By Interaction With Monoolefin Patents (Class 585/844)
  • Publication number: 20150133711
    Abstract: Disclosed are systems and methods which provide a process stream comprising a gaseous component, capture the gaseous component from the process stream by an ionic liquid solvent of a separator, and recover a captured gaseous component from the ionic liquid solvent in a regenerator. A second gaseous component from the process stream may be captured by the ionic liquid solvent of the separator, and the second gaseous component may be recovered from the ionic liquid solvent in the regenerator. Alternatively, the second gaseous component from the process stream may be uncaptured by the ionic liquid solvent, and the uncaptured second gaseous component may be recovered from a membrane unit.
    Type: Application
    Filed: January 15, 2015
    Publication date: May 14, 2015
    Inventors: Lei JI, Ai-Fu CHANG, Michael Sean Driver, Hye-Kyung Cho Timken
  • Publication number: 20150030524
    Abstract: Disclosed are systems and methods which provide a process stream comprising a gaseous component, capture the gaseous component from the process stream by an ionic liquid solvent of a separator, and recover a captured gaseous component from the ionic liquid solvent in a regenerator. A second gaseous component from the process stream may be captured by the ionic liquid solvent of the separator, and the second gaseous component may be recovered from the ionic liquid solvent in the regenerator. Alternatively, the second gaseous component from the process stream may be uncaptured by the ionic liquid solvent, and the uncaptured second gaseous component may be recovered from a membrane unit.
    Type: Application
    Filed: July 23, 2013
    Publication date: January 29, 2015
    Inventors: Lei JI, Ai-Fu CHANG, Michael S. Driver, Hye-Kyung Timken
  • Patent number: 8785710
    Abstract: A method for purifying a paraffin from a source material containing a paraffin having 2 to 6 carbon atoms and an olefin having 2 to 6 carbon atoms includes a first step of bringing the source material into contact with a silver ion-containing solution (absorption liquid) at a predetermined temperature and pressure in an absorption column 1 and recovering a non-absorbed gas not absorbed by the absorption liquid while the olefin in the source material is preferentially absorbed by the absorption liquid, and a second step of desorbing and discharging a gas component from the absorption liquid having undergone the first step at a predetermined temperature and pressure in a desorption column 2. The first step and the second step are performed continuously in parallel while the absorption liquid is circulated between the first step and the second step.
    Type: Grant
    Filed: December 21, 2009
    Date of Patent: July 22, 2014
    Assignee: Sumitomo Seika Chemicals Co., Ltd.
    Inventors: Hiroaki Nago, Shinichi Tai, Junichi Kawakami, Hiroyuki Hata, Shigeru Morimoto
  • Patent number: 8143470
    Abstract: The present invention relates to a method of purifying olefin, the method comprising removing a small amount of acetylenic compounds contained in olefin by using pyrrolidinium-based or piperidinium-based ionic liquid mixtures comprising copper (I) halide. According to the method of the present invention, copper (I) halide is stabilized by pyrrolidinium-based or piperidinium-based ionic liquids, suppressing the oxidation of Cu(I) into Cu(II), whereby the capacity of removing acetylenic compounds can be maintained for a long time and the selective removal rate of acetylenic compounds to olefin can be significantly improved. In addition, since the ionic liquid mixtures comprising copper (I) halide used in the method of the present invention can be applied to both absorption and extraction processes, it can effectively remove acetylenic compounds from olefin in a more simple and economical way compared to the existing adsorption and membrane separation processes.
    Type: Grant
    Filed: February 2, 2010
    Date of Patent: March 27, 2012
    Assignee: Kolon Industries, Inc.
    Inventors: Byoung Sung Ahn, Gyeong Taek Gong, Hoon Sik Kim, Minserk Cheong, Jin Hyung Kim
  • Patent number: 7411107
    Abstract: A process for the oxidation of a C2 to C4 alkane to produce the corresponding alkene and carboxylic acid which process comprises separation of the alkene from a mixture of the alkene, the alkane and oxygen by absorption in a metallic salt solution, and recovery of an alkene-rich stream from the metallic salt solution. Integrated processes for the production of alkyl carboxylate and alkenyl carboxylate, which processes comprise oxidation of a C2 to C4 alkane to produce the corresponding alkene and carboxylic acid, separation of the alkene from a mixture of the alkene, the alkane and oxygen by absorption in a metallic salt solution, and recovery of an alkene-rich stream from the metallic salt solution for use in production of alkyl carboxylate or alkenyl carboxylate.
    Type: Grant
    Filed: February 12, 2003
    Date of Patent: August 12, 2008
    Assignee: BP Chemicals Limited
    Inventor: Andrew Richard Lucy
  • Patent number: 7361800
    Abstract: Chitosan membranes chelated with silver or cuprous material may be used to separate olefins from a mixture of olefins and paraffins. The feed stream is humidified, demisted, treated to remove sulfur compounds and passed to a cell having a chitosan membrane containing chelated silver or cuprous compounds. The process has a reasonable flux rate and is operable at reasonable temperatures and pressures. The process could be used in an olefin separation train.
    Type: Grant
    Filed: April 5, 2004
    Date of Patent: April 22, 2008
    Assignee: Monteco Ltd.
    Inventors: Patricio S. Herrera, Xianshe Feng, John Donald Payzant, Jeong-Hoon Kim
  • Patent number: 6491888
    Abstract: The invention relates to a process for the selective recovery of olefins from a mixture of gases by: a) bringing a gaseous mixture having olefins and hydrogen into contact with silver nitrate solution whereby the olefins are absorbed into the silver nitrate solution as a complex; b) separating the solution having complexed olefins from the non-absorbed gases; c) depressurising and heating the olefin complex solution from (b) so as to release the olefins from the complex and regenerate the silver nitrate solution; d) passing the regenerated silver nitrate solution through a bed containing silver oxide so as to maintain the pH value of the silver nitrate at between 3 and 6; and e) recycling the silver nitrate solution regenerated in (d) to step (a).
    Type: Grant
    Filed: April 27, 2001
    Date of Patent: December 10, 2002
    Assignee: BP Chemicals Limited
    Inventors: Peter Simpson Bell, Eric Nicholas Coker, Karen Small
  • Patent number: 6423881
    Abstract: The invention provides novel adsorbents for use in the separation of unsaturated hydrocarbons from a mixture of gases containing such hydrocarbons. The preferred adsorbents comprise metal compounds supported on high surface area carriers. The adsorbents of the invention are usable in pressure swing adsorption or temperature swing adsorption processes.
    Type: Grant
    Filed: October 22, 1998
    Date of Patent: July 23, 2002
    Assignee: The Regents of the University of Michigan
    Inventors: Ralph T. Yang, Joel Padin, Salil U. Rege
  • Patent number: 6297414
    Abstract: The present invention provides an improved method for deep selective hydrogenation for use in recovering high purity olefins from cracked gas effluents or other paraffin/olefin gaseous mixtures by use of a chemical absorption process.
    Type: Grant
    Filed: October 8, 1999
    Date of Patent: October 2, 2001
    Assignee: Stone & Webster Process Technology, Inc.
    Inventors: Richard Barchas, Peter Bell
  • Patent number: 6147273
    Abstract: Olefins may be separated from paraffins, particularly those having the same number of carbon atoms, more easily than by fractional distillation by contacting a feed containing both materials with an aqueous solution of silver nitrate and nitric acid. The olefins form water soluble complexes with silver and are recovered by heating the water to decompose the complexes, thereby producing an olefin concentrate. In the absence of nitric acid contaminant hydrogen reduces the silver to metal and causes it to form colloidal solids and acetylenes form explosive solid compounds with silver. The nitric acid prevents the formation of insoluble solids by hydrogen and causes the silver acetylides to decompose during the olefin recovery step. Carrying out multiple stages of extraction and recovery can produce very high purity olefin.
    Type: Grant
    Filed: July 20, 1998
    Date of Patent: November 14, 2000
    Assignee: MC International Research
    Inventors: Michael J. Stickney, Edward M. Jones, Jr., M. S. Chandrasekharaiah
  • Patent number: 5863420
    Abstract: A process disclosed for the separation, purification and recovery of an unsaturated hydrocarbon from its mixture with at least one other material using a facilitated transport liquid membrane system.
    Type: Grant
    Filed: October 15, 1996
    Date of Patent: January 26, 1999
    Inventors: Vincent J. Kwasniewski, Narasimhan Calamur, Mark P. Kaminsky, John A. Mahoney, Charles G. Scouten, Richard A. Wilsak
  • Patent number: 5859304
    Abstract: The present invention provides an improved method for recovering high purity olefins from cracked gas effluents or other parafin/olefin gaseous mixtures by use of a chemical absorption process.
    Type: Grant
    Filed: December 13, 1996
    Date of Patent: January 12, 1999
    Assignee: Stone & Webster Engineering Corp.
    Inventors: Richard Barchas, Richard McCue, Jr., Christopher Wallsgrove, Mark Whitney
  • Patent number: 5191151
    Abstract: A process for separating C.sub.2 -C.sub.4 alkenes from C.sub.1 -C.sub.6 alkanes comprises the presence of water vapor in the alkene/alkane feed and the use of an Ag.sup.+ -exchanged sulfonated copolymer of tetrafluoroethylene and perfluorovinyl ether having been prepared by one of several specific ion-exchange methods.
    Type: Grant
    Filed: December 18, 1991
    Date of Patent: March 2, 1993
    Assignee: Phillips Petroleum Company
    Inventors: Odd I. Eriksen, Elin Aksnes, Ivar M. Dahl, Fu-Ming Lee
  • Patent number: 4943673
    Abstract: A process for absorbing olefinically-unsaturated hydrocarbon compounds from feedstreams containing such compounds by contacting said feed streams with metal-diketone absorbents of the formula: ##STR1## wherein R.sub.1 is trichloroemthyl or R.sub.F ; R.sub.F is C.sub.n F.sub.2n+1 and n is 1-8; R.sub.2 is H or hydrocarbyl of 2-20 carbon atoms having at least one olefinic unsaturated bond; M.sup.I is Cu.sup.I or Ag.sup.I and R.sub.3 is hydrocarbyl of 2-20 carbon atoms having at least one olefinic unsaturated bond.
    Type: Grant
    Filed: October 17, 1988
    Date of Patent: July 24, 1990
    Assignee: Air Products and Chemicals, Inc.
    Inventors: John A. T. Norman, Robert E. Stevens
  • Patent number: 4400564
    Abstract: A process and apparatus for separating monoolefins from diolefins comprising contacting a mixture of monoolefins and diolefins with a complexing agent selected from the group consisting of copper(I) salts of sulfonic acids and copper(I) salts of dialkylphosphates and a suitable hydrocarbon solvent for the complexing agent under such conditions that the monoolefins and diolefins form complexes with the complexing agent. The monoolefin complex can be separated from the diolefin complex based either on the relative solubilities of the two complexes in the hydrocarbon solvent for the complexing agent or based on the relative strengths of the two complexes.
    Type: Grant
    Filed: April 14, 1980
    Date of Patent: August 23, 1983
    Assignee: Phillips Petroleum Company
    Inventors: Marvin M. Johnson, Donald C. Tabler
  • Patent number: 4398052
    Abstract: A process and apparatus for separating monoolefins from other monoolefins comprising contacting a mixture of different monoolefins with a complexing agent selected from the group consisting of copper (I) salts of sulfonic acids and copper (I) salts of dialkyl phosphates and a suitable hydrocarbon solvent for the complexing agent under such conditions that the monoolefins form different strength complexes with the complexing agent. The different strength of the complexes provides a mechanism by which even closely boiling monoolefin isomers may be separated.
    Type: Grant
    Filed: April 14, 1980
    Date of Patent: August 9, 1983
    Assignee: Phillips Petroleum Company
    Inventors: Donald C. Tabler, Marvin M. Johnson
  • Patent number: 4385005
    Abstract: A process of removing unsaturated hydrocarbons containing at least one non-aromatic unsaturation from feedstreams which comprises contacting the feedstream with at least one of Cu.sub.2 O or Ag.sub.2 O and a fluorinated acetylacetonate of the formula ##STR1## where R.sup.1 is C.sub.1 -C.sub.6 fluoroalkyl, C.sub.1 -C.sub.8 alkyl, C.sub.4 -C.sub.6 heterocycle containing O, S or N or C.sub.6 -C.sub.10 aryl, R.sup.2 is H or C.sub.1 -C.sub.6 alkyl with the proviso that R.sup.1 and R.sup.2 together with the carbons to which they are attached may be joined together to form a C.sub.6 ring and n is from 1 to 8, in an inert organic solvent.
    Type: Grant
    Filed: July 13, 1981
    Date of Patent: May 24, 1983
    Assignee: Exxon Research and Engineering Co.
    Inventor: Gerald Doyle
  • Patent number: 4328382
    Abstract: An improved process for the absorption of an olefin in a silver salt solution and the recovery thereof by desorption is disclosed wherein the silver salt of the silver salt solution is silver trifluoroacetate.
    Type: Grant
    Filed: October 20, 1980
    Date of Patent: May 4, 1982
    Assignee: EC Erdolchemie GmbH
    Inventors: Eduard Alter, Ludwig Bruns
  • Patent number: 4174353
    Abstract: There is disclosed a process for the separation of ethylene or propylene from a purified, multi-component gas stream produced from the thermal cracking of hydrocarbons and containing ethylene or propylene and other low molecular weight components comprising the steps of: introducing said multi-component gas stream into an aqueous silver salt solution stream to effect the absorption and/or complexing of said contained ethylene or propylene and reaction of trace acetylenes with the silver metal ions of such solution; venting of the silver salt solution stream at reduced pressure to remove the dissolved other low molecular weight components; treating the resulting silver salt solution stream to separate the absorbed and/or complexed ethylene or propylene from the silver salt stream; further treating the resultant silver salt solution stream to release the contained trace acetylenes therefrom and provide an aqueous silver salt stream; and recycling said aqueous silver salt stream to said introducing step.
    Type: Grant
    Filed: June 27, 1978
    Date of Patent: November 13, 1979
    Assignee: Union Carbide Corporation
    Inventors: Arthur E. Marcinkowsky, George E. Keller, II, Surendra K. Verma
  • Patent number: 4154770
    Abstract: This invention relates to an improved process for the alkylation of olefins in an alkylation unit feed stream in order to produce a higher yield of alkylate having a higher octane number, a lower acid consumption rate, and a lower energy consumption. Such a process involves passing a feed stream comprised of olefins and paraffins through a membrane so that the olefins are separated from the paraffins. In passing through the membrane, the olefins are facilitated in their transport by an isoparaffin sweep stream and together, the olefin/isoparaffin stream is passed into an alkylation reactor. Within the reactor, the olefins react with the isoparaffins to form alkylate.
    Type: Grant
    Filed: June 28, 1978
    Date of Patent: May 15, 1979
    Assignee: Standard Oil Company (Indiana)
    Inventor: Richard D. Kaplan