Acid, Anhydride, Ester Or Ether Patents (Class 585/866)
  • Patent number: 11479731
    Abstract: The present invention relates to a process for removing sulfur (S)-containing compounds in crude oil material. The process comprises causing the crude oil material to react with a removing agent, which comprises a phosphoric acid ester, and an aqueous phase in the presence of microwaves. The process of the invention is applied at ambient pressure and relatively low temperature compared to the conventional desulfurization processes. The process of the invention can be readily scaled up and integrated into an industrial facility.
    Type: Grant
    Filed: November 8, 2019
    Date of Patent: October 25, 2022
    Inventors: Mai Attia, Sherif Farag, Jamal Chaouki
  • Patent number: 9012713
    Abstract: The present invention provides a process for removing oxygenate from an olefin stream comprising oxygenate, comprising providing to an oxygenate recovery zone the olefin stream comprising oxygenate and a solvent comprising ethanol, treating the olefin stream comprising oxygenate with the solvent, and retrieving from the oxygenate recovery zone at least one oxygenate-depleted olefinic product stream comprising olefin and a spent solvent comprising at least part of the oxygenate.
    Type: Grant
    Filed: December 20, 2013
    Date of Patent: April 21, 2015
    Assignee: Shell Oil Company
    Inventor: Jeroen Van Westrenen
  • Publication number: 20150093313
    Abstract: The invention comprises a process for removal of hydrogen sulfide from gaseous mixtures. The process involves the use of a mixture of a physical absorption solvent and an ionic liquid. The mixtures provided improved absorption of hydrogen sulfide, when compared to physical absorption solvents without the ionic liquid at low partial pressures of hydrogen sulfide. A regeneration cycle involving the addition of a solvent, such as water, is used to regenerate the mixture.
    Type: Application
    Filed: September 30, 2013
    Publication date: April 2, 2015
    Applicant: UOP LLC
    Inventors: Erin M. Broderick, Alakananda Bhattacharyya, Beckay J. Mezza
  • Patent number: 8927800
    Abstract: We provide a method for making hydrocarbon products with reduced organic halide contamination, comprising: a. separating an effluent from an ionic liquid catalyzed hydrocarbon conversion reaction into: i. a hydrocarbon fraction comprising an organic halide contaminant and from greater than zero to less than 5000 wppm olefins; and ii. a used ionic liquid catalyst fraction comprising a used ionic liquid catalyst; and b. contacting the hydrocarbon fraction with an aromatic hydrocarbon reagent and an ionic liquid catalyst to reduce a level of the organic halide contaminant to from greater than zero to 20 wppm in a finished hydrocarbon product.
    Type: Grant
    Filed: December 14, 2012
    Date of Patent: January 6, 2015
    Assignee: Chevron U.S.A. Inc.
    Inventors: Cedrick Mahieux, Sven Ivar Hommeltoft
  • Patent number: 8815084
    Abstract: Process for the removal of sodium from sodium-containing heavy fractions from a process for the combined production of styrene and propylene oxide comprising admixing an aqueous solution of an organic carboxylic acid to the heavy fraction at a temperature comprised between 20° C. and 100° C., and separation of the organic phase from the aqueous phase, wherein the organic phase contains less than 0.5% by weight of polymeric solids. The obtained organic phase has low viscosity and ash content and can be used directly as a fuel.
    Type: Grant
    Filed: October 29, 2004
    Date of Patent: August 26, 2014
    Inventors: Pilar de Frutos Escrig, Eva Maria Garcia Biosca
  • Publication number: 20140187836
    Abstract: The present invention relates to a process for removing oxygenate from an olefin stream comprising oxygenate, comprising providing to an oxygenate recovery zone the olefin stream comprising oxygenate and a liquid solvent comprising: (a) butanol; (b)alkyl tert-alkyl ether; or (c) alkyl tert-alkyl ether and butanol, treating the olefin stream comprising oxygenate with the liquid solvent, and retrieving from the oxygenate recovery zone at least one oxygenate-depleted olefinic product stream comprising olefin and a spent liquid solvent comprising at least part of the oxygenate.
    Type: Application
    Filed: December 20, 2013
    Publication date: July 3, 2014
    Applicant: Shell Oil Company
    Inventors: Sivakumar SADASIVAN VIJAYAKUMARI, Jeroen VAN WESTRENEN
  • Publication number: 20140171665
    Abstract: The present invention provides a process for removing oxygenate from an olefin stream comprising oxygenate, comprising providing to an oxygenate recovery zone the olefin stream comprising oxygenate and a solvent comprising ethanol, treating the olefin stream comprising oxygenate with the solvent, and retrieving from the oxygenate recovery zone at least one oxygenate-depleted olefinic product stream comprising olefin and a spent solvent comprising at least part of the oxygenate.
    Type: Application
    Filed: December 20, 2013
    Publication date: June 19, 2014
    Applicant: Shell Oil Company
    Inventor: Jeroen VAN WESTRENEN
  • Patent number: 8686212
    Abstract: Process for removing water from an ethylene stream containing water, by introducing an ethylene stream containing water into, and circulating the ethylene stream through, a separation vessel. A liquid diethyl ether stream is introduced into, and circulated through, the separation vessel so that the liquid diethyl ether stream and the ethylene stream containing water are brought into contact, and an ethylene stream having a reduced water content is recovered from the separation vessel.
    Type: Grant
    Filed: August 10, 2010
    Date of Patent: April 1, 2014
    Assignee: BP P.L.C.
    Inventors: Leslie William Bolton, Benjamin Patrick Gracey, Michael Keith Lee
  • Publication number: 20130299734
    Abstract: A multi-component scavenging system containing at least one ester and at least one electron-deficient organic compound, together with or without one or more optional components such as an aldehyde having from 4 to 20 carbon atoms, a ketone having from 4 to 20 carbon atoms, an ether, a solvent, an alkali metal salt of an alkyl or dialkyl phenol, an epoxide, an alkyl anhydride, and mixtures thereof, may be used to scavenge contaminants from hydrocarbon and/or aqueous streams. The contaminants scavenged or otherwise removed may include, but are not necessarily limited to, ammonia, primary amines, secondary or tertiary amines, H2S, mercaptans, sulfide cyanides, and combinations thereof.
    Type: Application
    Filed: May 10, 2012
    Publication date: November 14, 2013
    Applicant: Baker Hughes Incorporated
    Inventors: Jianzhong Yang, Bradley G. Harrell, Lawrence N. Kremer
  • Publication number: 20130165708
    Abstract: A method for suppressing isomerization of an olefin metathesis product produced in a metathesis reaction includes adding an isomerization suppression agent that includes nitric acid to a mixture that includes the olefin metathesis product and residual metathesis catalyst from the metathesis reaction under conditions that are sufficient to passivate at least a portion of the residual metathesis catalyst. Methods of refining a natural oil are described.
    Type: Application
    Filed: December 22, 2011
    Publication date: June 27, 2013
    Inventors: Bruce E. Firth, Sharon E. Kirk
  • Publication number: 20130165706
    Abstract: A method for suppressing isomerization of an olefin metathesis product produced in a metathesis reaction includes adding an isomerization suppression agent to a mixture that includes the olefin metathesis product and residual metathesis catalyst from the metathesis reaction under conditions that are sufficient to passivate at least a portion of the residual metathesis catalyst. The isomerization suppression agent is phosphorous acid, a phosphorous acid ester, phosphinic acid, a phosphinic acid ester or combinations thereof. Methods of refining natural oils are described.
    Type: Application
    Filed: December 22, 2011
    Publication date: June 27, 2013
    Inventors: Bruce E. Firth, Sharon E. Kirk, Vasudeo S. Gavaskar
  • Publication number: 20120129924
    Abstract: The present invention relates to a pharmaceutical composition for preventing or treating hyperlipidemia, fatty liver, diabetes and obesity comprising a sesquiterpene derivative as an active ingredient. The sesquiterpene derivatives of the present invention leads to decrease in body fat weight, visceral fat weight and total cholesterol levels, triglyceride of plasma and liver tissue, blood glucose and blood insulin levels in a fast state, finally exhibiting efficacies on prevention or treatment of hyperlipidemia, fatty liver, diabetes and obesity.
    Type: Application
    Filed: October 20, 2008
    Publication date: May 24, 2012
    Applicant: KWANG DONG PHARM. CO., LTD.
    Inventors: Tae-Sun Park, Ha-Won Kim
  • Patent number: 7956230
    Abstract: A method for reducing halide concentration in a hydrocarbon product made by a hydrocarbon conversion process using an ionic liquid catalyst comprising a halogen-containing an acidic ionic liquid comprising: (i) separating at least a portion of the hydrocarbon product from the ionic liquid catalyst used in the hydrocarbon conversion process from the hydrocarbon product; (ii) contacting at least a portion of the separated hydrocarbon product with an ionic liquid catalyst having the same formula as the ionic liquid catalyst used in the hydrocarbon conversion process; (iii) separating at least a portion of the hydrocarbon product from the ionic liquid catalyst of step (ii); and (iv) recovering at least a portion of the separated hydrocarbon product of step (iii) having a halide concentration less than the halide concentration of the hydrocarbon product of step (i) is disclosed.
    Type: Grant
    Filed: December 21, 2007
    Date of Patent: June 7, 2011
    Assignee: Chevron U.S.A. Inc.
    Inventors: Hye-Kyung C. Timken, Michael S. Driver, Thomas V. Harris
  • Patent number: 7906012
    Abstract: The present invention includes methods for improving the operational parameters in primary fractionators which are experiencing diminished operation efficiencies due to deposits of polymerized hydrocarbon species. The invention comprises the step of adding a foam reducing amount of a foam reducing composition at the primary fractionator. A reduction in foaming is achieved whereby the operational efficiency of the process is improved based upon operation parameters including, but not limited to, liquid-gas contact ratio, product top temperature, pressure differentials, gasoline end point or combinations thereof.
    Type: Grant
    Filed: July 16, 2002
    Date of Patent: March 15, 2011
    Assignee: Dorf Ketal Chemicals India Pvt. Ltd.
    Inventors: Perumangode Neelakantan Ramaswamy, Mahesh Subramaniyam
  • Patent number: 7879225
    Abstract: An energy efficient, high throughput process for aromatics recovery can be readily implemented by revamping existing sulfolane solvent extraction facilities, or constructing new ones, so as to incorporate unique process operations involving liquid-liquid extraction and extractive distillation. Current industrial sulfolane solvent based liquid-liquid extraction processes employ a liquid-liquid extraction column, an extractive stripping column, a solvent recovery column, a raffinate wash column, and a solvent regenerator. The improved process for aromatic hydrocarbon recovery from a mixture of aromatic and non-aromatic hydrocarbons requires transformation of the extractive stripping column into a modified extractive distillation column. The revamping incorporates the unique advantages of liquid-liquid extraction and extractive distillation into one process to significantly reduce energy consumption and increase process throughput.
    Type: Grant
    Filed: July 8, 2008
    Date of Patent: February 1, 2011
    Assignees: CPC Corporation Taiwan, AMT International, Inc
    Inventors: Fu-Ming Lee, Kuang-Yeu Wu, Tsung-Min Chiu, Zong-Ying Chen, Jyh-Haur Hwang, Tzong-Bin Lin, Hung-Chung Shen, Tung-Hsiung Kuo, Yu-Ming Wu
  • Publication number: 20100249485
    Abstract: This invention relates to processes for removing particles such as catalyst fines from hydrocarbon streams, such as a wax dried from a Fischer Tropsch reaction using centrifugation in combination with a treatment with an aqueous solution preferably containing an acid, or with an acid. According to an aspect of the invention, catalyst particles are removed from a wax derived from a Fischer Tropsch by pre-treating the hydrocarbon stream with an aqueous solution and forming a mixture comprising the hydrocarbon stream and 5-25% v/v organic acid solution; and introducing the mixture to a centrifuge and separating, from the mixture, a hydrocarbon stream, an aqueous solution and particles. The process may be a continuous and/or a batch process.
    Type: Application
    Filed: June 18, 2008
    Publication date: September 30, 2010
    Inventors: Masikana Millan Mdleleni, Cyril David Knottenbelt, Kgolole David Maripane, Nkululeko Stewart Hlohloza
  • Patent number: 7696396
    Abstract: Carotenoids are extracted and/or enriched from a mixture containing such compounds. The extraction/enrichment process involves the use of liquefied or supercritical solvents to extract lipids and carotenoids from carotenoid-containing substrates. The extraction process can also be performed in two steps in which lipids and carotenoids are first removed from a carotenoid-containing substrate with a liquefied or supercritical solvent, and subsequently a liquefied or supercritical gas is used to separate the lipids from the carotenoids. The two step process can be reversed to first extract lipids with the liquefied or supercritical gas, and subsequently use the solvent to extract the carotenoids. The process is also applicable to yield an organic solvent-free product from a carotenoid-containing source that was first extracted using an organic solvent.
    Type: Grant
    Filed: January 9, 2008
    Date of Patent: April 13, 2010
    Assignee: Phasex Corporation
    Inventors: Hans Schonemann, Anthony Gudinas, Kara Williams, Paula Wetmore, Val Krukonis
  • Publication number: 20090299122
    Abstract: Process for producing purified hydrocarbon gas from a gas stream comprising methane and acidic contaminants, which process comprises the steps cooling the gas stream by expansion to form a mixture comprising solid and/or liquid acidic contaminants and a vapour containing gaseous hydrocarbons and a reduced amount of acidic contaminants; separating the solid and/or liquid acidic contaminants from the first mixture, yielding partly purified gas; compressing the partly purified gas; and contacting the compressed partly purified gas with an absorbing liquid to yield the purified hydrocarbon gas.
    Type: Application
    Filed: May 28, 2009
    Publication date: December 3, 2009
    Inventors: Henricus Abraham GEERS, Esther Lucia Johanna Van Soest-Vercammen
  • Patent number: 7582312
    Abstract: Methods of producing lung surfactant formulations through solvent dissolution and lyophilization are described as well as surfactant formulations derived therefrom. Methods of treating respiratory distress dysfunction are also provided.
    Type: Grant
    Filed: November 14, 2005
    Date of Patent: September 1, 2009
    Assignee: Discovery Laboratories, Inc.
    Inventors: Mark Johnson, Roy Coe
  • Publication number: 20090215629
    Abstract: Fatty esters of oligoesters of a dicarboxylic acid and a polyol retaining at least one free hydroxyl group, particularly of the formula (I): R1—[OR2O—C(O)—R3—(O)C—]m—R4 (I), where R1 is H, a monocarboxylic acid group, or R6O—[C(O)—R3—(O)C]—; R2s are residues of polyols having at least one substituent free hydroxyl; R3s are hydrocarbylene; R4 is —OH, —OM where M is a salt forming metal, amine or ammonium, —OR6, or —OR2O—R7; R5 is C7 to C21 hydrocarbyl; R6 is C8 to C22 hydrocarbyl; R7 is H, or —C(O)R5; and m is 1 to 20; provided that at least one of R1 and R4 is or includes a C8 to C22 group, are surfactants. A range of surfactant properties can be obtained by varying the molecules within these ranges. Especially where R2 is derived from a higher polyol e.g. sorbitol, R3 is C2 to C6, and the fatty terminal group is C8 to C14, the products can be highly water soluble and effective oil in water emulsifiers.
    Type: Application
    Filed: October 18, 2005
    Publication date: August 27, 2009
    Inventors: Hanamanthsa S. Bevinakatti, Alan G. Waite
  • Patent number: 7455763
    Abstract: A recycling process for the demetalization of hydrocarbon oil comprises recycling the following steps: a demetalizing composition for hydrocarbon oil or an aqueous solution thereof is sufficiently mixed with hydrocarbon oil in a desired proportion, and the resultant mixture is subjected to a conventional electrically desalting process to obtain a demetalized hydrocarbon oil and an aqueous desalted solution containing the desalted metal salts; the aqueous desalted solution containing the metal salts is then sufficiently mixed with a precipitating agent in a desired proportion and is subjected to a displacement reaction, and an aqueous solution containing the demetalizing composition is recovered by separating out the residue of the metal salts produced in the displacement reaction, which is poorly soluble or insoluble in water, with a solid-liquid separator; and the recovered aqueous solution containing the demetalizing composition for hydrocarbon oil, which meets the requirements for metal ions in demetalized
    Type: Grant
    Filed: June 2, 2004
    Date of Patent: November 25, 2008
    Assignee: Karamay Jinshan Petrochemical Limited Company
    Inventors: Lailong Luo, Chunge Niu, Shuyan Yu, Zhongting Ma, Xiangsheng Meng, Bo Ouyang, Yun Han
  • Patent number: 7435318
    Abstract: The invention relates to a process for separating close-boiling, homo- and heteroazeotropic mixtures by using ionic liquids. Due to the selectivity and unusual combination of properties of the ionic liquids the process is superior to conventional extractive rectification from the point of view of costs and energy.
    Type: Grant
    Filed: March 14, 2002
    Date of Patent: October 14, 2008
    Assignee: BASF Aktiengesellschaft
    Inventors: Wolfgang Arlt, Matthias Seiler, Carsten Jork, Thomas Schneider
  • Patent number: 7388122
    Abstract: The present invention relates to dewaxing aids comprising the mixture of two or more polyalkyl(meth)acrylates having an exothermic heat initiation temperature within the specific range when chilled at 30° C./minute rate, to be added together with the wax-containing hydrocarbon oil to the dewaxing solvent. The dewaxing aid according to the present invention can be used in the solvent dewaxing method containing the stage in which the chilling rate during the chilling is 30° C./minute or higher, is effective for heavy type wax-containing hydrocarbon oils, and is chlorine-free.
    Type: Grant
    Filed: October 25, 2002
    Date of Patent: June 17, 2008
    Assignee: Toho Chemical Industry Co., Ltd
    Inventors: Naoki Haga, Akiyuki Hiraide
  • Patent number: 7355087
    Abstract: A catalytic distillation process for isomerizing and separating 1-alkenes from a mixed alkene stream. The process comprises contacting a mixed alkene stream comprising the 1-alkene and homologs thereof with a supported isomerization catalyst under isomerization/distillation conditions effective to convert at least a portion of the homologs to the 1-alkene, the isomerization/distillation conditions also being effective to produce a distillation overhead comprising a sufficient portion of the 1-alkene to drive isomerization of the homologs to the 1-alkene while maintaining the mixed alkene stream at least partially in liquid phase. The isomerization/distillation conditions are effective to recover a quantity of 1-alkene greater than an equilibrium quantity of 1-alkene recovered under isomerization conditions alone.
    Type: Grant
    Filed: October 1, 2004
    Date of Patent: April 8, 2008
    Assignee: Shell Oil Company
    Inventors: Manuel Luis Cano, David Morris Hamilton, Jr., Terry Blane Thomason
  • Patent number: 7223331
    Abstract: Disclosed is a method for settling suspended finely divided inorganic solid particles from a hydrocarbon slurry using an additive. The additive comprises (a) a hydroxy-terminated polyoxyalkylate chain(s) containing polymer having at least one oxygen atom and at least one nitrogen atom and, optionally, (b) other components such as a solvent, an acid or mixtures thereof.
    Type: Grant
    Filed: June 6, 2003
    Date of Patent: May 29, 2007
    Assignee: Baker Hughes Incorporated
    Inventors: Joseph L. Stark, Robert S. Lauer, Lawrence N. Kremer
  • Patent number: 7204927
    Abstract: A treatment for accelerating the settling of finely divided solids in hydrocarbon fluids, including adding to the hydrocarbon a sufficient settling amount of a combination of at least two of (a) a quaternary fatty ammonium compound, (b) a hetero-atom punctuated fatty polymer and (c) an alkylphenol-formaldehyde resin alkoxylate.
    Type: Grant
    Filed: November 7, 2002
    Date of Patent: April 17, 2007
    Assignee: GE Betz, Inc.
    Inventor: Nancy R. Calvert
  • Patent number: 7048847
    Abstract: A treatment for accelerating the settling of finely divided solids in hydrocarbon fluids, including adding to the hydrocarbon a sufficient settling amount of a combination of (a) a polyacrylic acid adducted alkylphenol-formaldehyde resin alkoxylate compound, and (b) an alkylphenol-formaldehyde resin alkoxylate having a molecular weight of about 500 to about 5,000.
    Type: Grant
    Filed: February 3, 2003
    Date of Patent: May 23, 2006
    Assignee: General Electric Company
    Inventor: Nancy R. Calvert
  • Patent number: 6781026
    Abstract: A process for separating a feed mixture comprising at least one aromatic hydrocarbon and at least one non-aromatic hydrocarbon by extractive distillation (ED) utilizing a solvent mixture comprising sulfolane and at least one co-solvent. The co-solvent is an alkyl sulfolane having from 4 to 8 carbon atoms per molecule. The solvent mixture is added to the top of the ED column, and the feed mixture is added at a point on the ED column that is lower than the point where the solvent mixture is added. Extractive distillation is performed, and the aromatic and non-aromatic hydrocarbons are separated.
    Type: Grant
    Filed: October 21, 2002
    Date of Patent: August 24, 2004
    Assignee: GTC Technology Inc.
    Inventor: Fu-Ming Lee
  • Publication number: 20040019248
    Abstract: Disclosed is a method for settling suspended finely divided inorganic solid particles from a hydrocarbon slurry using an additive. The additive comprises (a) a hydroxy-terminated polyoxyalkylate chain(s) containing polymer having at least one oxygen atom and at least one nitrogen atom and, optionally, (b) other components such as a solvent, an acid or mixtures thereof.
    Type: Application
    Filed: June 6, 2003
    Publication date: January 29, 2004
    Applicant: Baker Hughes Incorporated
    Inventors: Joseph L. Stark, Robert S. Lauer, Lawrence N. Kremer
  • Patent number: 6617483
    Abstract: The invention relates to extractive distillation compositions for separating a mixture of hydrocarbon compounds, wherein the extractive distillation composition includes at least one alkylene glycol compound, and at least one compatibility agent, wherein the compatibility agent is selected from materials having polar parameters and hydrogen bonding parameters such that the extractive distillation composition provides improved separation of the hydrocarbon compounds, as compared to the use of the extractive distillation composition without the compatibility agent.
    Type: Grant
    Filed: May 3, 2000
    Date of Patent: September 9, 2003
    Assignee: Gaylord Chemical Corporation
    Inventors: Artie S. McKim, George Kvakovszky, Michael D. Donahue, Chris B. Watts
  • Patent number: 6576806
    Abstract: A process for treating a feedstock comprising olefins having an average carbon number ranging from 2-3.5, and non-olefinic compounds, said process comprising the following steps: a) contacting gaseous feedstock with a linear polyaromatic compound in a reaction zone under conditions effective to form a reaction mixture comprising linear polyaromatic compound-olefin adducts and unreacted gaseous feedstock; b) separating the olefin adducts from the unreacted gaseous feedstock; and c) dissociating the olefin adducts to form linear polyaromatic compounds and an olefin enriched composition comprising ethylene, propylene, or mixtures thereof; whereby the concentration of at least one of the olefins in said olefin enriched composition is enriched over the concentration of said at least one olefin present in the feedstock.
    Type: Grant
    Filed: December 20, 1999
    Date of Patent: June 10, 2003
    Assignee: Shell Oil Company
    Inventors: Lynn Henry Slaugh, Howard Lam-Ho Fong, Laurent Alain Fenouil
  • Patent number: 6555726
    Abstract: The invention relates to methods for enhanced extractive distillation of hydrocarbons that employ extrative distillation compositions comprising sulfolane or sulfolane derivatives in comination with compatibility agents.
    Type: Grant
    Filed: November 10, 1999
    Date of Patent: April 29, 2003
    Assignee: Gaylord Chemical Corporation
    Inventors: Artie S. McKim, George Kvakovszky, Michael D. Donahue
  • Publication number: 20020165420
    Abstract: A process for the separation of conjugated olefins from monoolefins in a fluid comprising such conjugated olefins and monoolefins using a Diels-Alder reaction to provide a fluid comprising a Diels-Alder adduct and monoolefins. The fluid comprising such Diels-Alder adduct and monoolefins can be subjected to a separating means to thereby recover a resulting monoolefin-containing fluid containing less than about 50 parts per million conjugated olefins. The process is particularly useful for purification of fluids containing normal alpha olefins.
    Type: Application
    Filed: June 26, 2001
    Publication date: November 7, 2002
    Inventors: Saleh A. Elomari, Richard N. Reynolds, Steven J. Herron
  • Patent number: 6410817
    Abstract: Ethylene is a commodity chemical used as a reactant in the production of vinyl acetate. Ethylene is relatively expensive thus making its recovery and re-use in the process encouraged. The present invention provides a method for the recovery of ethylene from the inert gas purge stream from the reactor loop in a vapor-phase process for making vinyl acetate. The method of the present invention includes the steps of contacting the inert gas purge stream containing ethylene with acetic acid in an absorption vessel; discharging a stream containing acetic acid and ethylene from one aspect of the absorption vessel; separating the ethylene from the acetic acid in the stream by contacting the stream with ethylene gas in a scrubber column; and recovering ethylene from a top portion of the scrubber column. The method may also include the step of recycling the recovered ethylene to the reactor loop for further use.
    Type: Grant
    Filed: June 29, 1999
    Date of Patent: June 25, 2002
    Assignee: Celanese International Corporation
    Inventors: Philip M. Colling, Raul A. Hauser Luna
  • Patent number: 6395141
    Abstract: A method of separating aromatic hydrocarbons and non-aromatic hydrocarbons, and aromatic hydrocarbons and naphtenes involves distilling a mixture of the components by an extractive distillation process in the presence of an extractive distillation solvent. The extractive distillation solvent may be an ester of a dibasic acid, an acetonyl acetone or morpholine.
    Type: Grant
    Filed: September 28, 2000
    Date of Patent: May 28, 2002
    Inventors: Izak Nieuwoudt, Braam van Dyk
  • Patent number: 6395953
    Abstract: Processes for producing a purified conjugated diene comprise feeding a petroleum fraction containing the conjugated diene to an extractive distillation column, feeding an extraction solvent to the extractive distillation column, and extractive-distilling the conjugated diene from the petroleum fraction containing the conjugated diene in the extractive distillation column. The extraction solvent comprises an amide compound, and a heterocyclic aldehyde, aromatic nitro compound or aromatic aldehyde is contained in the extraction solvent within a range of 0.01 to 10 wt. % based on the weight of the extractive solvent. An oxygen concentration in a gas phase of a distillate discharged from the top of the extraction distillation column is controlled to 10 ppm or lower.
    Type: Grant
    Filed: August 24, 1999
    Date of Patent: May 28, 2002
    Assignee: Nippon Zeon Co., Ltd.
    Inventors: Takaki Koga, Nobumasa Shimomura, Masanobu Kanauchi
  • Publication number: 20020058849
    Abstract: Ethylene is a commodity chemical used as a reactant in the production of vinyl acetate. Ethylene is relatively expensive thus making its recovery and re-use in the process encouraged. The present invention provides a method for the recovery of ethylene from the inert gas purge stream from the reactor loop in a vapor-phase process for making vinyl acetate. The method of the present invention includes the steps of contacting the inert gas purge stream containing ethylene with acetic acid in an absorption vessel; discharging a stream containing acetic acid and ethylene from one aspect of the absorption vessel; separating the ethylene from the acetic acid in the stream by contacting the stream with ethylene gas in a scrubber column; and recovering ethylene from a top portion of the scrubber column. The method may also include the step of recycling the recovered ethylene to the reactor loop for further use.
    Type: Application
    Filed: June 29, 1999
    Publication date: May 16, 2002
    Inventors: PHILIP M. COLLING, RAUL A. HAUSER LUNA
  • Publication number: 20020019576
    Abstract: The invention relates to a process for purifying hydrocarbon vapor consisting of at least one aromatic or one olefinic or one paraffinic compound or of a mixture thereof, this hydrocarbon vapor entraining impurities of acid or alkaline nature which consist of at least one water-soluble organic and/or inorganic substance and it also relates to a facility for performing such a process.
    Type: Application
    Filed: July 26, 2001
    Publication date: February 14, 2002
    Inventors: Gerhard Emmrich, Frank Ennenbach, Uwe Ranke, Helmut Gehrke
  • Publication number: 20010049462
    Abstract: A process for separating a feed mixture comprising at least one aromatic hydrocarbon and at least one non-aromatic hydrocarbon by extractive distillation (ED) utilizing a solvent mixture comprising sulfolane and at least one co-solvent. The co-solvent is an alkyl sulfolane having from 4 to 8 carbon atoms per molecule. The solvent mixture is added to the top of the ED column, and the feed mixture is added at a point on the ED column that is lower than the point where the solvent mixture is added. Extractive distillation is performed, and the aromatic and non-aromatic hydrocarbons are separated.
    Type: Application
    Filed: April 26, 2001
    Publication date: December 6, 2001
    Inventor: Fu-Ming Lee
  • Patent number: 6316685
    Abstract: Disclosed is a method for separating finely divided solids from a hydrocarbon slurry by using an additive that comprises a polymer and, optionally, an alkylbenzene sulfonic acid; and a composition of the additive thereof. The polymer is a polymer having (a) a polymeric backbone comprising polyol units and at least one unsaturated polycarboxylic unit, (b) acrylate units coordinated via unsaturated polycarboxylic units, and (c) oxyalkylated alkyl phenol units.
    Type: Grant
    Filed: November 30, 2000
    Date of Patent: November 13, 2001
    Assignee: Baker Hughes Incorporated
    Inventors: Robert S. Lauer, Lawrence N. Kremer, Joseph L. Stark, Andrew McCallum
  • Publication number: 20010029310
    Abstract: A process for the isolation of high-boiling monomers from distillation residue formed in the cyclodimerization and/or cyclotrimerization of 1,3-butadiene after target products of cyclooctadiene, vinylcyclohexene and/or cyclododecatriene have been separated off, comprising extracting the distillation residue with a nonpolar or slightly polar solvent, separating off insoluble oligomers and polymers that have at least partly crystallized by mechanical separation, removing the extractant, and isolating the high-boiling monomers.
    Type: Application
    Filed: January 31, 2001
    Publication date: October 11, 2001
    Applicant: DEGUSSA-HUELS AKTIENGESELLSCHAFT
    Inventors: Thomas Schiffer, Matthias May, Norbert WILCZOK, Georg Oenbrink
  • Publication number: 20010007049
    Abstract: The processing oil contains polycyclic aromatic hydrocarbon, which is a substance known to be toxic to the human body, in an amount of less than 3 wt. % and an aromatic hydrocarbon in an amount of 25 wt. % or more, and has a kinematic viscosity at 100° C. of 10-30 mm2/s, a density of 0.870-970 g/cm3, and a 5 vol. % recovery temperature of 370-530° C. The processing oil exhibits excellent performance which has conventionally been obtained. The processing oil can be produced by a method in which oil mixture comprising an extract obtained through extraction from mineral oil by use of a polar solvent in an amount of 40-97 vol. % and lubricating base oil in an amount of 3-60 vol. % is subjected to extraction treatment by use of a polar solvent.
    Type: Application
    Filed: February 14, 2001
    Publication date: July 5, 2001
    Applicant: Idemitsu Kosan Co., Ltd.
    Inventors: Masami Takasaki, Meishi Tanaka
  • Patent number: 6175050
    Abstract: This invention relates to a process for separating functionalized alpha olefins from functionalized internal olefins. The process achieves by a step of contacting a feedstock containing functionalized alpha olefins and functionalized internal olefins with a linear polyaromatic compound to form a linear polyaromatic compound-functionalized alpha olefin adduct and a step of dissociating the linear polyaromatic compound-functionalized alpha olefin adduct to form linear polyaromatic compounds and a functionalized alpha olefin composition.
    Type: Grant
    Filed: May 11, 1999
    Date of Patent: January 16, 2001
    Assignee: Shell Oil Company
    Inventors: Lynn Henry Slaugh, Laurent Alain Fenouil, Howard Lam-Ho Fong
  • Patent number: 6165368
    Abstract: A method for controlling the deposition of foulants such as polynuclear aromatic compounds on the internal surfaces of equipment in a processing train used to process a product stream obtained by dehydrogenating an aliphatic compound containing from 2 to 5 carbon atoms wherein there is introduced into the processing train an effective amount of a liquid solvent having at least one hydroxyl group and a minimum boiling point of about 64.7.degree. C., the solvent being passed through at least a portion of the processing train, after which it is removed from the processing train.
    Type: Grant
    Filed: August 19, 1998
    Date of Patent: December 26, 2000
    Assignee: Valero Energy Corporation
    Inventor: Robert Zamarripa
  • Patent number: 6136155
    Abstract: Mesitylene is difficult to separate from 1,2,4-Trimethylbenzene because of the proximity of their boiling points. They are readily separated by azeotropic distillation. Effective agents are isopropyl acetate, 2-pentanol and acetonitrile.
    Type: Grant
    Filed: June 4, 1999
    Date of Patent: October 24, 2000
    Inventor: Lloyd Berg
  • Patent number: 6033529
    Abstract: Mesitylene cannot be separated from 4-ethyl toluene by distillation because of the proximity of their boiling points. They are readily separated by azeotropic distillation. Effective agents are isopropyl palmitate, triacetin and methyl salicylate.
    Type: Grant
    Filed: August 6, 1999
    Date of Patent: March 7, 2000
    Inventor: Lloyd Berg
  • Patent number: 5922193
    Abstract: A process to improve the performance of furfural for aromatics extraction from gas oils and lube distillates by the addition of ethers and/or aldehydes, preferably having a dielectric constant less than about 40 @ 25.degree. C.
    Type: Grant
    Filed: August 28, 1996
    Date of Patent: July 13, 1999
    Assignee: Mobil Oil Corporation
    Inventors: Anagha Avinash Gupte, Michael E. Landis, David Owen Marler
  • Patent number: 5877385
    Abstract: Disclosed is a process for recovering styrene from a feedstock containing at least styrene, ethylbenzene, and one or more aromatic or non-aromatic hydrocarbon compounds which includes separating said feedstock into a first stream relatively more concentrated in styrene than said feedstock and a second stream relatively more concentrated in ethylbenzene than said feedstock, recovering styrene from said first stream to produce a styrene product stream, dehydrogenating the ethylbenzene of said second stream to produce additional styrene, and recovering said additional styrene. The feedstock may be separated into said first and second streams by a process selected from the class consisting of extractive distillation, azeotropic distillation, distillation, liquid-liquid extraction, chemical complex formation, membrane separation, and combinations thereof, and the additional styrene may be recovered by recycling it into said feedstock.
    Type: Grant
    Filed: September 26, 1996
    Date of Patent: March 2, 1999
    Assignee: HFM International, Inc.
    Inventors: Fu-Ming Lee, Stephen G. Norwood, Joseph C. Gentry
  • Patent number: 5849982
    Abstract: An extractive distillation process for separating at least one substituted unsaturated aromatic from a pyrolysis gasoline mixture, containing said aromatic and at least one close-boiling aromatic or non-aromatic hydrocarbon, employing a two part extractive solvent, the first part selected from propylene carbonate, sulfolane (tetramethylene sulfone), methyl carbitol, 1-methyl-2-pyrrolidinone, 2-pyrrolidinone and mixtures thereof, and the second portion consisting of water.
    Type: Grant
    Filed: October 29, 1997
    Date of Patent: December 15, 1998
    Assignee: HFM International, Inc.
    Inventors: Fu-Ming Lee, Joseph C. Gentry, Randi Wright Wytcherley
  • Patent number: 5840160
    Abstract: 3-Carene is difficult to separate from limonene by conventional distillation or rectification because of the proximity of their boiling points. 3-Carene can be readily separated from limonene by extractive distillation. Effective agents are o-cresol, 2,6-dimethyl-4-heptanone and triethylene glycol.
    Type: Grant
    Filed: December 6, 1996
    Date of Patent: November 24, 1998
    Inventor: Lloyd Berg