To Recover Unsaturate Patents (Class 585/809)
  • Publication number: 20130267752
    Abstract: The present invention relates to a method for purification of a hydrocarbon stream containing linear alpha olefins, isomers thereof and at least one organic amine, the linear alpha olefins, isomers and the amine having boiling points under atmospheric pressure which differ by at most 5° C., comprising the step of removing a major amount of the organic amine from the hydrocarbon stream by distillation, wherein the distillation is carried out to that, together with the amine, between 5% and 95 wt % of the isomers, based on the total amount of the isomers in the hydrocarbon stream, are removed from the hydrocarbon stream in an amine/isomer-rich fraction.
    Type: Application
    Filed: September 27, 2011
    Publication date: October 10, 2013
    Applicants: LINDE AG, SAUDI BASIC INDUSTRIES CORPORATION
    Inventors: Wolfgang Müller, Marco Harff, Anton Wellenhofer, Anina Wöhl, Heinz Bölt, Andreas Meiswinkel
  • Patent number: 8552245
    Abstract: This method includes the separation of an upstream partly condensed cracked gas stream in an intermediate separator (44B) in order to recover an intermediate liquid (136), and an intermediate cracked gas stream (138) and the introduction of the intermediate liquid (140) into an intermediate demethanization column (68). The method comprises the sampling of a portion of the intermediate liquid (136) and the expansion of at least one first fraction (194) obtained from the sampled portion (190). It comprises the putting of the first expanded fraction in a heat exchange relationship with the intermediate head stream (146) from the column (68) for at least partly condensing the intermediate head stream (146). The method includes the separation of the intermediate partly condensed head stream in a first reflux separator (76) in order to form a liquid stream (148) introduced into the intermediate column (68) and a combustible gas stream (150).
    Type: Grant
    Filed: March 28, 2011
    Date of Patent: October 8, 2013
    Assignee: Technip France
    Inventors: Yvon Simon, Jean-Paul Laugier
  • Publication number: 20130237740
    Abstract: The present invention is a method of reducing the formation of fouling deposits occurring in a caustic scrubber used to remove acid gases comprising: a) providing a caustic scrubber fed with an alkaline aqueous solution comprising essentially one or more of NaOH, KOH or LiOH, b) providing an olefin-containing hydrocarbon stream, contaminated with oxygenated compounds and acid gases, and said oxygenated compounds are capable to make polymeric fouling deposits in the presence of the alkaline solution of the scrubber, c) sending the above hydrocarbon stream to the caustic scrubber to recover an olefin-containing hydrocarbon stream essentially free of acid gases, wherein, d) an efficient amount of a solvent capable to reduce the formation of fouling deposits is introduced in the caustic scrubber and/or in the alkaline solution fed to the scrubber, e) the liquid outlet of the scrubber is sent to means to separate the solvent from the alkaline solution, f) optionally an additive capable to reduce the conversion of
    Type: Application
    Filed: May 3, 2011
    Publication date: September 12, 2013
    Applicant: TOTAL RESEARCH & TECHNOLOGY FELUY
    Inventor: Jean-Pierre Thoret Bauchet
  • Patent number: 8524972
    Abstract: This disclosure relates generally to low temperature steam stripping methods for byproduct polymer and solvent separation from an ethylene oligomerization process. The methods disclosed have been found to separate byproduct polymer from solvent without fouling process equipment or causing other process problems. The byproduct polymer ends up as flowable solid particles in a water stream that may be easily discharged from the process, while solvent is recovered for recycle to the process. In embodiments of the invention, over 90 wt % of the solvent used is recovered and the discharged byproduct polymer is less than 20 wt % solvent.
    Type: Grant
    Filed: April 18, 2012
    Date of Patent: September 3, 2013
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Michael W. Weber, Randy L. Foster, James R. Lattner, Jimmy L. Tardy, Michael J. Veraa
  • Publication number: 20130211162
    Abstract: A two catalyst system is described having separate catalyst beds for the selective conversion of acetylene to ethylene which reduces the concentration of acetylene, dienes, O2, and NOx is disclosed. An ethylene containing gas stream, such as an off-gas stream from a refinery catalytic cracking unit used in the production of fuels and gas oils, is treated by first contacting the gas stream with a silver catalyst supported on a metal oxide and subsequently contacting the gas stream with a ruthenium catalyst supported on metal oxide. The two catalysts are contained within contiguous continuous reactors or reactor compartments.
    Type: Application
    Filed: February 15, 2012
    Publication date: August 15, 2013
    Inventors: Mingyong Sun, Steven A. Blankenship, Michael A. Urbancic, Richard Paul Zoldak
  • Patent number: 8507396
    Abstract: A process for regenerating a used acidic catalyst which has been deactivated by conjunct polymers by removing the conjunct polymers so as to increase the activity of the catalyst is disclosed. Methods for removing the conjunct polymers include addition of a basic reagent and alkylation. The methods are applicable to all acidic catalysts and are described with reference to certain ionic liquid catalysts.
    Type: Grant
    Filed: April 20, 2010
    Date of Patent: August 13, 2013
    Assignee: Chevron U.S.A. Inc.
    Inventors: Saleh Elomari, Thomas V. Harris
  • Patent number: 8492605
    Abstract: A method for producing isoprene comprising an aqueous medium including genetically modified host cells capable of producing isoprene, where the resulting isoprene composition is processed through at least one separation and/or purification process to provide an isoprene enriched composition and a system for doing the same.
    Type: Grant
    Filed: September 28, 2012
    Date of Patent: July 23, 2013
    Inventor: Derek McPhee
  • Patent number: 8492604
    Abstract: The present invention relates to a method and a reactor system for preparing linear alpha-olefins by oligomerization of ethylene in the presence of an organic solvent and an oligomerization catalyst, wherein a product fraction of C10+ alpha-olefins contaminated with aromatic C9+ compounds is separated from a product main stream and transferred into a conversion reactor, where C10+ alpha-olefins and aromatic C9+ components are reacted in the presence of a Friedel-Crafts alkylation catalyst to produce aromatic C19+ compound.
    Type: Grant
    Filed: January 31, 2007
    Date of Patent: July 23, 2013
    Assignee: Saudi Basic Industries Corporation
    Inventors: Peter M. Fritz, Wolfgang Müller, Florian Winkler, Heinz Bölt
  • Publication number: 20130178683
    Abstract: The present invention is a process for removing oxygenated contaminants and water from an hydrocarbon stream comprising: introducing the contaminated hydrocarbon stream in a gaseous phase in an absorption zone, contacting said hydrocarbon stream in said absorption zone with an absorbent capable to absorb water and oxygenated contaminants at conditions effective to produce, an overhead hydrocarbon stream having a reduced oxygenated contaminants and water content and an absorbent bottoms stream comprising the absorbent, hydrocarbons and having an enhanced oxygenated contaminants and water content, introducing the above absorbent bottoms stream in a stripping zone at conditions effective to produce, an absorbent bottoms stream essentially free of hydrocarbons, oxygenated contaminants and water and an overhead stream comprising essentially hydrocarbons, water and the oxygenated contaminants, recycling the absorbent bottoms stream of the stripping zone to the absorption zone, optionally fractionating the ov
    Type: Application
    Filed: December 20, 2010
    Publication date: July 11, 2013
    Applicant: TOTAL PETROCHEMICALS RESEARCH FELUY
    Inventors: Laurent Avaullee, Jean-Pierre Thoret Bauchet
  • Publication number: 20130172654
    Abstract: The present invention is a process for removing oxygenated contaminants and water from an hydrocarbon stream comprising: introducing the contaminated hydrocarbon stream in a gaseous phase in an absorption zone, contacting said hydrocarbon stream in said absorption zone with an absorbent capable to absorb water and oxygenated contaminants at conditions effective to produce, an overhead hydrocarbon stream having a reduced oxygenated contaminants and water content and an absorbent bottoms stream comprising the absorbent, hydrocarbons and having an enhanced oxygenated contaminants and water content, introducing the above absorbent bottoms stream in a stripping zone at conditions effective to produce, an absorbent bottoms stream essentially free of hydrocarbons, oxygenated contaminants and water and an overhead stream comprising essentially hydrocarbons, water and the oxygenated contaminants, recycling the absorbent bottoms stream of the stripping zone to the absorption zone, optionally fractionating the ov
    Type: Application
    Filed: December 20, 2010
    Publication date: July 4, 2013
    Applicant: TOTAL PETROCHEMICALS RESEARCH FELUY
    Inventors: Laurent Avaullee, Jean-Pierre Thoret Bauchet
  • Publication number: 20130172653
    Abstract: The present invention is a process for removing oxygenated contaminants and water from an hydrocarbon stream comprising: introducing the contaminated hydrocarbon stream in a gaseous phase in an absorption zone, contacting said hydrocarbon stream in said absorption zone at a pressure of at least 5 bars, advantageously in the range 5 to 40 bars with an alcohol capable to absorb water and oxygenated contaminants at conditions effective to produce an overhead hydrocarbon stream having a reduced oxygenated contaminants and water content and an absorbent bottoms stream comprising the alcohol, hydrocarbons and having an enhanced oxygenated contaminants and water content, sending the overhead of the absorption zone to a wash column (referred to as the high pressure water wash column) at a pressure of at least 5 bars, advantageously in the range 5 to 40 bars, essentially washed with water at conditions effective to produce an overhead hydrocarbon stream having a reduced oxygenated contaminants and an aqueous bott
    Type: Application
    Filed: December 20, 2010
    Publication date: July 4, 2013
    Applicant: Total Petrochemicals Research Feluy
    Inventors: Laurent Avaullee, Jean-Pierre Thoret Bauchet
  • Publication number: 20130172655
    Abstract: The present invention is a process for removing oxygenated contaminants and water from an hydrocarbon stream comprising: introducing the contaminated hydrocarbon stream in a gaseous phase in an absorption zone, contacting said hydrocarbon stream in said absorption zone at a pressure of at least 5 bars, advantageously in the range 5 to 40 bars with an alcohol capable to absorb water and oxygenated contaminants at conditions effective to produce an overhead hydrocarbon stream having a reduced oxygenated contaminants and water content and an absorbent bottoms stream comprising the alcohol, hydrocarbons and having an enhanced oxygenated contaminants and water content, sending the overhead of the absorption zone to a wash column (referred to as the high pressure water wash column) at a pressure of at least 5 bars, advantageously in the range 5 to 40 bars, essentially washed with water at conditions effective to produce an overhead hydrocarbon stream having a reduced oxygenated contaminants and an aqueous bott
    Type: Application
    Filed: December 20, 2010
    Publication date: July 4, 2013
    Inventors: Laurent Avaullee, Jean-Pierre Thoret Bauchet
  • Patent number: 8436223
    Abstract: The present invention relates to a method for the separation of C4 olefins and C4 paraffins from a C4 hydrocarbon mixed gas including butene-1, trans-2- butene, cis-2-butene, normal butane, isobutane, etc. The method of the present invention produces C4 olefins with high purity by introducing a gaseous C4 mixture into the adsorption tower loaded with adsorbent selectively adsorbing olefins to adsorb C4 olefins and to discharge C4 paraffins to the outlet of the tower, desorbing C4 olefins adsorbed on the adsorption tower with a desorbent C5 hydrocarbon, C6 hydrocarbon, etc.), and then separating the C4 olefin and the desorbent by a distillation process.
    Type: Grant
    Filed: March 28, 2008
    Date of Patent: May 7, 2013
    Assignees: Korea Institute of Energy Research, SK Energy Co., Ltd
    Inventors: Jong-Nam Kim, Jong-Ho Park, Seong-Jun Lee, Min-Su Ko, Hee Tae Beum, Jongkee Park, Chang Hyun Ko, Sang Sup Han, Soon-Haeng Cho
  • Patent number: 8431762
    Abstract: The present invention relates to a hybrid process comprising an adsorption process and a distillation process for the separation of butene-1 from a C4 hydrocarbon mixture gas including butene-1, trans-2-butene, cis-2-butene, normal butane, isobutane, etc. The above hybrid process comprises introducing a gaseous C4 mixture into the adsorption tower loaded with adsorbents which adsorb olefins selectively to discharge C4 paraffins to the outlet of the tower, desorbing C4 olefins selectively adsorbed in the adsorption tower to produce high purity C4 olefins mixture gas in which isobutane and normal butane was removed, and separating the high C4 olefins mixture gas (a mixture of butene-1, trans-2-butene, cis-2-butene, and a trace amount of C4 paraffins) via distillation to obtain high purity butene-1 including a trace amount of isobutane in the top of the distillation tower and obtain a mixture gas including trans-2-butene, cis-2-butene and a trace amount of normal butane in the bottom of the tower.
    Type: Grant
    Filed: April 11, 2008
    Date of Patent: April 30, 2013
    Assignees: Korea Institute of Energy Research, SK Energy Co., Ltd
    Inventors: Jong-Ho Park, Jong-Nam Kim, Seong-Jun Lee, Min-Su Ko, Hee Tae Beum, Jongkee Park, Chang Hyun Ko, Sang Sup Han, Soon-Haeng Cho
  • Patent number: 8431094
    Abstract: A system and process for acetylene selective hydrogenation of an ethylene rich gas stream. An ethylene rich gas supply comprising at least H2S, CO2, CO, and acetylene is directed to a first treatment unit for removing H2S and optionally CO2 from the gas stream. A CO oxidation reactor is used to convert CO to CO2 and form a CO-depleted gas stream. A second treatment unit removes the CO2 from the CO-depleted gas stream and an acetylene selective hydrogenation treats the CO-depleted gas stream.
    Type: Grant
    Filed: July 31, 2012
    Date of Patent: April 30, 2013
    Assignee: UOP LLC
    Inventors: David A. Wegerer, Kurt M. VandenBussche
  • Publication number: 20130102828
    Abstract: A process is provided to inhibit or limit the decomposition of a halide-containing olefin oligomerization catalyst system during recovery of an oligomerization product. The process includes deactivation of an olefin oligomerization catalyst system present in an olefin oligomerization reactor effluent stream by contact with an alcohol under conditions that minimize potential for deactivated catalyst system decomposition. Such conditions include minimization of the water content of the deactivation agent and concentration of the deactivation agent.
    Type: Application
    Filed: December 10, 2012
    Publication date: April 25, 2013
    Applicant: CHEVRON PHILLIPS CHEMICAL COMPANY LP
    Inventor: Chevron Phillips Chemical Company LP
  • Publication number: 20130102827
    Abstract: This method includes the separation of an upstream partly condensed cracked gas stream in an intermediate separator (44B) in order to recover an intermediate liquid (136), and an intermediate cracked gas stream (138) and the introduction of the intermediate liquid (140) into an intermediate demethanization column (68). The method comprises the sampling of a portion of the intermediate liquid (136) and the expansion of at least one first fraction (194) obtained from the sampled portion (190). It comprises the putting of the first expanded fraction in a heat exchange relationship with the intermediate head stream (146) from the column (68) for at least partly condensing the intermediate head stream (146). The method includes the separation of the intermediate partly condensed head stream in a first reflux separator (76) in order to form a liquid stream (148) introduced into the intermediate column (68) and a combustible gas stream (150).
    Type: Application
    Filed: March 28, 2011
    Publication date: April 25, 2013
    Inventors: Yvon Simon, Jean-Paul Laugier
  • Patent number: 8420879
    Abstract: The invention relates to a process for workup of a stream (1) comprising butene and/or butadiene, butane, hydrogen and/or nitrogen and carbon dioxide, comprising: (a) absorption of stream (1) with a mixture (5) comprising 80 to 97% by weight of N-methylpyrrolidone and 3 to 20% by weight of water to obtain a stream (9) comprising N-methylpyrrolidone, water, butene and/or butadiene, butane, and optionally carbon dioxide, and a stream (7) comprising hydrogen and/or nitrogen and butane, (b) extractive distillation of stream (9) with a stream (13) comprising 80 to 97% by weight of N-methylpyrrolidone and 3 to 20% by weight of water to separate the stream (9) into a stream (17) comprising N-methylpyrrolidone, water, butene and/or butadiene, and a stream (15) comprising essentially butane, and optionally carbon dioxide, (c) distillation of stream (17) into a stream (23) comprising essentially N-methylpyrrolidone and water, and a stream (21) comprising butene and/or butadiene.
    Type: Grant
    Filed: March 2, 2012
    Date of Patent: April 16, 2013
    Assignee: BASF SE
    Inventors: Albena Kostova, Regina Benfer, Jochen Götz, Alireza Rezai, Aristides Morillo, Gerhard Olbert, Peter Pfab, Grigorios Kolios, Markus Weber, Alexander Weck
  • Patent number: 8415520
    Abstract: The invention is a method for processing a mixture containing water, 3-methyl-1-butane and at least one other methylbutene. The method comprises primary distillation of the mixture, giving a gaseous primary overhead product containing methylbutene and water and a water-free primary bottom product containing 3-methyl-1-butene; condensation of the gaseous primary overhead product so as to give a condensate comprising a liquid aqueous phase and a liquid organic phase; separation of the condensate into a liquid aqueous phase and a liquid organic phase; discharge of the liquid aqueous phase; recirculation of the organic phase to the primary distillation; and finally secondary distillation of the water-free primary bottom product from the primary distillation so as to give a secondary overhead product comprising 3-methyl-1-butene and a secondary bottom product. The secondary overhead product obtained has a purity which enables it to be used directly as monomer or comonomer for preparing polymers or copolymers.
    Type: Grant
    Filed: April 29, 2010
    Date of Patent: April 9, 2013
    Assignee: Evonik Oxeno GmbH
    Inventors: Markus Winterberg, Alfred Kaizik, Armin Rix, Michael Grass, Wilfried Bueschken, Marc Becker
  • Publication number: 20130072732
    Abstract: The present invention describes a method of separating butene-2 from a C4 cut containing butene-2 and butene-1 by selective oligomerization of butene-1 to predominantly linear oligomers. Optional additional steps make it possible to separate isobutene, 1,3-butadiene as well as traces of acetylene hydrocarbons optionally present in the C4 feedstock.
    Type: Application
    Filed: September 19, 2012
    Publication date: March 21, 2013
    Applicant: IFP ENERGIES NOUVELLES
    Inventor: IFP ENERGIES NOUVELLES
  • Publication number: 20130072733
    Abstract: The present invention describes a method of separating pentene-2 from a C5 cut containing pentene-2 and pentene-1 by selective oligomerization of pentene-1 to dimers having a branching index less than or equal to 1. Optional additional steps make it possible to separate 2-methyl-2-butene, 2-methyl-1-butene, n-pentane, iso-pentane, pentadienes as well as traces of acetylene hydrocarbons optionally present in the C5 feedstock.
    Type: Application
    Filed: September 19, 2012
    Publication date: March 21, 2013
    Applicant: IFP ENERGIES NOUVELLES
    Inventor: IFP Energies Nouvelles
  • Patent number: 8388828
    Abstract: A process comprising regenerating a used ionic liquid catalyst, recovering conjunct polymer from the regenerated catalyst and using at least a portion of the conjunct polymer is disclosed.
    Type: Grant
    Filed: January 10, 2012
    Date of Patent: March 5, 2013
    Assignee: Chevron U.S.A. Inc.
    Inventors: Saleh A. Elomari, Hye-Kyung C. Timken
  • Publication number: 20130030235
    Abstract: A process and an apparatus for desulphurisation of a feed stream containing olefins and hydrogen which is split into at least two feed streams. The first feed stream is introduced into the reactor and reaches a first catalyst bed and is heated by the hydrogenation reaction. Downstream the second feed stream is supplied which will cool down the reaction gas which can then be passed through a second catalyst bed. The content the feed streams can be controlled by adding olefins or dilution gas. The reaction will generate a product gas which will basically contain hydrogen sulphide as a sulphur compound. The temperature of the catalysts and of the gas flow is controlled via the olefin content in the feed streams. The higher the olefin content in the feed stream, the more intense the heating of the gas flow by the hydrogenation heat in the subsequent catalyst bed.
    Type: Application
    Filed: July 7, 2010
    Publication date: January 31, 2013
    Applicant: THYSSENKRUPP UHDE GMBH
    Inventors: Thilo Von Trotha, Frank Urner
  • Patent number: 8361280
    Abstract: A process is proposed for distillatively obtaining pure 1,3-butadiene from crude 1,3-butadiene in a plant comprising one or more distillation columns, comprising supply of a feed stream of crude 1,3-butadiene to the one distillation column or the first of the plurality of distillation columns, the one distillation column or the plurality of distillation columns having a flange with an internal diameter of ?80 mm, comprising two mutually opposite plane-parallel surfaces (1) with an intermediate seal (2) which seals the interior of the one distillation column or of the first of the plurality of distillation columns from an intermediate space (3) on the atmosphere side between the two mutually opposite plane-parallel surfaces (1), and the intermediate space (3) on the atmosphere side between the two mutually opposite plane-parallel surfaces (1) being closed off from the atmosphere to form a chamber, wherein the chamber is purged continuously during the operation of the plant with a low-oxygen gas or a low-oxygen
    Type: Grant
    Filed: November 3, 2009
    Date of Patent: January 29, 2013
    Assignee: BASF SE
    Inventors: Uwe Stabel, Harry Zachmann, Eberhardt Gaffron, Bernd Heida, Michael Jäger
  • Patent number: 8338656
    Abstract: This invention pertains to separating an olefin stream into at least two olefin streams. The olefin stream that is to be separated is low in diene composition, which allows the olefin stream to be compressed at a relatively high temperature without causing fouling problems in the compressor system. The invention is particularly relevant to separating olefins obtained from an oxygen to olefins unit.
    Type: Grant
    Filed: October 1, 2007
    Date of Patent: December 25, 2012
    Assignees: Lummus Technology Inc., ExxonMobil Chemical Patents Inc.
    Inventors: David Ritchie Lumgair, Michael Peter Nicoletti, Ram Mallik, Wadie Malaty, Malcolm Pettigrew
  • Patent number: 8324442
    Abstract: A method for producing isoprene comprising an aqueous medium including genetically modified host cells capable of producing isoprene, where the resulting isoprene composition is processed through at least one separation and/or purification process to provide an isoprene enriched composition and a system for doing the same.
    Type: Grant
    Filed: March 1, 2010
    Date of Patent: December 4, 2012
    Assignee: Amyris, Inc.
    Inventor: Derek McPhee
  • Patent number: 8309776
    Abstract: The present invention provides a method and reactor system for hydrogenating acetylenes present in the olefin stream derived from the following streams, alone or in combination: petroleum catalytic cracking process and/or oxygenate-to-olefin reactor, such as methanol-to-olefin (MTO) reactor, in an olefin production plant before the distillation steps, wherein the acetylene hydrogenation occurs before or just after the acid gas removal step.
    Type: Grant
    Filed: December 15, 2009
    Date of Patent: November 13, 2012
    Assignee: Stone & Webster Process Technology, Inc.
    Inventors: Cornelis F. van Egmond, David J. Wilson
  • Patent number: 8283509
    Abstract: The invention comprises an absorption heat pump to supply energy to a distillation process or an outside process. The streams used to effect the absorption heat pump are to be combined in any case as a feedstream to a conversion process, and energy thus is conserved by avoiding the necessity of reseparating the streams.
    Type: Grant
    Filed: December 3, 2009
    Date of Patent: October 9, 2012
    Assignee: UOP LLC
    Inventors: Paul A. Sechrist, Stanley J. Frey
  • Publication number: 20120232231
    Abstract: A process for component separation in a polymer production system, comprising separating a polymerization product stream into a gas stream and a polymer stream, wherein the gas stream comprises ethane and unreacted ethylene, distilling the gas stream into a light hydrocarbon stream, wherein the light hydrocarbon stream comprises ethane and unreacted ethylene, contacting the light hydrocarbon stream with an absorption solvent system, wherein at least a portion of the unreacted ethylene from the light hydrocarbon stream is absorbed by the absorption solvent system, and recovering a waste gas stream from the absorption solvent system, wherein the waste gas stream comprises ethane, hydrogen, or combinations thereof.
    Type: Application
    Filed: April 13, 2012
    Publication date: September 13, 2012
    Applicant: CHEVRON PHILLIPS CHEMICAL COMPANY LP
    Inventors: Scott E. Kufeld, John D. Hottovy, Ai-fu Chang
  • Publication number: 20120232232
    Abstract: A process for recovery of ethylene from a polymerization product stream of a polyethylene production system, comprising separating a light gas stream from the polymerization product stream, wherein the light gas stream comprises ethane and unreacted ethylene, contacting the light gas stream with an absorption solvent system, wherein the contacting the light gas stream with the absorption solvent system occurs at a temperature in a range of from about 40° F. to about 110° F., wherein at least a portion of the unreacted ethylene from the light gas stream is absorbed by the absorption solvent system, and recovering unreacted ethylene from the absorption solvent system to yield recovered ethylene.
    Type: Application
    Filed: April 13, 2012
    Publication date: September 13, 2012
    Applicant: CHEVRON PHILLIPS CHEMICAL COMPANY LP
    Inventors: John D. Hottovy, Ai-fu Chang
  • Publication number: 20120226087
    Abstract: The invention relates to a process for workup of a stream (1) comprising butene and/or butadiene, butane, hydrogen and/or nitrogen and carbon dioxide, comprising: (a) absorption of stream (1) with a mixture (5) comprising 80 to 97% by weight of N-methylpyrrolidone and 3 to 20% by weight of water to obtain a stream (9) comprising N-methylpyrrolidone, water, butene and/or butadiene, butane, and optionally carbon dioxide, and a stream (7) comprising hydrogen and/or nitrogen and butane, (b) extractive distillation of stream (9) with a stream (13) comprising 80 to 97% by weight of N-methylpyrrolidone and 3 to 20% by weight of water to separate the stream (9) into a stream (17) comprising N-methylpyrrolidone, water, butene and/or butadiene, and a stream (15) comprising essentially butane, and optionally carbon dioxide, (c) distillation of stream (17) into a stream (23) comprising essentially N-methylpyrrolidone and water, and a stream (21) comprising butene and/or butadiene.
    Type: Application
    Filed: March 2, 2012
    Publication date: September 6, 2012
    Applicant: BASF SE
    Inventors: Albena Kostova, Regina Benfer, Jochen Götz, Alireza Rezai, Aristides Morillo, Gerhard Olbert, Peter Pfab, Grigorios Kolios, Markus Weber, Alexander Weck
  • Patent number: 8237005
    Abstract: There is provided a method for separating cyclohexene comprising the steps of: (a) separating a mixed solution containing cyclohexene, cyclohexane, and benzene by distillation using N,N-dimethylacetamide as an extractant; and (b) feeding at least a portion of a first bottom liquid obtained by separating cyclohexene, cyclohexane, and benzene from the mixed solution in the step (a) to an extractant purification column, withdrawing an azeotrope of cyclohexyl acetate and N,N-dimethylacetamide from a top of the extractant purification column to an outside of a system, and recycling a second bottom liquid of the extractant purification column to the step (a).
    Type: Grant
    Filed: September 5, 2007
    Date of Patent: August 7, 2012
    Assignee: Asahi Kasei Chemicals Corporation
    Inventor: Masakazu Ban
  • Publication number: 20120172649
    Abstract: A process is disclosed for enhanced recovery of propylene and LPG from the fuel gas produced in Fluid catalytic cracking unit by contacting a heavier hydrocarbon feed with FCC catalyst. In the conventional process, the product mixture from FCC main column overhead comprising naphtha, LPG and fuel gas, are first condensed and gravity separated to produce unstabilized naphtha, which is subsequently used in the absorber to absorb propylene and LPG from fuel gas. However, the recovery of propylene beyond 97 wt % is difficult in this process since unstabilized naphtha already contains propylene of 5 mol % or above. In the present invention, C4 and lighter components from unstabilized naphtha are first stripped off in a separate column to obtain a liquid fraction almost free from propylene (<0.1 mol %) and other LPG components. Such a stripped liquid fraction, after cooling to 20° C. to 30° C.
    Type: Application
    Filed: June 9, 2010
    Publication date: July 5, 2012
    Inventors: Manoj Yadav, Sukumar Mandal, Asit Kumar Das, Yogesh Gupta, Minaz Makhania, Gobind Tulsi, Shailendra Arora, Shubhangi Jaguste
  • Patent number: 8203028
    Abstract: Processes for olefin/paraffin separation utilizing porous, hydrophobic poly(ether ether ketone) (PEEK) membranes are provided. In accordance with an exemplary embodiment, a process for olefin/paraffin separation comprises providing a porous membrane formed of PEEK polymer functionalized with hydrophobic groups, the porous membrane having a first surface and a second surface. The first surface of the porous membrane is contacted with a feed comprising an olefin and a paraffin and a permeate is caused to flow from the second surface of the porous membrane. The permeate has a concentration of the paraffin that is higher than a concentration of the paraffin of the feed.
    Type: Grant
    Filed: May 27, 2010
    Date of Patent: June 19, 2012
    Assignee: UOP LLC
    Inventors: Santi Kulprathipanja, Chunqing Liu
  • Patent number: 8193405
    Abstract: Disclosed is a process for integrating a butene dimerization process with a metathesis process to remove isobutene from the feed stream to the metathesis reactor. The isobutene is preferentially dimerized in the dimerization process to leave n-butenes for metathesis with ethylene. An upstream selective hydrogenation process also isomerizes 1-butenes to 2-butenes which is the preferred butene reagent in the metathesis process. A common fractionator column for the dimerization and hydrogenation processes is also described.
    Type: Grant
    Filed: September 2, 2009
    Date of Patent: June 5, 2012
    Assignee: UOP LLC
    Inventors: Steven L. Krupa, Jill M. Meister
  • Patent number: 8188327
    Abstract: This invention covers a process for dimerizing of isobutylene to Iso-octene and unique configuration is being disclosed, where the Feed is diluted to low level with recycle which has essentially no Iso-octene, dual catalyst system, new selectivator (IPA) and successive catalyst stages if needed to enhance the conversion. The process is very selective and provides higher isobutylene conversion. Additionally the invention also covers the hydrogenation of olefins to Paraffin, Iso-octene to Iso-octane product under moderate conditions and with dual or single catalyst system.
    Type: Grant
    Filed: February 1, 2010
    Date of Patent: May 29, 2012
    Inventor: Amarjit S. Bakshi
  • Patent number: 8178061
    Abstract: Processes and systems are disclosed that relate to the removal of impurities and separation the light olefins from an MTO product vapor stream. Specifically, the processes and systems relate to recovery of light olefins during regeneration of an adsorber in an oxygenate removal unit. Processes and systems for recovering light olefins during regeneration of an adsorber in an oxygenate removal unit can include recycling residual effluent stream to an upstream operation unit upstream of the oxygenate removal unit. Processes and systems for recovering light olefins during regeneration of an adsorber in an oxygenate removal unit can also include recycling residual effluent gas produced by depressurizing residual effluent in the first adsorber, as well as preferably venting an effluent gas from the first adsorber to a compressor upstream of the oxygenate removal unit.
    Type: Grant
    Filed: January 21, 2011
    Date of Patent: May 15, 2012
    Assignee: UOP LLC
    Inventor: Jason T. Corradi
  • Patent number: 8178741
    Abstract: Disclosed herein is a method of recovery of the activity of a molecular sieve catalyst following use of the catalyst in an OTO conversion process. This is achieved by a regeneration apparatus and a method of regenerating a molecular sieve catalyst, comprising two stages. In a pretreatment stage, the catalyst is pretreated under pretreatment conditions by heating the catalyst to a temperature of between 320° C. to 700° C. in an oxygen depleted medium for a residence time of between 1 minute to two hours; and, in a regeneration stage, the catalyst is regenerated under regeneration conditions by heating the catalyst at a temperature of between 200° C. to 700° C. in an oxidizing medium for a residence time of between 1 to 60 minutes.
    Type: Grant
    Filed: June 3, 2010
    Date of Patent: May 15, 2012
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Chunshe J. Cao, James H. Beech, Jr., Michael P. Nicoletti, Thomas H. Colle, Teng Xu, Stephen N. Vaughn
  • Patent number: 8173855
    Abstract: Process for the production of ethylene for chemical use starting with a hydrocarbon source according to which: a) the hydrocarbon source is subjected to a first cracking step, namely a pyrolysis step carried out in a cracking oven, thus producing a mixture of cracking products; b) the mixture of cracking products is subjected to a succession of treatment steps, including a compression step, which makes it possible to obtain a purified crude gas stream; c) the purified crude gas stream is then cooled to a temperature where hydrocarbons with 6 and more carbon atoms condense so that they can be removed from the purified crude gas stream; d) the resulting purified gas stream is afterwards supplied to one separating column, where a fraction A containing hydrogen, methane and ethylene is separated at the head of the column and a heavy fraction C is separated at the bottom of the column; e) a part of the reflux of this column is supplied to a refrigeration cycle leading to a fraction B enriched with ethylene; and f)
    Type: Grant
    Filed: May 28, 2009
    Date of Patent: May 8, 2012
    Assignee: Solvay (Societe Anonyme)
    Inventors: Joachim Kotter, Hans-Dieter Winkler, Peter Mews, Michel Lempereur, Dominique Balthasart, Michel Strebelle
  • Patent number: 8143470
    Abstract: The present invention relates to a method of purifying olefin, the method comprising removing a small amount of acetylenic compounds contained in olefin by using pyrrolidinium-based or piperidinium-based ionic liquid mixtures comprising copper (I) halide. According to the method of the present invention, copper (I) halide is stabilized by pyrrolidinium-based or piperidinium-based ionic liquids, suppressing the oxidation of Cu(I) into Cu(II), whereby the capacity of removing acetylenic compounds can be maintained for a long time and the selective removal rate of acetylenic compounds to olefin can be significantly improved. In addition, since the ionic liquid mixtures comprising copper (I) halide used in the method of the present invention can be applied to both absorption and extraction processes, it can effectively remove acetylenic compounds from olefin in a more simple and economical way compared to the existing adsorption and membrane separation processes.
    Type: Grant
    Filed: February 2, 2010
    Date of Patent: March 27, 2012
    Assignee: Kolon Industries, Inc.
    Inventors: Byoung Sung Ahn, Gyeong Taek Gong, Hoon Sik Kim, Minserk Cheong, Jin Hyung Kim
  • Patent number: 8129577
    Abstract: A system and a process for providing acetylene, preferably at a high purity level (e.g., comprising 100 parts per million (“ppm”), or 10 ppm, or 1 ppm, or 100 parts per billion (“ppb”), or 10 ppb, or 1 ppb or less of solvent), to a point of use, such as a semiconductor manufacturing process, is described herein. In one aspect, there is provided a process for providing a process for providing a high purity acetylene comprising 100 ppm or less solvent to a point of use comprising: providing an acetylene feed stream comprising acetylene and solvent at a temperature ranging from 20° C. to ?50° C.; and introducing the acetylene feed stream to a purifier at a temperature ranging from ?50° C. to 30° C. to remove at least a portion of the solvent contained therein and provide the high purity acetylene.
    Type: Grant
    Filed: September 4, 2009
    Date of Patent: March 6, 2012
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Timothy John Maykut, Suhas Narayan Ketkar, Benjamin James Arthur Inman, John Irven, Eugene Joseph Karwacki, Jr., Neil Alexander Downie
  • Patent number: 8083951
    Abstract: The invention provides a method for purifying MTO quench water and scrubbing water via mini-hydrocyclone separation, comprising: removing the entrapped catalyst particles from the MTO quench water via mini-hydrocyclone separation; cooling the quench water purified by mini-hydrocyclone separation so as to effect the recycling of water; removing the entrapped catalyst particles from the MTO quench water to be stripped via mini-hydrocyclone separation, so as to reduce the deposition of the catalyst particles within the stripping tower; removing the entrapped catalyst particles from the MTO scrubbing water via mini-hydrocyclone separation; and cooling the scrubbing water purified via mini-hydrocyclone separation so as to effect the recycling of water. The invention also provides an apparatus for purifying MTO quench water and scrubbing water via mini-hydrocyclone separation.
    Type: Grant
    Filed: April 21, 2009
    Date of Patent: December 27, 2011
    Assignees: East China University of Science and Technology, Luoyang Petrochemical Engineering Corporation (LPEC) Sinopec
    Inventors: Hualin Wang, Yanhong Zhang, Qiang Yang, Ji Ma, Zhishan Bai, Yu Liu, Longhu Liang, Lei Shi, Jie Zhang
  • Patent number: 8076526
    Abstract: A process for isolating a conjugated diene from a hydrocarbon mixture is disclosed. The process comprises distilling the hydrocarbon mixture in the presence of an extraction solvent comprising an N,N-dialkyl aliphatic amide and from 12 to 50 weight percent furfural to separate a distillate and a conjugated diene-rich extract; and recovering the conjugated diene from the extract.
    Type: Grant
    Filed: March 30, 2009
    Date of Patent: December 13, 2011
    Assignee: Lyondell Chemical Technology
    Inventor: Robert W. Mason
  • Patent number: 8071835
    Abstract: The invention is directed to a process for producing polyolefins by one or more homogeneous or colloidal polymerization catalyst wherein residual catalyst is removed by using a solid sorbent.
    Type: Grant
    Filed: April 26, 2007
    Date of Patent: December 6, 2011
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Margaret May-Som Wu, Norman Yang, Mark Paul Hagemeister, Shakeel Tirmizi
  • Patent number: 8062599
    Abstract: A catalyst cooled is employed for converting oxygenates to light olefins. The catalyst becomes spent as deposits from the reaction clog up pores on the catalyst surface. A portion of the spent catalyst is regenerated in a regenerator and a portion is circulated back to contact more of the oxygenate feedstream. A catalyst cooler attached to the reactor can cool the spent catalyst circulated through the cooler before the spent catalyst contacts more of the oxygenate feedstream. In an embodiment, all of the spent catalyst that enters the catalyst cooler is withdrawn from the bottom of the catalyst cooler.
    Type: Grant
    Filed: October 1, 2009
    Date of Patent: November 22, 2011
    Assignee: UOP LLC
    Inventor: Lawrence W. Miller
  • Patent number: 8058498
    Abstract: Process for removing oxygen-containing organic compounds from mixtures of hydrocarbon compounds, in which a liquid phase (1) containing hydrocarbons and oxygenates is charged to a first column (3), a light fraction is separated as top product (5) by distillation, and that a heavier C4+ fraction is removed from the bottom, the light fraction (5) and a gaseous mixture of hydrocarbons and oxygenates (2) is charged to a second column (7), and separated into a light and a heavy hydrocarbon fraction distillation, and an additional solvent (6) is supplied to the upper part of the second column (7), which dissolves the oxygenates and, the solvent and oxygenates being discharged as bottom product (9) and a hydrocarbon product (8), which is free from oxygenates leaves the top of the column (7). The solvent optionally is wholly or partly regenerated and recirculated to the extractive distillation column.
    Type: Grant
    Filed: October 11, 2004
    Date of Patent: November 15, 2011
    Inventors: Sandra Jensen, Martin Rothaemel, Harald Koempel, Herrmann Bach, Gerhard Birke
  • Patent number: 8048294
    Abstract: A process for reducing the Bromine Index of a hydrocarbon feedstock, the process comprising the step of contacting the hydrocarbon feedstock with a catalyst at conversion conditions, wherein the catalyst includes at least one molecular sieve and at least one clay, and wherein said catalyst is sufficient to reduce more than 50% of the Bromine Index of a hydrocarbon feedstock.
    Type: Grant
    Filed: April 23, 2010
    Date of Patent: November 1, 2011
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Stephen Harold Brown, Gary David Mohr, Michael Christopher Clark, Selma Lawrence
  • Patent number: 8048295
    Abstract: A process for reducing the Bromine Index of a hydrocarbon feed containing bromine-reactive contaminants that has improved cycle length and utilizes a crystalline molecular sieve catalyst. The process is carried out by contacting the hydrocarbon feed under conversion conditions with a catalyst shaped in the form of an elongated aggregate comprising a crystalline molecular sieve having a MWW or *BEA framework type. The shortest cross-sectional dimension of the elongated aggregate is less about 1/10 inch (2.54 millimeters).
    Type: Grant
    Filed: December 5, 2006
    Date of Patent: November 1, 2011
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Stephen H. Brown, Jose G. Santiesteban, Bryson J. Sundberg, Terry E. Helton, Daria N. Lissy, Jean W. Beeckman, Arthur P. Werner
  • Patent number: 8013201
    Abstract: An improved process for the production of olefins, and in particular for separation of olefins produced by a dehydrogenation process from paraffin feed stocks, is provided. A high pressure product splitter is used to separate olefins produced in a dehydrogenation plant from residual paraffin feed stocks. The use of a high pressure splitter to separate olefin products from paraffin feed stocks allows for recovery of a high purity olefin product with lower energy consumption compared to prior art processes. The process is particularly suited to separation of propylene from propane.
    Type: Grant
    Filed: July 30, 2008
    Date of Patent: September 6, 2011
    Assignee: Lummus Technology Inc.
    Inventor: Sunil Panditrao
  • Patent number: 7994378
    Abstract: This invention presents a process of butadiene-1,3 extraction. The process consists of the procedure of 1st extractive fractionation, 2nd extractive fractionation, distillation and alkyne fractionation. This invention can improve the yield and capacity of butadiene extraction unit by adding an alkyne fractionator to the existing butadiene extraction unit and appropriately adjusting the process condition of 1st and 2nd extractive fractionators. This invention can decrease the energy and material consumption per unit of butadiene-1,3, which greatly improved the economic profit. The investment on various scales of butadiene extraction units for adding alkyne fractionator is almost same. Further more, the profit is in direct proportion with the scale of a plant and output is in several to some dozens of folds to investment. After the implementation of this invention, the discharge of vinyl acetylene offgas can be reduced by around 3400 tons per year, which mitigate the pollution on environment and save energy.
    Type: Grant
    Filed: March 4, 2009
    Date of Patent: August 9, 2011
    Inventors: Minghua Wang, Duoshan Zhao, Meng Wang