of Patent: March 16, 2021
    Assignee: Lyondell Chemical Technology, L.P.
    Inventors: Lei Zhang, Daniel F. White
  • Patent number: 10487023
    Abstract: Disclosed herein are processes for producing neopentane. The processes generally relate to demethylating neohexane and/or neoheptane to produce neopentane. The neohexane and/or neoheptane may be provided by the isomerization of C6-C7 paraffins.
    Type: Grant
    Filed: August 18, 2017
    Date of Patent: November 26, 2019
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Kun Wang, Lorenzo C. DeCaul, Michele L. Paccagnini, Etienne Mazoyer, James R. Lattner, Helge Jaensch, Ali A. Kheir
  • Patent number: 9126881
    Abstract: Processes for the disproportionation and isomerization of a C5 hydrocarbon feed using a liquid catalyst comprising an ionic liquid and a halocarbon carbocation promoter are described. The ionic liquid is unsupported, and the reactions occur at temperatures below about 200° C.
    Type: Grant
    Filed: June 28, 2013
    Date of Patent: September 8, 2015
    Assignee: UOP LLC
    Inventors: Stuart Smith, Alakananda Bhattacharyya, Dana K. Sullivan
  • Publication number: 20150005554
    Abstract: Processes for the disproportionation and isomerization of a C4 hydrocarbon feed using a liquid catalyst comprising an ionic liquid and a carbocation promoter are described. The ionic liquid is unsupported, and the reactions occur at temperatures below about 300° C.
    Type: Application
    Filed: August 23, 2013
    Publication date: January 1, 2015
    Applicant: UOP LLC
    Inventors: Stuart Smith, Alakananda Bhattacharyya
  • Patent number: 8323478
    Abstract: A process, comprising: a. taking a sample from a continuous alkylation reactor process; b. measuring a content of a halide in the sample; and c. within 45 minutes from the taking a sample, adjusting a flow of a halide containing additive comprising the halide to control a ratio of a yield of an alkylate gasoline and a yield of a middle distillate. Also a process, comprising: a. taking a sample from an effluent of an alkylation reactor in an alkylation reactor process; b. measuring a content of a halide in the sample; and c. in response to the measured content of the halide, adjusting a flow of a halide containing additive to a predetermined range that has been selected to obtain a ratio of a yield of an alkylate gasoline and a yield of a middle distillate from 0.31 to 4.0 in a product from the alkylation reactor.
    Type: Grant
    Filed: July 21, 2011
    Date of Patent: December 4, 2012
    Assignee: Chevron U.S.A. Inc.
    Inventors: Sven Ivar Hommeltoft, Howard S. Lacheen
  • Patent number: 8142725
    Abstract: An apparatus comprising: a) an alkylation reactor holding an ionic liquid catalyst and a reactant mixture, b) a means for measuring levels of a halide in an effluent from the alkylation reactor, and c) a control system that receives a signal in response to the measuring and communicates changes in an operating condition that influences the yield of products from the reactant mixture. The control system is responsive to deviations outside a predetermined range of halide level that has been selected to obtain a ratio of a yield of an alkylate gasoline and a yield of a middle distillate from 0.31 to 4.0 in the product from the alkylation reactor.
    Type: Grant
    Filed: July 8, 2011
    Date of Patent: March 27, 2012
    Assignee: Chevron U.S.A. Inc.
    Inventors: Sven Ivar Hommeltoft, Howard S. Lacheen
  • Patent number: 8070939
    Abstract: A process comprising: a) taking a sample from a continuous reactor process, b)measuring a content of a halide in the sample, and c) in response to the measured content of the halide, adjusting a flow of a halide containing additive comprising the halide to control the process. Also, an apparatus comprising: a) a reactor holding an ionic liquid catalyst and a reactant mixture, b) a means for measuring levels of a halide in an effluent from the reactor, and c) a control system that receives a signal in response to the measuring and communicates changes in an operating condition that influences the yield of a product in the reactant mixture.
    Type: Grant
    Filed: September 18, 2008
    Date of Patent: December 6, 2011
    Assignee: Chevron U.S.A. Inc.
    Inventors: Sven Ivar Hommeltoft, Howard S. Lacheen
  • Publication number: 20080262282
    Abstract: A process for producing para-xylene from a hydrocarbon feed is described in which an adsorption column operating as a simulated moving bed with at least five zones delivers an extract, a 2-raffinate and an intermediate raffinate. The extract is distilled and the distillate is optionally re-crystallized to recover para-xylene with a purity of at least 99.7%. The 2-raffmate is distilled then isomerized in a reactor preferably operating in the liquid phase and at a low temperature. The intermediate raffinate with an enriched ethylbenzene content is distilled then isomerized in the vapour phase.
    Type: Application
    Filed: November 23, 2004
    Publication date: October 23, 2008
    Inventors: Philibert Leflaive, Luc Wolff, Gerard Hotier
  • Patent number: 6797853
    Abstract: A process for the conversion of linear and/or branched paraffins hydrocarbons, catalysed by an ionic liquid catalyst, in the presence of a cyclic hydrocarbon additive containing a tertiary carbon atom. The presence of the specific hydrocarbon additives influences the reaction mechanism by increasing the selectivity towards the formation of paraffin hydrocarbons with a higher degree of branching.
    Type: Grant
    Filed: September 16, 2003
    Date of Patent: September 28, 2004
    Assignee: Haldor Topsoe A/S
    Inventors: Jindrich Houzvicka, John Zavilla, Konrad Herbst
  • Publication number: 20040068154
    Abstract: Processes for the production of alpha-olefins, including dimerization and isomerization of olefins using a cobalt catalyst complex are provided herein. The olefins so produced are useful as monomers in further polymerization reactions and are useful as chemical intermediates.
    Type: Application
    Filed: October 4, 2002
    Publication date: April 8, 2004
    Inventor: Brooke L. Small
  • Publication number: 20040059173
    Abstract: A process for the conversion of linear and/or branched paraffins hydrocarbons, catalysed by an ionic liquid catalyst, in the presence of a cyclic hydrocarbon additive containing a tertiary carbon atom. The presence of the specific hydrocarbon additives influences the reaction mechanism by increasing the selectivity towards the formation of paraffin hydrocarbons with a higher degree of branching.
    Type: Application
    Filed: September 16, 2003
    Publication date: March 25, 2004
    Inventors: Jindrich Houzvicka, John Zavilla, Konrad Herbst
  • Publication number: 20030181780
    Abstract: A process for the conversion of linear and/or branched paraffin hydrocarbons based on the use of an ionic liquid catalyst in combination with a metal salt additive, which provides a catalytic composition with an increased activity, compared with said ionic liquid. Under suitable reaction conditions this conversion is leading to paraffin hydrocarbon fraction with higher octane number.
    Type: Application
    Filed: March 14, 2003
    Publication date: September 25, 2003
    Inventors: Konrad Herbst, Jindrich Houzvicka, Birgitte Tofte Jespersen, John Zavilla
  • Patent number: 6140547
    Abstract: An isomerization process for converting an isomerization feed stream containing alkanes having about 4 carbon atoms to about 10 carbon atoms per molecule and cycloalkanes having about 5 carbon atoms to about 10 carbon atoms per molecule to at least one product hydrocarbon isomer. The isomerization feed stream, which contains at least one feed hydrocarbon and hydrogen, is contacted in an isomerization zone at effective isomerization conditions with a catalyst where deactivation of such catalyst occurs in the isomerization zone. The isomerization process includes the presence of an additive in the isomerization feed stream. The concentration of the additive is sufficient to alleviate or diminish the deactivation of the catalyst and to maintain a substantially constant conversion of the at least one feed hydrocarbon to the at least one product hydrocarbon isomer at effective isomerization conditions.
    Type: Grant
    Filed: December 1, 1998
    Date of Patent: October 31, 2000
    Assignee: Phillips Petroleum Company
    Inventors: Fan-Nan Lin, Edgar D. Davis
  • Patent number: 4424387
    Abstract: A process is described for paraffin isomerization under strong acid conditions in which an adamantyl carboxylic acid or sulfonic acid is used to substantially increase the reaction rate of the isomerization.
    Type: Grant
    Filed: March 15, 1983
    Date of Patent: January 3, 1984
    Assignee: Exxon Research and Engineering Co.
    Inventor: George M. Kramer
  • Patent number: 4357484
    Abstract: A process is described for non-cyclic paraffin isomerization under strong acid conditions in which an adamantane hydrocarbon is used to substantially increase the reaction rate of the isomerization.
    Type: Grant
    Filed: August 31, 1981
    Date of Patent: November 2, 1982
    Assignee: Exxon Research and Engineering Co.
    Inventor: George M. Kramer
  • Patent number: 4357483
    Abstract: A process is described for paraffin isomerization under strong acid conditions in which in aminoalkyladamantane is used to substantially increase the reaction rate of the isomerization.
    Type: Grant
    Filed: August 31, 1981
    Date of Patent: November 2, 1982
    Assignee: Exxon Research and Engineering Co.
    Inventor: George M. Kramer
  • Patent number: RE33080
    Abstract: A process is described for non-cyclic paraffin isomerization under strong acid conditions in which an adamantane hydrocarbon is used to substantially increase the reaction rate of the isomerization.
    Type: Grant
    Filed: August 14, 1986
    Date of Patent: October 3, 1989
    Assignee: Exxon Research and Engineering Company
    Inventor: George M. Kramer