Synthesis From Methane Or Inorganic Carbon Source, E.g., Coal, Etc. Patents (Class 585/943)
  • Patent number: 7622032
    Abstract: The present invention relates to new crystalline molecular sieve SSZ-74 prepared using an hexamethylene-1,6-bis-(N-methyl-N-pyrrolidinium) dication as a structure-directing agent, and processes employing SSZ-74 in a catalyst.
    Type: Grant
    Filed: December 21, 2006
    Date of Patent: November 24, 2009
    Assignee: Chevron U.S.A. Inc.
    Inventors: Stacey I. Zones, Allen W. Burton, Jr.
  • Patent number: 7589246
    Abstract: In a process for converting methane to aromatic hydrocarbons, a feed containing methane and a particulate catalytic material are supplied to a reaction zone operating under reaction conditions effective to convert at least a portion of the methane to aromatic hydrocarbons and to deposit carbonaceous material on the particulate catalytic material causing catalyst deactivation. At least a portion of the deactivated particulate catalytic material is removed from the reaction zone and is heated to a temperature of about 700° C. to about 1200° C. by direct and/or indirect contact with combustion gases produced by combustion of a supplemental fuel. The heated particulate catalytic material is then regenerated with a hydrogen-containing gas under conditions effective to convert at least a portion of the carbonaceous material thereon to methane and the regenerated catalytic particulate material is recycled back to the reaction zone.
    Type: Grant
    Filed: March 3, 2008
    Date of Patent: September 15, 2009
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Larry L. Iaccino, Teng Xu, J. Scott Buchanan, Neeraj Sangar, Jeremy J. Patt, Mark A. Nierode, Kenneth R. Clem, Mobae Afeworki
  • Patent number: 7579510
    Abstract: An improved continuous process for converting methane, natural gas, or other hydrocarbon feedstocks into one or more higher hydrocarbons or olefins by continuously cycling through the steps of alkane halogenation, product formation (carbon-carbon coupling), product separation, and regeneration of halogen is provided. Preferably, the halogen is continually recovered by reacting hydrobromic acid with air or oxygen. The invention provides an efficient route to aromatic compounds, aliphatic compounds, mixtures of aliphatic and aromatic compounds, olefins, gasoline grade materials, and other useful products.
    Type: Grant
    Filed: February 5, 2007
    Date of Patent: August 25, 2009
    Assignee: GRT, Inc.
    Inventors: Sagar B. Gadewar, Michael D. Wyrsta, Philip Grosso, Aihua Zhang, Eric W. McFarland, Zachary J. A. Komon, Jeffrey H. Sherman
  • Patent number: 7473814
    Abstract: The invention relates to a process for producing ethane comprising contacting methane with a metal catalyst selected from metal hydrides, metal organic compounds and mixtures thereof. It also relates to a process for the conversion of methane to carbon-containing products comprising contacting methane with a metal catalyst comprising at least one metal, Me, chosen from the lanthanides, the actinides and the metals from Groups 2 to 12 of the Periodic Table of the Elements, so as to produce ethane in a proportion of at least 65%, especially at least 98% or 99% by weight with respect to carbon-containing products formed in the process. The process can be a single-step process, preferably carried out under conditions involving a non-oxidative catalytic coupling of methane, in particular under operating conditions maintained substantially constant, preferably continuously, during the ethane production, e.g. at a temperature ranging from ?30° C. to +80° C., preferably from 20° C. to 500° C.
    Type: Grant
    Filed: June 4, 2003
    Date of Patent: January 6, 2009
    Assignee: BP Chemicals Limited
    Inventors: Jean-Marie Basset, Philippe Bres, Christophe Coperet, Barry Martin Maunders, Daravong Soulivong, Mostafa Taoufik, Jean Thivolle-Cazat
  • Patent number: 7378564
    Abstract: The present invention relates to a process for the manufacture of alkanes comprising a catalytic reaction resulting from contacting methane with at least one other starting alkane (I) in the presence of a metal compound (C) capable of catalysing a reaction for the splitting and/or recombination of a carbon-carbon bond and/or of a carbon-hydrogen bond and/or of a carbon-metal bond, which catalytic reaction results in the formation of at least one final alkane (II) having a number of carbon atoms equal to or greater than (2). In the process, the contacting operation is carried out under a methane partial pressure equal to or greater than 0.1 MPa, preferably in the range from 0.1 to 100 MPa. The metal compound (C) can be chosen from metal compounds supported on and dispersed over a solid support, metal compounds supported on and grafted to a solid support and non-supported metal compounds.
    Type: Grant
    Filed: January 22, 2003
    Date of Patent: May 27, 2008
    Inventors: Jean-Marie Basset, Christophe Coperet, Richard Pardy, Daravong Soulivong, John Glenn Sunley, Jean Thivolle-Cazat
  • Patent number: 7355088
    Abstract: Process for producing benzene, ethylene and synthesis gas, comprising the steps of: i) introducing a starting gas flow comprising methane and carbon dioxide into a reactor; ii) oxidizing the methane in the reactor at certain reactor conditions optionally using a first catalytic material and/or and additional oxidant; and iii) removing a product gas flow comprising benzene, ethylene and synthesis gas from the reactor.
    Type: Grant
    Filed: June 18, 2004
    Date of Patent: April 8, 2008
    Assignee: Saudi Basic Industries Corporation
    Inventors: Agaddin Mamedov, Tony Joseph, Akram Al-Alwan
  • Patent number: 7208647
    Abstract: A process for converting natural gas to reactive gaseous products, comprising heating the gas through a selected range of temperature for sufficient time, or combusting a portion of the gas at a sufficient temperature and under suitable conditions for a reaction time sufficient to convert a portion of the gas stream to reactive hydrocarbon products, primarily ethylene or acetylene. The gas containing acetylene may be separated such that acetylene is converted to ethylene. A portion of the incoming natural gas or hydrogen produced in the process may be used to heat the remainder of the natural gas to the selected range of temperature. Unrecovered gaseous products resulting from the reactions may be used to provide heat to the process by which reactive gas components are produced. Recovered gaseous products, together or individually, may be reserved for subsequent use or storage.
    Type: Grant
    Filed: May 13, 2004
    Date of Patent: April 24, 2007
    Assignee: Synfuels International, Inc.
    Inventors: Edward R. Peterson, Sean C. Gattis
  • Patent number: 7183451
    Abstract: A process for converting natural gas to liquid hydrocarbons comprising heating the gas through a selected range of temperature for sufficient time and/or combustion of the gas at a sufficient temperature and under suitable conditions for a reaction time sufficient to convert a portion of the gas stream to reactive hydrocarbon products, primarily ethylene or acetylene. The gas containing acetylene may be separated such that acetylene is converted to ethylene. The ethylene product(s) may be reacted in the presence of an acidic catalyst to produce a liquid, a portion of which will be predominantly naphtha or gasoline. A portion of the incoming natural gas or hydrogen produced in the process may be used to heat the remainder of the natural gas to the selected range of temperature. Reactive gas components are used in a catalytic liquefaction step and/or for alternate chemical processing.
    Type: Grant
    Filed: May 13, 2004
    Date of Patent: February 27, 2007
    Assignee: Synfuels International, Inc.
    Inventors: Sean C. Gattis, Edward R. Peterson
  • Patent number: 7176342
    Abstract: A method for the preparation of hydrogenated hydrocarbons comprising a preliminary treatment of natural gas with a catalyst at a high temperature and the subsequent hydrogenation of the mixture of cyclic and/or aromatic hydrocarbons formed.
    Type: Grant
    Filed: January 25, 2001
    Date of Patent: February 13, 2007
    Assignee: Enitecnologie S.p.A.
    Inventors: Giuseppe Bellussi, Alberto DelBianco, Luigina Maria Flora Sabatino, Roberto Zennaro, Mario Molinari
  • Patent number: 7057084
    Abstract: Process for the removal of higher hydrocarbons contained in natural gas further containing sulphur compounds by simultaneous conversion of the hydrocarbons to aromatic compounds and methane in presence of a catalyst comprising a crystalline alumino silicate having in its anhydrous state a formula expressed in terms of mole ratios as follows: xQ:0.01–0.1 M2/nO:0–0.08 Z2O3:SiO2:0.0001–0.5 Me, wherein: Q is an organic nitrogen compound; Z is aluminum, boron, gallium or mixtures thereof; x is between 0 and 0.5; M is at least one metal cation of valence n or proton; and Me is at least one of the metals, which form a water insoluble sulphide by contact with a sulphur compound being present in the natural gas and/or in a preparation mixture for preparation of the catalyst.
    Type: Grant
    Filed: October 7, 2002
    Date of Patent: June 6, 2006
    Assignee: Haldor Topsoe A/S
    Inventors: Poul Erik Høilund Nielsen, Niels Jørgen Blom
  • Patent number: 7022888
    Abstract: A process for the non-oxidative conversion of methane simultaneously with the conversion of an organic oxygenate, represented by a general formula: CnH2n+1OCmH2m+1, wherein C, H and O are carbon, hydrogen and oxygen elements, respectively; n is an integer having a value between 1 and 4; and m is an integer having a value between zero and 4, to C2+ hydrocarbons, particularly to gasoline range C6–C10 hydrocarbons and hydrogen, using a bifunctional pentasil zeolite catalyst, having strong acid and dehydrogenation functions, at a temperature below 700° C. is disclosed. In this process the moles of methane converted per mole of oxygenate converted is above 1.0, depending upon the process conditions.
    Type: Grant
    Filed: March 27, 2003
    Date of Patent: April 4, 2006
    Assignee: Council of Scientific and Industrial Research
    Inventors: Vasant Ramchandra Choudhary, Kartick Chandra Mondal, Shafeek Abdul Rashid Mulla
  • Patent number: 7019184
    Abstract: The present invention provides a process for natural gas in the form, e.g., of stranded gas or associated gas to transportable liquids. More particularly, the present invention provides a process in which the gas is non-oxidatively converted to aromatic liquid, preferably in proximity to the welihead, which may be onshore or offshore. In one aspect, the present invention provides integration of separation of wellhead fluids into associated gas and crude with blending of the aromatic liquid derived from the gas with the crude. Alternatively, or in combination, in another aspect, the present invention provides integration of conversion of byproduct hydrogen to power with non-oxidative conversion of gas to aromatic liquid.
    Type: Grant
    Filed: May 6, 2002
    Date of Patent: March 28, 2006
    Assignee: Conocophillips Company
    Inventors: Joe D. Allison, Neil Meldrum, Doug S. Jack, Marc J. Ledoux
  • Publication number: 20040267079
    Abstract: Process for producing benzene, ethylene and synthesis gas, comprising the steps of: i) introducing a starting gas flow comprising methane and carbon dioxide into a reactor; ii) oxidizing the methane in the reactor at certain reactor conditions optionally using a first catalytic material and/or and additional oxidant; and iii) removing a product gas flow comprising benzene, ethylene and synthesis gas from the reactor.
    Type: Application
    Filed: June 18, 2004
    Publication date: December 30, 2004
    Inventors: Agaddin Mamedov, Tony Joseph, Akram Al-Alwan
  • Patent number: 6827843
    Abstract: The present invention relates to new crystalline molecular sieve SSZ-63 prepared using N-cyclodecyl-N-methyl-pyrrolidinium cation as a structure-directing agent, methods for synthesizing SSZ-63 and processes employing SSZ-63 in a catalyst.
    Type: Grant
    Filed: December 26, 2002
    Date of Patent: December 7, 2004
    Assignee: Chevron U.S.A., Inc.
    Inventor: Saleh Elomari
  • Publication number: 20040220443
    Abstract: A process for the preparation of liquid hydrocarbons and a clean gas stream suitable as feed and/or fuel gas from synthesis gas involving the following steps:
    Type: Application
    Filed: February 23, 2004
    Publication date: November 4, 2004
    Inventors: Johannes Didericus De Graaf, Winnifred De Graaf
  • Patent number: 6808620
    Abstract: The present invention relates to new crystalline molecular sieve SSZ-64 prepared using a N-cyclobutylmethyl-N-ethylhexamethyleneiminium cation or N-cyclobutylmethyl-N-ethylheptamethyleneiminium cation structure directing agent, and processes employing SSZ-64 in a catalyst.
    Type: Grant
    Filed: August 1, 2002
    Date of Patent: October 26, 2004
    Assignee: Chevron U.S.A. Inc.
    Inventor: Saleh Elomari
  • Publication number: 20040171900
    Abstract: The present invention includes methods and apparatus for start-up a chemical reactor wherein at least a portion of the igniter is downstream from the reaction zone which needs to be ignited. Particularly, embodiments of the present invention include a partial oxidation reactor with an igniter downstream of the partial oxidation zone.
    Type: Application
    Filed: February 28, 2003
    Publication date: September 2, 2004
    Applicant: ConocoPhillips Company
    Inventors: Daxiang Wang, Chad Ricketson, Gloria I. Straguzzi, Harold A. Wright, Larry D. Swinney, Joe D. Allison, Zhen Chen, Kevin L. Ricketson, Shang Y. Chen, Steven R. McDonald
  • Publication number: 20040124123
    Abstract: The present invention relates to new crystalline molecular sieve SSZ-63 prepared using N-cyclodecyl-N-methyl-pyrrolidinium cation as a structure-directing agent, methods for synthesizing SSZ-63 and processes employing SSZ-63 in a catalyst.
    Type: Application
    Filed: December 26, 2002
    Publication date: July 1, 2004
    Inventor: Saleh Elomari
  • Publication number: 20040010173
    Abstract: A method for producing hydrogen from raw feed gases. The method comprises providing a reactor, positioning reactor walls within the reactor, introducing the raw feed gases into the reactor, and reacting the raw feed gases within the reactor to produce hydrogen. An apparatus for the production of hydrogen using a reactor is also provided.
    Type: Application
    Filed: March 21, 2003
    Publication date: January 15, 2004
    Inventors: Pradeep K. Agarwal, Temi M. Linjewile
  • Publication number: 20030233019
    Abstract: A process is disclosed for the conversion of lower molecular weight hydrocarbons, such as methane, into higher molecular weight hydrocarbon products, such as hydrocarbons having between 4 and 29 carbons. The process includes forming hydrated electrons, such as by mixing the lower molecular weight hydrocarbons with water and contacting the mixture with an energy source to form hydrated electrons. The hydrated electrons react with the methane to form hydrogen and higher molecular weight hydrocarbon products. Also disclosed is a related process for converting higher molecular weight hydrocarbons to lower molecular weight hydrocarbons by forming a mixture of higher molecular weight hydrocarbons and water and contacting the mixture with an energy source to form hydrated electrons that react with the higher molecular weight hydrocarbons to form hydrogen and lower molecular weight hydrocarbon products.
    Type: Application
    Filed: March 17, 2003
    Publication date: December 18, 2003
    Inventor: Steven P. Sherwood
  • Patent number: 6616830
    Abstract: The present invention relates to a new crystalline zeolite SSZ-57 and processes employing SSZ-57 in a catalyst.
    Type: Grant
    Filed: July 13, 2001
    Date of Patent: September 9, 2003
    Assignee: Chevron U.S.A. Inc.
    Inventor: Saleh Elomari
  • Patent number: 6596912
    Abstract: This invention relates to processes and systems for the conversion of methane in high yields to C4+ hydrocarbons. The principal steps of the recycle process include reacting methane and O2 in an oxidative coupling reactor over a Mn/Na2WO4/SiO2 catalyst at 800° C. to convert the methane to ethylene, and oligomerizing the ethylene product by reacting it with an H-ZSM-5 zeolite catalyst at 275° C. in a catalytic reactor for subsequent conversion of the ethylene to higher hydrocarbons. Total yields of C4+ products using the process of the invention are in the range of about 60% to about 80%, and yields of C4+ nonaromatic hydrocarbons are in the range of about 50% to about 60%.
    Type: Grant
    Filed: May 24, 2000
    Date of Patent: July 22, 2003
    Assignee: The Texas A&M University System
    Inventors: Jack H. Lunsford, Serguei Pak
  • Publication number: 20030083535
    Abstract: The present invention features a system and method for circulating catalyst between a reactor system and a regenerator system. A circulating catalyst system includes a reactor system, a regenerator system, and a distribution unit. The reactor system and regenerator system are adapted to exchange catalyst. The regeneration system preferably includes a regeneration zone adapted for the contact of catalyst with a regeneration gas. The system and method are adapted so that more than one regeneration gas may contact catalyst. The distribution unit is adapted to control the percentage of catalyst contacting each regeneration gas. Thus, the distribution unit is adapted to select the percentages so as to maintain the reactor system and regeneration system under a heat balance regime. Heat is preferably transferred from the regenerator system to the reactor system by an exchange of catalyst.
    Type: Application
    Filed: May 6, 2002
    Publication date: May 1, 2003
    Applicant: Conoco Inc.
    Inventors: Harold A. Wright, Todd H. Harkins, Doug S. Jack, Ajoy P. Raje
  • Patent number: 6552243
    Abstract: A molybdenum-loaded crystalline aluminosilicate molecular sieve that exhibits the MFI crystal structure and has a silica-to-alumina ratio of about 50:1 is useful for aromatizing a hydrocarbon feed stream. The crystalline aluminosilicate preferably has an external surface acidity selectively passivated by means of an amorphous silica layer. A process for the aromatization of methane comprises a one- or multi-step process that contacts a feed stream comprising at least methane with a catalyst composition comprising the preferred molecular sieve, at hydrocarbon conversion conditions that include a temperature of 600-800° C., a pressure of less than 5 atmospheres absolute and a Weight Hourly Space Velocity (WHSV) of 0.1-10 h−1, with the external surface acidity of the crystalline aluminosilicate preferably selectively passivated by an amorphous silica layer. C6-plus aromatic hydrocarbons are preferably recovered from the process by means of an intermediate separation step.
    Type: Grant
    Filed: July 27, 2001
    Date of Patent: April 22, 2003
    Assignee: Conoco Phillips Company
    Inventors: Joe D. Allison, Stephan Basso, Marc LeDoux, Cuong Pham-Huu, Harold A. Wright
  • Patent number: 6547958
    Abstract: The present invention relates to new crystalline zeolite SSZ-59 and processes employing SSZ-59 as a catalyst.
    Type: Grant
    Filed: July 13, 2001
    Date of Patent: April 15, 2003
    Assignee: Chevron U.S.A. Inc.
    Inventor: Saleh Elomari
  • Patent number: 6540905
    Abstract: The present invention relates to new crystalline zeolite SSZ-58 and processes employing SSZ-58 as a catalyst.
    Type: Grant
    Filed: July 13, 2001
    Date of Patent: April 1, 2003
    Assignee: Chevron U.S.A. Inc.
    Inventor: Saleh Elomari
  • Patent number: 6540906
    Abstract: The present invention relates to new crystalline zeolite SSZ-60 and processes employing SSZ-60 as a catalyst.
    Type: Grant
    Filed: July 13, 2001
    Date of Patent: April 1, 2003
    Assignee: Chevron U.S.A. Inc.
    Inventor: Saleh Elomari
  • Publication number: 20030045765
    Abstract: The present invention relates to a process for manufacturing alkanes. comprising, as main stage, a reaction resulting from bringing methane into contact with at least one other starting alkane (A) in the presence of a catalyst based on a metal M capable of catalysing a metathesis of alkanes. The reaction results in the formation of at least one or two final alkanes (B) having a number of carbon atoms less than or equal to that of the starting alkane (A) and at least equal to 2. Preferably the catalyst comprises a hydride of a metal M grafted to and dispersed over a solid support. The metal M may be chosen from transition metals, lanthanides and actinides. The present invention also relates to the use of a catalyst capable of catalysing a metathesis of alkanes in a reaction resulting from bringing methane into contact with at least one other starting alkane (A).
    Type: Application
    Filed: January 9, 2002
    Publication date: March 6, 2003
    Inventors: Jean-Marie Basset, Christophe Coperet, Laurent Lefort, Barry Martin Maunders, Olivier Maury, Guillaume Saggio, Jean Thivolle-Cazat
  • Patent number: 6518476
    Abstract: The present invention provides methods for manufacturing olefins such as ethylene and propylene from lower alkanes, that is, methane, ethane and/or propane, by oxidative dehydrogenation at elevated pressure. The olefins are selectively recovered from unconverted lower alkane feed and reaction byproducts by using a complexation separation, such as an absorption separation that uses aqueous silver nitrate as the complexation agent. Catalysts are used that give high selectivity for oxidative dehydrogenation of lower alkanes to olefins at elevated pressure, such as a nonstoichiometric rare earth oxycarbonate catalyst.
    Type: Grant
    Filed: September 18, 2000
    Date of Patent: February 11, 2003
    Assignee: Union Carbide Chemicals & Plastics Technology Corporation
    Inventors: Gary Lynn Culp, Vincent Joseph Stricker, James Russell Nelson, Madan Mohan Bhasin, Kenneth Andrew Nielsen
  • Patent number: 6426442
    Abstract: A catalyst for producing higher carbon number hydrocarbons, e.g., benzene from low carbon number hydrocarbons such as methane has been developed. The catalyst comprises a porous support such as ZSM-5 which has dispersed thereon rhenium and a promoter metal such as iron, cobalt, vanadium, manganese, molybdenum, tungsten and mixtures thereof. A process for preparing the catalyst and a process for converting low carbon number aliphatic hydrocarbons to higher number hydrocarbons in the presence of CO or CO2 at conversion conditions are also described.
    Type: Grant
    Filed: September 27, 2001
    Date of Patent: July 30, 2002
    Assignee: UOP LLC
    Inventors: Masaru Ichikawa, Ryuichiro Ohnishi, Linsheng Wang
  • Patent number: 6387837
    Abstract: This invention relates to a process for the free-radical polymerization of monomers in gas phase or suspension processes using a supported, polymerization-initiating system comprising a) one or more polymerization-initiating components which initiate and start free-radical polymerization, b) a support, onto which said polymerization-initiating component is applied, and c) optionally, one or more modifiers which have an influence upon reaction kinetics and/or product properties.
    Type: Grant
    Filed: February 3, 1999
    Date of Patent: May 14, 2002
    Assignee: Bayer Aktiengesellschaft
    Inventors: Michael Dauben, Martin Hoch, Christiane Oppenheimer-Stix, Peter Schertl
  • Publication number: 20020049360
    Abstract: A hydrocarbon containing formation may be treated using an in situ thermal process. A mixture of hydrocarbons, H2, and/or other formation fluids may be produced from the formation. The produced mixture may include hydrogen and ammonia. The mixture may be separated into condensale hydrocarbons, non-condensable component, and an aqueous phase. The ammonia may be recovered from the aqueous phase. H2 may be separated from the non-condensable component.
    Type: Application
    Filed: April 24, 2001
    Publication date: April 25, 2002
    Inventors: Scott Lee Wellington, Harold J. Vinegar, Eric Pierre de Rouffignac, Kevin Albert Maher, Etuan Zhang, Ajay Madhav Madgavkar
  • Publication number: 20020040177
    Abstract: A hydrocarbon containing formation may be treated using an in situ thermal process. Hydrocarbons, H2, and/or other formation fluids may be produced from the formation. Heat may be applied to the formation to raise a temperature of a portion of the formation to a pyrolysis temperature. Pyrolysis products may be produced from the formation. After pyrolysis, the temperature of the portion may be raised to a synthesis gas production temperature. A synthesis gas producing fluid may be introduced into the formation to generate synthesis gas. After synthesis gas production, the portion may be cooled and used to store carbon dioxide or other fluids.
    Type: Application
    Filed: April 24, 2001
    Publication date: April 4, 2002
    Inventors: Kevin Albert Maher, Harold J. Vinegar, Scott Lee Wellington, Eric Pierre de Rouffignac, John Michael Karanikas, Ilya Emil Berchenko, Etuan Zhang, Lanny Gene Schoeling
  • Publication number: 20020038069
    Abstract: A coal formation may be treated using an in situ thermal process. A mixture of hydrocarbons, H2, and/or other formation fluids may be produced from the formation. A portion of the mixture may be a condensable component that includes a relatively small amount of olefins and a relatively small amount of tri- and higher order aromatics.
    Type: Application
    Filed: April 24, 2001
    Publication date: March 28, 2002
    Inventors: Scott Lee Wellington, Harold J. Vinegar, Eric Pierre de Rouffignac, Etuan Zhang
  • Publication number: 20020035305
    Abstract: A catalyst for producing higher carbon number hydrocarbons, e.g., benzene from low carbon number hydrocarbons such as methane has been developed. The catalyst comprises a porous support such as ZSM-5 which has dispersed thereon rhenium and a promoter metal such as iron, cobalt, vanadium, manganese, molybdenum, tungsten and mixtures thereof. A process for preparing the catalyst and a process for converting low carbon number aliphatic hydrocarbons to higher number hydrocarbons in the presence of CO or CO2 at conversion conditions are also described.
    Type: Application
    Filed: September 27, 2001
    Publication date: March 21, 2002
    Inventors: Masaru Ichikawa, Ryuichiro Ohnishi, Linsheng Wang
  • Publication number: 20020035307
    Abstract: A coal formation may be treating using an in situ thermal process. Hydrocarbons, H2, and/or other formation fluids may be produced from the formation. Heat may be applied to the formation to raise a temperature of a portion of the formation to a pyrolysis temperature. Pyrolysis products may be produced from the formation. After pyrolysis, the temperature of the portion may be raised to a synthesis gas production temperature. A synthesis gas producing fluid may be introduced into the formation to generate synthesis gas. After synthesis gas production, the portion may be cooled and used to store carbon dioxide or other fluids.
    Type: Application
    Filed: April 24, 2001
    Publication date: March 21, 2002
    Inventors: Harold J. Vinegar, Scott Lee Wellington, Eric Pierre de Rouffignac, John Michael Karanikas, Ilya Emil Berchenko, Kevin Albert Maher, Etuan Zhang, Lanny Gene Schoeling
  • Patent number: 6335474
    Abstract: Process for the catalytic steam reforming of a hydrocarbon feed stock with a content of higher hydrocarbons and oxygen comprising the steps of catalytic pre-reforming the feed stock and steam reforming the pre-reformed feed stock, the pre-reforming step is carried out in presence of a fixed bed catalyst comprising at least a portion of a noble metal catalyst being active in oxidation of hydrocarbons to carbon oxides and conversion of higher hydrocarbons to methane, wherein the noble metal catalyst is supported on a carrier of MgO and/or MgAl2O4 spinel.
    Type: Grant
    Filed: August 16, 2000
    Date of Patent: January 1, 2002
    Assignee: Haldor Topsoe A/S
    Inventors: Martin Østberg, Jens-Henrik Bak Hansen, Poul Crik Iløjlund Nielsen, Kim Aasberg-Petersen
  • Patent number: 6326407
    Abstract: A method of transforming a normally gaseous composition consisting essentially of methane into a material comprising a major portion, at least, of hydrocarbons containing at least two carbon atoms; the method comprising the steps of feeding the composition into a reactor including a first electrode means, a second electrode means and at least one layer of a normally solid dielectric material positioned between the first and the second electrode means; submitting the composition within the reactor in the presence of a normally solid catalyst to a dielectric barrier discharge; and controlling the dielectric barrier discharge to convert the normally gaseous composition into the material comprising a major portion, at least, of the hydrocarbons containing at least two carbon atoms.
    Type: Grant
    Filed: August 4, 2000
    Date of Patent: December 4, 2001
    Assignee: ABB Research Ltd.
    Inventors: Baldur Eliasson, Chang-Jun Liu, Eric Killer
  • Patent number: 6265626
    Abstract: A method and apparatus for continuously reacting a feed gas to form a product and separating the product from unreacted feed gas is provided. The apparatus includes a plurality of compartments and means for connecting the compartments in a series, with the last compartment in the series being connected to the first compartment in the series to provide a closed loop. Each compartment may include an upstream reaction zone and a downstream separation zone.
    Type: Grant
    Filed: June 6, 1995
    Date of Patent: July 24, 2001
    Assignee: Regents of the University of Minnesota
    Inventors: Robert W. Carr, Anna Lee Y. Tonkovich
  • Patent number: 6258988
    Abstract: A method is disclosed for reforming organics into shorter-chain unsaturated organic compounds. A molten metal bath is provided which can cause homolytic cleavage of an organic component of an organic-containing feed. The feed is directed into the molten metal bath at a rate which causes partial homolytic cleavage of an organic component of the feed. Conditions are established and maintained in the reactor to cause partial homolytic cleavage of the organic component to produce unsaturated organic compounds, as products of the homolytic cleavage, which are discharged from the molten metal bath.
    Type: Grant
    Filed: December 23, 1993
    Date of Patent: July 10, 2001
    Assignee: Quantum Catalytics, L.L.C.
    Inventors: Christopher J. Nagel, Thomas P. Griffin, Thomas A. Kinney, Kevin A. Sparks
  • Patent number: 6218591
    Abstract: The present invention relates to new crystalline zeolite SSZ-36 prepared using a cyclic or polycyclic quaternary ammonium cation templating agent.
    Type: Grant
    Filed: June 11, 1999
    Date of Patent: April 17, 2001
    Assignee: Chevron U.S.A. Inc.
    Inventors: Gregory S. Lee, Stacey I. Zones, Yumi Nakagawa, Susan T. Evans
  • Patent number: 6096934
    Abstract: A process for converting methane to ethane and ethylene through oxidative coupling of methane and carbon conservation has been developed. The process begins by contacting methane and an oxygen-containing stream with an oxidative coupling catalyst that is capable of reacting with carbon oxides to form a solid carbonate compound in an oxidative coupling reactor to produce an effluent containing methane, ethane, and ethylene. The solid carbonate compounds are thermally decomposed to the oxidative coupling catalyst by reaction with hot hydrogen. The oxidative coupling catalyst is then available for reuse and a stream containing hydrogen and carbon oxide by-products are produced. The stream containing hydrogen and carbon oxide by-products is contacted with a methanation catalyst in a methanation reactor to produce a stream containing methane and water. The methane is separated, dried, and recycled to the oxidative coupling reactor.
    Type: Grant
    Filed: December 9, 1998
    Date of Patent: August 1, 2000
    Assignee: UOP LLC
    Inventor: James E. Rekoske
  • Patent number: 6002059
    Abstract: The invention discloses a method for converting methane to higher order hydrocarbons. This method includes synthesizing ammonia from natural gas and nitrogen in the presence of a source of hydrogen. The ammonia is converted to nitrous oxide in the presence of a source of oxygen. Methane is coupled in the presence of the nitrous oxide to provide higher hydrocarbons. The invention also discloses a method of balancing reaction heat requirements in a process for converting methane to higher order hydrocarbons.
    Type: Grant
    Filed: October 28, 1998
    Date of Patent: December 14, 1999
    Assignee: Mobil Oil Corporation
    Inventors: Stuart D. Hellring, Scott A. Stevenson
  • Patent number: 5959170
    Abstract: A method for converting methane to higher hydrocarbon products and coproduct water wherein a gas comprising methane and a gaseous oxidant are contacted with a nonacidic catalyst at temperatures within the range of about 700 to 1200.degree. C. A preferred catalyst comprises an alkali component associated with a support material. Results obtained over alkali-promoted solids are enhanced when the contacting is conducted in the presence of halogen promoters.
    Type: Grant
    Filed: May 24, 1985
    Date of Patent: September 28, 1999
    Assignee: Atlantic Richfield Company
    Inventor: Howard P. Withers, Jr.
  • Patent number: 5877387
    Abstract: A preparation of a Pb-substituted hydroxyapatite catalyst for oxidative coupling of methane represented by the formula Ca.sub.10-x pb.sub.x (PO.sub.4).sub.6 (OH).sub.2 wherein 0<X<10 or preferably 0<X<3, includes dissolving calcium nitrate tetrahydrate ?Ca(NO.sub.3).sub.2 4H.sub.2 O!, lead nitrate ?Pb(NO.sub.3).sub.2 ! and monobasic ammonium phosphate ?NH.sub.4 H.sub.2 PO.sub.4 ! in a distilled water at room temperature to have over 0.01M concentration and pH 9 and maintaining a resultant precipitate for 5 to 20 hours for aging and then calcining the resultant. A method for producing C.sub.2 compounds using the thusly produced catalyst includes reacting a mixed gas composed of methane, oxygen and helium in the presence of 5.about.20 g.multidot.min/L of the Pb-substituted hydroxyapatite catalyst according to the present invention, at a high temperature of at least 600.degree. C.
    Type: Grant
    Filed: May 23, 1997
    Date of Patent: March 2, 1999
    Assignee: Korea Institute of Science and Technology
    Inventors: Tae-Jin Park, Dong Jin Suh, Kwan-Young Lee
  • Patent number: 5866737
    Abstract: A process for the oxidation and oxidative dehydrogenation of hydrocarbons, in particular ethylbenzene, to form corresponding oxidized or olefinically unsaturated compounds, in particular styrene, over an oxygen-conferring, oxygen-regenerable catalyst involving a working period, a time-displaced regenerating period and at least one intermediate rinsing period comprises effecting a partial regeneration during the working period by time-displaced addition of a substoichiometric amount of oxygen.
    Type: Grant
    Filed: January 7, 1997
    Date of Patent: February 2, 1999
    Assignee: BASF Aktiengesellschaft
    Inventors: Alfred Hagemeyer, Jurgen Schweinzer, Otto Watzenberger
  • Patent number: 5849973
    Abstract: A catalyst for oxidative coupling of methane comprising Fe.sub.2 O.sub.3 deposited on a silica substrate, said silica substrate having particle sizes in the range of about 150 to 215 .mu.m, and a method for producing said catalyst in which particles of Fe.sub.2 O.sub.3, with a particle size in the range from 100 to 150 .mu.m, and particles of silica, with a particle size in the range from about 150 to about 215 .mu.m are mixed together. The particles are heated to a temperature of at least about 800.degree. C., after which the silica particles impregnated with Fe.sub.2 O.sub.3 are separated from the remaining iron particles.
    Type: Grant
    Filed: January 21, 1997
    Date of Patent: December 15, 1998
    Assignee: Gas Research Institute
    Inventor: Donald R. Van Der Vaart
  • Patent number: 5817904
    Abstract: A method for converting methane by an oxidative coupling reaction to longer chain hydrocarbons comprising cofeeding methane and oxygen simultaneously and continuously into a reaction zone to form a mixture, contacting said methane and oxygen mixture under oxidative coupling reaction conditions with a solid catalyst consisting essentially of manganese oxide and silicon oxide, promoted with an alkaline metal and non metal, to form longer chain hydrocarbons wherein the manganese, silicon oxide, alkali metal and non metal are present in a molar ratio 0-0.5:93.2-93.7:4.2:2.1.
    Type: Grant
    Filed: June 7, 1995
    Date of Patent: October 6, 1998
    Assignee: Repsol Petroleo S.A.
    Inventors: Sebastian Vic, Miguel A. Pena, Pilar Terreros, Juan P. Gomez, Jose L. Garcia-Fierro, Juan M. Jimenez
  • Patent number: 5763722
    Abstract: An improved method for the oxidative conversion of methane into higher hydrocarbons in which methane and oxygen are continuously and simultaneously cofed into a reaction zone under effective oxidative coupling conditions and contacted with a solid catalyst consisting essentially of a catalyst having a composition of empirical formula Ce.sub.a Na.sub.b Ca.sub.100 O.sub.x wherein a is in the range 0.03 to 2.0, b is in the range of 0.7 to 7.0 and oxygen is present in a molar amount sufficient to fulfill the valence requirements of cerium, sodium and calcium.
    Type: Grant
    Filed: June 7, 1995
    Date of Patent: June 9, 1998
    Assignee: Repsol Petroleo S.A.
    Inventors: Sebastian Vic, Miguel A. Pena, Pilar Terreros, Juan P. Gomez, Jose L. Garcia-Fierro, Juan M. Jimenez
  • Patent number: 5750821
    Abstract: The following steps are conducted for producing a hydrocarbon having a carbon number of at least 2: a coupling step, in which a coupling feed gas containing methane and a gas containing oxygen are supplied to a conveying catalyst bed which is formed by an ascending stream which contains a catalyst, and then methane and oxygen are allowed to react so as to produce a coupling product gas; a catalyst separation step for separating the catalyst from the coupling product gas; and a catalyst feedback step for feeding back the thus-separated catalyst to the coupling step. Accordingly, the reaction system does not accumulate excessive heat, the combustion reaction as a side reaction is hindered, and the selectivity of the coupling reaction is enhanced. In addition, the yield of the hydrocarbon having a carbon number of at least 2 is improved.
    Type: Grant
    Filed: November 21, 1995
    Date of Patent: May 12, 1998
    Assignees: Japan National Oil Corporation, Sekiyushigen Kaihatsu Kabushiki Kaisha, Cosmo Research Institue
    Inventors: Makoto Inomata, Tsutomu Katagiri, Kozo Imura, Erli Sun