Abstract: A method for separating dimethyl carbonate from methanol includes subjecting a raw material containing dimethyl carbonate and methanol to extractive distillation. The extractant contains an ionic liquid and a compound having a general formula of CH3O(CH2CH2O)nCH3, n being an integer of 2-8. The ionic liquid is an imidazole ionic liquid, a pyridine ionic liquid, or a mixture thereof.
Type:
Grant
Filed:
August 28, 2018
Date of Patent:
October 27, 2020
Assignees:
China Petroleum & Chemical Corporation, Shanghai Research Institute of Petrochemical Technology, SINOPEC
Abstract: Systems and methods for improved column operation in offshore environments by using a co-current contactor system in floating production, storage and offloading (FPSO) systems.
Type:
Grant
Filed:
June 19, 2014
Date of Patent:
October 29, 2019
Assignee:
Bechtel Hydrocarbon Technology Solutions, Inc.
Inventors:
Guang-Chung Lee, Sudhir Golikeri, Jie Yu
Abstract: A process for the distillative separation of ethylbenzene from a mixture comprising ethylbenzene and at least one other C8 aromatic compound, comprising introducing a feed stream comprising said mixture into a first distillation column, introducing a first stream comprising a heavy solvent above the feed stream into the first distillation column, introducing an aqueous stream below the feed stream into the first distillation column.
Abstract: One exemplary embodiment can be a process for removing one or more sulfur compounds from a first liquid. The process can include passing the first liquid through a first inlet and a second liquid through a second inlet, and passing the first liquid through a first outlet and the second liquid through a second outlet of a vessel. The vessel may further have a plurality of vortex contactors. Often, the plurality of vortex contactors has a first vortex contactor, in turn including at least one wall and a frustum. The at least one wall can form a perimeter about an interior space and include a first side and a second side forming a passageway communicating the first liquid from an exterior to the interior space, and a frustum positioned proximate to the passageway and abutting the at least one wall for facilitating contacting of the first and second liquids to extract the one or more sulfur compounds from the first liquid to the second liquid.
Type:
Grant
Filed:
December 10, 2012
Date of Patent:
October 4, 2016
Assignees:
UOP LLC, BORESKOV INSTITUTE OF CATALYSIS
Inventors:
Aziz Sattar, Daniel K. Aiken, Andrey Kuzmin
Abstract: The present invention provides a method of increasing the efficiency of exothermic CO2 capture processes. The method relates to withdrawing heat generated during the exothermic capture of CO2 with various sorbents via heat exchange with a working fluid. The working fluid is provided at a temperature and pressure such that it is in the liquid state, and has a vaporization temperature in a range such that the heat arising from the reaction of the CO2 and the sorbent causes a phase change from liquid to vapor state in whole or in part and transfers heat from to the working fluid. The resulting heated working fluid may subsequently be used to generate power.
Abstract: A process for recovering ethylene is disclosed, the process including: recovering a ethylene-containing stream comprising methane, ethylene, and nitrogen oxides from at least one of an ethylene production process and an ethylene recovery process; separating the ethylene-containing stream via extractive distillation using at least one C2+ hydrocarbon absorbent to produce an overheads fraction comprising methane and nitrogen oxides and a bottoms fraction comprising the at least one C2+ hydrocarbon absorbent and ethylene; wherein the separating comprises operating the extractive distillation at temperatures and pressures sufficient to prevent any substantial conversion of nitrogen oxides to N2O3.
Type:
Grant
Filed:
March 18, 2013
Date of Patent:
February 10, 2015
Assignee:
Lummus Technology Inc.
Inventors:
Stephen J. Stanley, Stephen De Haan, Peter Daniel Kuzma, Jr.
Abstract: We provide a method for making hydrocarbon products with reduced organic halide contamination, comprising: a. separating an effluent from an ionic liquid catalyzed hydrocarbon conversion reaction into: i. a hydrocarbon fraction comprising an organic halide contaminant and from greater than zero to less than 5000 wppm olefins; and ii. a used ionic liquid catalyst fraction comprising a used ionic liquid catalyst; and b. contacting the hydrocarbon fraction with an aromatic hydrocarbon reagent and an ionic liquid catalyst to reduce a level of the organic halide contaminant to from greater than zero to 20 wppm in a finished hydrocarbon product.
Abstract: A method and a product made by treating a sulfur-containing hydrocarbon heavy feed, e.g., heavy crude asphaltene reduction is disclosed herein. The method comprises the steps of: mixing the sulfur-containing hydrocarbon heavy feed with a hydrogen donor solvent and an acidified silica to form a mixture and oxidizing the sulfur in the mixture at a temperature between 50° C. and 210° C., wherein the oxidation lowers the amount sulfur in the sulfur-containing hydrocarbon heavy feed by at least 90%.
Type:
Grant
Filed:
June 5, 2013
Date of Patent:
December 2, 2014
Assignee:
Board of Regents, The University of Texas System
Inventors:
Karina Castillo, Jason Parsons, Russell R. Chianelli
Abstract: The present invention relates to a method and system for recovering aromatics from a naphtha feedstock obtained from a crude petroleum, natural gas condensate, or petrochemical feedstock. The method and system comprise the steps of recovering an aromatics fraction from the feedstock prior to reforming.
Abstract: Methods of and apparatuses for upgrading a hydrocarbon stream are provided. In an embodiment, a method of upgrading a hydrocarbon stream includes providing the hydrocarbon stream that includes a deoxygenated pyrolysis product. The hydrocarbon stream also includes a residual oxygen-containing compound content. The residual oxygen-containing compound content of the hydrocarbon stream is reduced to form an upgraded hydrocarbon stream.
Type:
Application
Filed:
May 9, 2013
Publication date:
November 13, 2014
Inventors:
Lance Awender Baird, Douglas B. Galloway, Tom N. Kalnes
Abstract: A process for producing a purified hydrocarbon stream can include contacting a hydrocarbon stream contaminated with one or more organoaluminum compounds with a chemical agent that is capable of reacting with the one or more organoaluminum compounds.
Abstract: The present invention provides a method for preparing the polymer grade low-carbon olefin through separation of the methanol pyrolysis gas, including steps of the compression, impurity removal, and absorption and separation. In the absorption and separation step, the pyrolysis gas is sent to the front-end ethylene removing column, and then is, with the C4 absorbent, further absorbed and separated to produce polymer grade ethylene products, polymer grade propylene products, and C4 and C5 products. The moderate-temperature and moderate-pressure separation without a cold box according to the present invention provides safer production process, less investment in the equipment, as well as easier separation and lower energy consumption as a result of the front-end ethylene removing and C4 absorption and separation process.
Type:
Grant
Filed:
July 27, 2007
Date of Patent:
October 7, 2014
Assignees:
China MTO Limited, Daqing Petrochemical Engineering Co., Ltd.
Inventors:
Huiling Zhang, Longwu Cheng, Zhiyuan Song, Xiaojian Min
Abstract: The present invention is a process for removing oxygenated contaminants and water from an hydrocarbon stream comprising: introducing the contaminated hydrocarbon stream in a gaseous phase in an absorption zone, contacting said hydrocarbon stream in said absorption zone at a pressure of at least 5 bars, advantageously in the range 5 to 40 bars with an alcohol capable to absorb water and oxygenated contaminants at conditions effective to produce an overhead hydrocarbon stream having a reduced oxygenated contaminants and water content and an absorbent bottoms stream comprising the alcohol, hydrocarbons and having an enhanced oxygenated contaminants and water content, sending the overhead of the absorption zone to a wash column (referred to as the high pressure water wash column) at a pressure of at least 5 bars, advantageously in the range 5 to 40 bars, essentially washed with water at conditions effective to produce an overhead hydrocarbon stream having a reduced oxygenated contaminants and an aqueous bott
Abstract: The invention relates to a method for producing low-odor n-butane by catalytic hydrogenation of a feed mixture. The aim of the invention is to provide such a method, wherein the feed material, in addition to n-butane, n-butene and up to 1 mass % formic acid and/or up to 1 mass % pentanals and/or up to 0.5 mass % pentanols, also comprises carbon monoxide. The aim is achieved by treating the feed mixture in the temperature range of 15 to 120° C. with an aqueous solution of an alkali metal or alkaline earth metal hydroxide in the concentration range of 0.5 to 30 mass % and subsequently subjecting the feed mixture to the catalytic hydrogenation.
Type:
Grant
Filed:
May 21, 2010
Date of Patent:
September 30, 2014
Assignee:
Evonik Degussa GmbH
Inventors:
Hans-Gerd Lueken, Alfred Kaizik, Markus Winterberg, Wilfried Bueschken, Dirk Fridag
Abstract: An auxiliary sour gas treatment system for treating a stream of sour gas during a time wherein a primary gas treatment facility is unavailable, malfunctioning, inadequate or inoperable. The auxiliary sour gas treatment system comprises a lean solvent storage system to store an appreciable volume of a regenerable lean solvent available on demand. A scrubber to treat an influent supply of the sour gas by contacting the sour gas and the lean solvent which chemically or physically binds the contaminants in the sour gas resulting in a cleaned gas suitable for disposal or use as a fuel, and the solvent in an enriched state that contains the removed contaminants. The enriched solvent resulting from treatment may be stored indefinitely in a rich solvent storage system and then regenerated at any convenient time and at any convenient rate or place to remove the contaminants from the rich solvent.
Abstract: A process comprising receiving a hydrocarbon feed stream comprising carbon dioxide, separating the hydrocarbon feed stream into a light hydrocarbon stream and a heavy hydrocarbon stream, separating the light hydrocarbon stream into a carbon dioxide-rich stream and a carbon dioxide-lean stream, and feeding the carbon dioxide-lean stream into a hydrocarbon sweetening process, thereby increasing the processing capacity of the hydrocarbon sweetening process compared to the processing capacity of the hydrocarbon sweetening process when fed the hydrocarbon feed stream.
Abstract: The present invention relates to a process for desulfurizing heavy oil feedstreams with alkali metal compounds and improving the compatibility of the to stream components in either the feed stream, an intermediate product stream, and/or the reaction product stream in the desulfurization process. The present invention utilizes a high stability aromatic-containing stream that is preferably added to the heavy oil prior to reaction with the alkali metal compounds. The resulting stream resists precipitation of reaction solids in the desulfurization reactors. Even more preferably, the desulfurization system employs at least two desulfurization reactors in series flow wherein the high stability aromatic-containing stream is contacted with the reaction product from the first reactor prior to the second reactor, wherein the first reactor can be operated at a higher severity than without the use of the high stability aromatic-containing component stream.
Type:
Grant
Filed:
November 3, 2009
Date of Patent:
July 15, 2014
Assignee:
ExxonMobil Research and Engineering Company
Inventors:
Michael F. Raterman, Daniel P. Leta, Walter D. Vann, Roby Bearden, Jr.
Abstract: High temperatures and oxygen exposure during extractive distillation can result in polymerization of vinyl aromatic compounds. In various embodiments, the present disclosure relates to methods for inhibiting polymerization of vinyl aromatic compounds during extractive distillation. In various embodiments, the methods include a) providing a mixture containing at least one vinyl aromatic compound, b) adding at least one dinitrophenol inhibitor to the mixture, and c) after step b), performing an extractive distillation on the mixture to isolate the at least one vinyl aromatic compound. Purified styrene can be isolated by the methods described herein. In some embodiments, the dinitrophenol inhibitor is 2-sec-butyl-4,6-dinitrophenol (DNBP).
Type:
Grant
Filed:
February 15, 2010
Date of Patent:
July 8, 2014
Assignee:
GTC Technology LP
Inventors:
Amy Sealey, George A. Ball, B. Bryant Slimp, Jr.
Abstract: The present invention is related to a process oil using as a raw material a deasphalted oil obtained by deasphalting a vacuum residual oil of a crude oil and a manufacturing method of the process oil, the process oil having properties of: (a) a polycyclic aromatics (PCA) content of less than 3 mass %; (b) a viscosity (100° C.) of 40 to 70 mm2/s; (c) an aniline point of 85 to 100° C.; (d) a flash point of 250° C. or higher; (e) an aromatic hydrocarbon content of 40 to 55 mass %; and (f) a polar substance content of 10 to 15 mass %. The present invention is also related to a process oil and a manufacturing method of the process oil, the process oil obtained by mixing: an extract obtained by deasphalting and solvent-extracting a vacuum residual oil of a crude oil; and a lubricant base oil having a polycyclic aromatics (PCA) content of less than 3 mass %, and having properties of: (a) a polycyclic aromatics (PCA) content of less than 3 mass %; (i) a viscosity (100° C.
Abstract: One exemplary embodiment can be a process for removing one or more sulfur compounds from a first liquid. The process can include passing the first liquid through a first inlet and a second liquid through a second inlet of a vessel, passing the first and second liquids through the passageway for facilitating contacting of the first and second liquids to extract the one or more sulfur compounds from the first liquid to the second liquid, and passing the first liquid through the first outlet and the second liquid through the second outlet. Often, the vessel has a plurality of vortex contactors, and a first outlet and a second outlet. The plurality of vortex contactors can include a first vortex contactor, in turn having at least one wall forming a perimeter about an interior region and including a first side and a second side forming a passageway communicating the first liquid from an exterior to the interior region, and a frustum positioned proximate to the passageway and abutting the at least one wall.
Type:
Application
Filed:
December 10, 2012
Publication date:
June 12, 2014
Applicants:
Boreskov Institute of Catalysis, Siberian Branch of Russian Academy of Sciences, UOP LLC
Inventors:
Andrey Kuzmin, Aziz Sattar, Lev Davydov, Jonathan Andrew Tertel
Abstract: Systems and methods are provided herein for cooling an olefin cracking reactor effluent stream. One provided method includes reacting a hydrocarbon feedstock including C4+ olefins in an olefin cracking reactor to produce an olefin cracking reactor effluent stream, providing the olefin cracking reactor effluent stream to an inlet of a contact cooler, contacting the olefin cracking reactor effluent stream with a first quench liquid in a first contact zone in the contact cooler to produce a first bottoms stream and an intermediate vapor stream, contacting the intermediate vapor stream with a second quench liquid in a second contact zone in the contact cooler to produce a second bottoms stream and a cooled vapor stream, and removing the cooled vapor stream from an outlet of the contact cooler. The method can also include cooling the first bottoms stream to provide a cooled first bottoms stream, and cooling the second bottoms stream to provide a cooled second bottoms stream.
Abstract: The present invention is a process for the production of styrene monomer from ethylbenzene comprising the steps of: a) catalytically dehydrogenating said ethylbenzene in the presence of steam thereby catalytically producing a dehydrogenation effluent gas containing essentially unreacted ethylbenzene, styrene monomer, hydrogen, steam and divinylbenzene; b) quenching said effluent gas with an aqueous reflux in at least a quenching column to cool said effluent gas, and thereby obtaining a gas at the overhead and in the bottom a liquid stream warmer than the aqueous reflux; c) condensing said overhead gas thereby producing a liquid organic phase, an aqueous phase and a gaseous phase; d) using a portion or the whole of said aqueous phase of step c) as reflux for said step b) of quenching; e) sending to a decanter the liquid stream obtained at step b) to recover an aqueous phase and an organic phase.
Abstract: Process for removing water from an ethylene stream containing water, by introducing an ethylene stream containing water into, and circulating the ethylene stream through, a separation vessel. A liquid diethyl ether stream is introduced into, and circulated through, the separation vessel so that the liquid diethyl ether stream and the ethylene stream containing water are brought into contact, and an ethylene stream having a reduced water content is recovered from the separation vessel.
Type:
Grant
Filed:
August 10, 2010
Date of Patent:
April 1, 2014
Assignee:
BP P.L.C.
Inventors:
Leslie William Bolton, Benjamin Patrick Gracey, Michael Keith Lee
Abstract: A method of extracting hydrocarbon-containing organic matter from a hydrocarbon-containing material includes the steps of providing a first liquid comprising a turpentine liquid; contacting the hydrocarbon-containing material with the turpentine liquid to form an extraction mixture; extracting the hydrocarbon material into the turpentine liquid; and separating the extracted hydrocarbon material from a residual material not extracted.
Type:
Grant
Filed:
February 26, 2013
Date of Patent:
April 1, 2014
Assignee:
Green Source Energy LLC
Inventors:
Liang-tseng Fan, Shahram Reza Shafie, Julius Michael Tollas, William Arthur Fitzhugh Lee
Abstract: One exemplary embodiment can be a process for removing one or more disulfide compounds from a caustic stream. The process can include passing the caustic stream, previously contacted with a hydrocarbon stream for removing one or more mercaptans, through a column to remove the one or more disulfide compounds downstream of a mercaptan oxidation zone. The caustic stream can be contacted with a solvent stream comprising one or more hydrocarbons in a column. The solvent stream can be passed to a plurality of beds for removal of extracted disulfides from the solvent over an adsorbent.
Abstract: A method for cross connecting the lean solvent supply lines between the liquid liquid extraction (LLE) and the extractive distillation (ED) processes thereby using the LLE column as the outlet for removing accumulated heavy hydrocarbons (HCs) and polymeric materials from the solvent loop of both processes to maintain their solvent performance. The unique capabilities of the LLE column in rejecting heavy HCs from the solvent into a raffinate product stream that leaves the system enable the removal of the accumulated heavy HCs and polymeric materials from the closed solvent loop of the ED process when their lean solvent loop are cross connected. Cross connection requires minimum equipment change. In the revamped system, the solvent recovery column (SRC) in LLE process supplies lean solvent for the extractive distillation column while the SRC of the ED process supplies lean solvent for LLE column.
Type:
Grant
Filed:
February 27, 2013
Date of Patent:
March 25, 2014
Assignees:
AMT International, Inc., CPC Corporation, Taiwan
Abstract: A method for the removal of nitrogen compounds from FCC feed or from catalytically cracked distillates including FCC cycle oils by using formaldehyde to selectively couple organic heterocyclic nitrogen species in the FCC feed or FCC distillate to form higher boiling coupling products out of the boiling range of FCC distillate. Removal of the nitrogenous compounds improves the operation of subsequent hydrodesulfurization steps needed for the distillate fraction to conform to low sulfur standards. The formaldehyde is preferably used in the form of paraformaldehyde. The reaction between the nitrogenous compounds in the cycle oil fraction with the formaldehyde is conveniently carried out in the cycle oil pumparound circuit of the FCC main column.
Type:
Grant
Filed:
October 20, 2010
Date of Patent:
March 18, 2014
Assignee:
ExxonMobil Research and Engineering Company
Inventors:
Stacey E. Siporin, David Thomas Ferrughelli, Steven S. Lowenthal, Randolph J. Smiley, Alan Roy Katritzky, Bruce R. Cook
Abstract: Described is an apparatus for, and a method of, recovering linear butenes from a mixed feed comprising providing a first mixed feed comprising linear butenes and isobutene; contacting the first mixed feed with an oligomerization catalyst such as an MWW family zeolite in a first oligomerization reactor to produce a second mixed feed comprising the linear butenes, C8 olefins and higher oligomers, and a reduced amount of isobutene relative to the first mixed feed; and separating the second mixed feed to produce a first effluent of first purified linear butenes, and a second effluent of C8 olefins and higher oligomers. The oligomerization reactor may be a converted isobutene-to-methyl-t-butylether reactor.
Type:
Grant
Filed:
August 28, 2008
Date of Patent:
March 11, 2014
Assignee:
ExxonMobil Chemical Patents Inc.
Inventors:
Katherine Sullivan Phillion, Garland B. Brignac, Michael C. Clark, Glenn J. Moloney, Donald J. Norris, Benjamin S. Umansky
Abstract: Solvent regeneration to recover a polar hydrocarbon (HC) selective solvent substantially free of hydrocarbons (HCs) and other impurities from a solvent-rich stream containing selective solvent, heavy HCs, and polymeric materials (PMs) generated from reactions among thermally decomposed or oxidized solvent, heavy HCs, and additives is provided. A combination of displacement agent and associated co-displacement agent squeezes out the heavy HCs and PMs from the extractive solvent within a solvent clean-up zone. Simultaneously, a filter equipped with a magnetic field is positioned in a lean solvent circulation line to remove paramagnetic contaminants. The presence of the co-displacement agent significantly enhances the capability of the displacement agent in removing the heavy HCs and PMs from the extractive solvent.
Type:
Grant
Filed:
March 3, 2013
Date of Patent:
March 4, 2014
Assignees:
AMT International, Inc., CPC Corporation, Taiwan
Abstract: The catalyst comprises from 0.01 to 0.5% by weight of platinum, based on the catalyst, and optionally tin, with the weight ratio of Sn:Pt being from 0 to 10, on zeolite A as support.
Type:
Application
Filed:
July 1, 2013
Publication date:
January 9, 2014
Inventors:
Alireza Rezai, Gauthier Luc Maurice Averlant, Petr Kubanek, Martin Dieterle, Thomas Heidemann
Abstract: Embodiments of methods for purifying a biomass-derived pyrolysis oil are provided. The method comprises the step of contacting the biomass-derived pyrolysis oil with a first deoxygenating catalyst in the presence of hydrogen at first predetermined hydroprocessing conditions to form a first low-oxygen biomass-derived pyrolysis oil effluent. The low-oxygen biomass-derived pyrolysis oil effluent is contacted with an ionic liquid to remove phenolic compounds, nitrogen compounds and other impurities. This ionic liquid step may be followed by a second deoxygenation step or the deoxygenating may be completed and then followed by the ionic liquid purification step.
Type:
Application
Filed:
October 2, 2012
Publication date:
January 2, 2014
Applicant:
UOP LLC
Inventors:
Beckay J. Mezza, Haiyan Wang, Alakananda Bhattacharyya, Christopher P. Nicholas
Abstract: A TSRU for recovering solvent from solvent diluted tailings includes a separation apparatus receiving the tailings and producing solvent and solvent recovered tailings. The separation apparatus includes a vessel, a tailings outlet, a solvent outlet, a tailings inlet for supplying a variable flow of the tailings to the vessel and a tailings recycle line connected to the tailings inlet for recycling part of the solvent recovered tailings into the variable flow of the diluted tailings to produce a flow rate controlled feed for introduction into the vessel. A tailings solvent recovery process includes separating the diluted tailings into recovered solvent and solvent recovered tailings, discharging the solvent recovered tailings, and recycling a portion of the solvent recovered tailings back into the variable flow of the diluted tailings. A method of controlling feed flow rate to a tailings solvent recovery vessel is also provided.
Type:
Application
Filed:
February 23, 2012
Publication date:
December 26, 2013
Applicant:
Fort Hills Energy L.P.
Inventors:
Ryan Duerr, Shawn Van Der Merwe, Tom Hann
Abstract: The present invention describes a n-butane absorption process for purifying the ethylene product from an ethane oxidation process. The ethane oxidation product is fed to a series of absorption towers using a n-butane solvent that remove the inert components as well as purifying the ethylene from the product. A first absorption tower uses n-butane as a solvent to absorb both the ethane and ethylene, allowing for inert gasses to be removed from the stream. An ethylene-rich side stream from this tower is sent to an ethylene purification tower where ethylene is purified using n-butane solvent. The bottom stream from the first absorption tower is then sent to an intermediate ethylene recovery tower where crude ethylene is purified, and the overhead ethylene stream being sent to the ethylene purification tower.
Abstract: The present invention relates to a process for recovering polar hydrocarbons from non-polar hydrocarbons, such as aromatics from non-aromatics, naphthenes from paraffins and isoparaffins, or olefins from paraffins and isoparaffins, in feed mixtures containing at least a measurable amount of heavier hydrocarbons. According to the invention, an improved extractive distillation (extractive-distillation) process is disclosed for recovering aromatic hydrocarbons including benzene, toluene, and xylenes from heavy (C9+) hydrocarbons. The invention also relates to an improved extractive-distillation process for recovering mainly benzene and toluene from the C6-C7 petroleum streams containing at least a measurable amount of C8+ hydrocarbons.
Type:
Grant
Filed:
March 23, 2012
Date of Patent:
October 8, 2013
Assignee:
UOP LLC
Inventors:
Robert J. L. Noe, Bruce R. Beadle, Lawrence E. Sullivan
Abstract: A process for the separation of the aromatic compounds benzene, toluene and xylene from an aromatics-containing reformate gasoline and pyrolysis gasoline or a coke-oven light oil or an aromatics-containing refinery stream, in which the aromatics are separated by an extractive distillation uses a novel solvent combination made up of the compounds n,n?-diformyl piperazine or 2,2?-bis-(cyanoethyl)ether in a combination with n-formyl morpholine as a second solvent for extractive distillation so that the solvent combination obtained shows a higher selectivity with regard to the aromatics to be extracted so that a lower solvent load is required. The aromatics-containing feed mixture is first submitted to a pre-distillation so that the obtained fraction has a narrow boiling point range. This fraction is then submitted to an extractive distillation in a first column, in which an aromatics-lean head product of predominantly paraffinic hydrocarbons is obtained as well as an aromatics-enriched bottom product.
Type:
Grant
Filed:
August 5, 2008
Date of Patent:
September 17, 2013
Assignee:
UHDE GmbH
Inventors:
Oliver Noll, Helmut Gehrke, Christian Luebbecke, Baerbel Kolbe
Abstract: A method comprising receiving a hydrocarbon feed stream, separating the hydrocarbon feed stream into a heavy hydrocarbon rich stream and a carbon dioxide recycle stream, separating the carbon dioxide recycle stream into a natural gas liquids (NGL) rich stream and a purified carbon dioxide recycle stream, and injecting the purified carbon dioxide recycle stream into a subterranean formation. Included is a method comprising selecting a first recovery rate for a NGL recovery process, estimating the economics of the NGL recovery process based on the first recovery rate, selecting a second recovery rate that is different from the first recovery rate, estimating the economics of the NGL recovery process based on the second recovery rate, and selecting the first recovery rate for the NGL recovery process when the estimate based on the first recovery rate is more desirable than the estimate based on the second recovery rate.
Abstract: The present invention is a process for removing oxygenated contaminants and water from an hydrocarbon stream comprising: introducing the contaminated hydrocarbon stream in a gaseous phase in an absorption zone, contacting said hydrocarbon stream in said absorption zone with an absorbent capable to absorb water and oxygenated contaminants at conditions effective to produce, an overhead hydrocarbon stream having a reduced oxygenated contaminants and water content and an absorbent bottoms stream comprising the absorbent, hydrocarbons and having an enhanced oxygenated contaminants and water content, introducing the above absorbent bottoms stream in a stripping zone at conditions effective to produce, an absorbent bottoms stream essentially free of hydrocarbons, oxygenated contaminants and water and an overhead stream comprising essentially hydrocarbons, water and the oxygenated contaminants, recycling the absorbent bottoms stream of the stripping zone to the absorption zone, optionally fractionating the ov
Abstract: A method for suppressing isomerization of an olefin metathesis product produced in a metathesis reaction includes adding an isomerization suppression agent to a mixture that includes the olefin metathesis product and residual metathesis catalyst from the metathesis reaction under conditions that are sufficient to passivate at least a portion of the residual metathesis catalyst. The isomerization suppression agent is phosphorous acid, a phosphorous acid ester, phosphinic acid, a phosphinic acid ester or combinations thereof. Methods of refining natural oils are described.
Type:
Application
Filed:
December 22, 2011
Publication date:
June 27, 2013
Inventors:
Bruce E. Firth, Sharon E. Kirk, Vasudeo S. Gavaskar
Abstract: A method for suppressing isomerization of an olefin metathesis product produced in a metathesis reaction includes adding an isomerization suppression agent that includes nitric acid to a mixture that includes the olefin metathesis product and residual metathesis catalyst from the metathesis reaction under conditions that are sufficient to passivate at least a portion of the residual metathesis catalyst. Methods of refining a natural oil are described.
Abstract: The invention concerns the control of solvent systems in processes and apparatus for the separation of aromatic hydrocarbons from non-aromatic hydrocarbons in liquid-liquid extraction, extractive distillation, and the combination thereof.
Type:
Grant
Filed:
January 6, 2012
Date of Patent:
June 25, 2013
Assignee:
ExxonMobil Chemical Patents Inc.
Inventors:
John Joseph Monson, Arnold Hee-Sur Choi, Dana Lynn Pilliod
Abstract: Apparatuses and systems for removing heavy hydrocarbons from a solvent stream are disclosed herein. The apparatuses extract heavy hydrocarbons into light hydrocarbons and provide a solvent stream having the heavy hydrocarbons removed. Two water washing steps are used to remove residual solvent from the heavy hydrocarbon solution in light hydrocarbons. In some embodiments, the second water wash is used for processing subsequent batches of the solvent stream. The heavy hydrocarbons and solvent can be recovered and processed further. Methods for removing heavy hydrocarbons from a solvent stream are also disclosed herein.
Type:
Grant
Filed:
December 8, 2009
Date of Patent:
June 4, 2013
Assignee:
GTC Technology US, LLC
Inventors:
Mircea Cretoiu, Joseph C. Gentry, Pradeep Pawar, Song Wang
Abstract: The present invention is a process for the production of styrene monomer from ethylbenzene comprising the steps of: a) catalytically dehydrogenating said ethylbenzene in the presence of steam thereby catalytically producing a dehydrogenation effluent gas containing essentially unreacted ethylbenzene, styrene monomer, hydrogen, steam and divinylbenzene; b) quenching said effluent gas with an aqueous reflux in at least a quenching column to cool said effluent gas, and thereby obtaining a gas at the overhead and in the bottom a liquid stream warmer than the aqueous reflux; c) condensing said overhead gas thereby producing a liquid organic phase, an aqueous phase and a gaseous phase; d) using a portion or the whole of said aqueous phase of step c) as reflux for said step b) of quenching; e) sending to a decanter the liquid stream obtained at step b) to recover an aqueous phase and an organic phase.
Abstract: A highly effective liquid-liquid extraction process to remove nitrogen compounds and especially basic nitrogen compounds from aromatic light petroleum oils with excellent recovery employs de-ionized water, which can be acidified, as the extractive solvent. The product is an aromatic hydrocarbon with ultra-low amounts of nitrogen poisons that can deactivate acidic catalysts. The extracted oils are suitable feedstock for the subsequent catalytic processes that are promoted with the high performance solid catalysts, which are extremely sensitive to nitrogen poison.
Type:
Grant
Filed:
April 24, 2010
Date of Patent:
April 23, 2013
Assignees:
AMT International Inc., CPC Corporation, Taiwan
Abstract: The invention relates to a process for workup of a stream (1) comprising butene and/or butadiene, butane, hydrogen and/or nitrogen and carbon dioxide, comprising: (a) absorption of stream (1) with a mixture (5) comprising 80 to 97% by weight of N-methylpyrrolidone and 3 to 20% by weight of water to obtain a stream (9) comprising N-methylpyrrolidone, water, butene and/or butadiene, butane, and optionally carbon dioxide, and a stream (7) comprising hydrogen and/or nitrogen and butane, (b) extractive distillation of stream (9) with a stream (13) comprising 80 to 97% by weight of N-methylpyrrolidone and 3 to 20% by weight of water to separate the stream (9) into a stream (17) comprising N-methylpyrrolidone, water, butene and/or butadiene, and a stream (15) comprising essentially butane, and optionally carbon dioxide, (c) distillation of stream (17) into a stream (23) comprising essentially N-methylpyrrolidone and water, and a stream (21) comprising butene and/or butadiene.
Type:
Grant
Filed:
March 2, 2012
Date of Patent:
April 16, 2013
Assignee:
BASF SE
Inventors:
Albena Kostova, Regina Benfer, Jochen Götz, Alireza Rezai, Aristides Morillo, Gerhard Olbert, Peter Pfab, Grigorios Kolios, Markus Weber, Alexander Weck
Abstract: A polyethylene production process, comprising contacting ethylene and a polymerization catalyst under suitable reaction conditions to yield a polymerization product stream, separating a light gas stream from the polymerization product stream, wherein the light gas stream comprises ethane and unreacted ethylene, contacting the light gas stream with an absorption solvent system, wherein at least a portion of the ethylene from the light gas stream is absorbed by the absorption solvent system, removing unabsorbed gases of the light gas stream from contact with the absorption solvent system to form a waste gas stream, and recovering ethylene from the absorption solvent system.
Abstract: A method of extracting hydrocarbon-containing organic matter from a hydrocarbon-containing material includes the steps of providing a first liquid comprising a turpentine liquid; contacting the hydrocarbon-containing material with the turpentine liquid to form an extraction mixture; extracting the hydrocarbon material into the turpentine liquid; and separating the extracted hydrocarbon material from a residual material not extracted.
Type:
Grant
Filed:
March 13, 2009
Date of Patent:
March 26, 2013
Assignee:
Green Source Energy LLC
Inventors:
Liang-tseng Fan, Mohammad Reza Shafie, Julius Michael Tollas, William Arthur Fitzhugh Lee
Abstract: A method of extracting hydrocarbon-containing organic matter from a hydrocarbon-containing material includes the steps of providing a first liquid comprising a turpentine liquid; contacting the hydrocarbon-containing material with the turpentine liquid to form an extraction mixture; extracting the hydrocarbon material into the turpentine liquid; and separating the extracted hydrocarbon material from a residual material not extracted.
Type:
Grant
Filed:
September 17, 2008
Date of Patent:
March 26, 2013
Assignee:
Green Source Energy LLC
Inventors:
Liang-tseng Fan, Mohammad Reza Shafie, Julius Michael Tollas, William Arthur Fitzhugh Lee
Abstract: A process comprising regenerating a used ionic liquid catalyst, recovering conjunct polymer from the regenerated catalyst and using at least a portion of the conjunct polymer is disclosed.
Abstract: A process comprising receiving a hydrocarbon feed stream comprising carbon dioxide, separating the hydrocarbon feed stream into a light hydrocarbon stream and a heavy hydrocarbon stream, separating the light hydrocarbon stream into a carbon dioxide-rich stream and a carbon dioxide-lean stream, and feeding the carbon dioxide-lean stream into a hydrocarbon sweetening process, thereby increasing the processing capacity of the hydrocarbon sweetening process compared to the processing capacity of the hydrocarbon sweetening process when fed the hydrocarbon feed stream.