Synthesis From Methane Or Inorganic Carbon Source, E.g., Coal, Etc. Patents (Class 585/943)
  • Patent number: 4827071
    Abstract: The invention relates to a novel mixed ion and electron conducting catalytic ceramic membrane and to its use in hydrocarbon oxidation and or hydrogenation processes, the membrane consists of two layers, layer 1 which is an impervious mixed ion and electron conducting ceramic layer and layer 2 which is a porous catalyst-containing ion conducting ceramic layer.
    Type: Grant
    Filed: June 15, 1988
    Date of Patent: May 2, 1989
    Assignee: ARCO Chemical Technology, Inc.
    Inventor: Edward A. Hazbun
  • Patent number: 4822938
    Abstract: There is provided a process for converting methane to higher molecular weight hydrocarbons. In a first step, methane is contacted with elemental sulfur under conditions sufficient to produce carbon disulfide. Carbon disulfide from this step is then contacted with methane and hydrogen under conditions sufficient to convert methane and to produce CH.sub.3 SH. This CH.sub.3 SH is then contacted with a sufficient catalyst, such as a zeolite, especially ZSM-5, under conditions sufficient to produce hydrocarbons having two or more carbon atoms.
    Type: Grant
    Filed: May 3, 1988
    Date of Patent: April 18, 1989
    Assignee: Mobil Oil Corporation
    Inventors: Costandi A. Audeh, Weldon K. Bell, Scott Han, Robert E. Palermo
  • Patent number: 4822940
    Abstract: The present invention provides for a process for converting a feedstock comprising ethylene and/or acetylene to a product comprising liquid hydrocarbons. The process comprises maintaining said feedstock at a temperature in the range of about 700.degree. C. to about 1000.degree. C. for about 100 to about 1000 milliseconds to provide for said conversion. In one embodiment, the feedstock further comprises hydrogen. In another embodiment the feedstock comprises the product made by the process comprising heating a gaseous mixture comprising (i) hydrogen and (ii) natural gas and/or at least one light hydrocarbon at a temperature of at least about 1250.degree. C. for an effective period of time to provide said feedstock. In still another embodiment, the feedstock further comprises natural gas and/or at least one light hydrocarbon in addition to said ethylene and/or acetylene.
    Type: Grant
    Filed: August 17, 1987
    Date of Patent: April 18, 1989
    Assignee: The Standard Oil Company
    Inventors: Alan A. Leff, Joseph E. Metcalfe, Louis J. Velenyi, Christos Paparizos
  • Patent number: 4822944
    Abstract: A process for converting a gaseous reactant comprising methane or natural gas to higher molecular weight hydrocarbon products is disclosed which comprises: (1) contacting said gaseous reactant with an oxidative coupling catalyst at a reaction temperature of at least about 900.degree. C. for an effective period of time to form an intermediate product comprising ethane, ethylene or a mixture thereof, said catalyst being characterized by a melting point above said reaction temperature; and (2) pyrolyzing said intermediate product at a temperature of at least about 900.degree. C. for an effective period of time to form said higher molecular weight hydrocarbon products using exothermic heat generated by the formation of said intermediate product. Novel oxidative-coupling catalysts having melting points above about 900.degree. C. are also disclosed.
    Type: Grant
    Filed: July 11, 1986
    Date of Patent: April 18, 1989
    Assignee: The Standard Oil Company
    Inventors: James F. Brazdil, Jr., John S. Hattenberger, Richard E. Hildebrand, Joseph P. Bartek
  • Patent number: 4814534
    Abstract: Disclosed is a continuous catalytic process for the production of higher molecular weight hydrocarbons from methane in which a methane-containing gas is contacted in a reaction zone with a higher molecular weight hydrocarbon synthesis catalyst under C.sub.2 +hydrocarbon synthesis conditions, the improvement comprising adding a C.sub.2 to C.sub.4 hydrocarbon and hydrogen to said gas thereby forming a reaction gas wherein said C.sub.2 to C.sub.4 hydrocarbon comprises 0.1 to 10 volume percent of said reaction gas and said hydrogen comprises 1 to 25 volume percent of said reaction gas, said synthesis conditions including a temperature greater than 1000.degree. C. and a gas hourly space velocity of greater than 3200 hr.sup.31 1.
    Type: Grant
    Filed: October 31, 1985
    Date of Patent: March 21, 1989
    Assignee: Chevron Research Company
    Inventors: Louis Devries, P. R. Ryason
  • Patent number: 4814533
    Abstract: In a continuous catalytic process for the production of higher molecular weight hydrocarbons from lower molecular weight hydrocarbons in which a lower molecular weight hydrocarbon containing gas is contacted in a reaction zone with a higher molecular weight hydrocarbon synthesis catalyst under C.sub.2 + hydrocarbon synthesis conditions, the improvement comprising adding hydrogen to said gas thereby forming a reaction gas wherein said hydrogen comprises 1 to 25 volume percent of the reaction gas, said synthesis conditions including a temperature greater than 1000.degree. C. and a gas hourly space velocity of greater than 3200 hr.sup.-1.
    Type: Grant
    Filed: October 31, 1985
    Date of Patent: March 21, 1989
    Assignee: Chevron Research Company
    Inventors: Loius Devries, P. R. Ryason
  • Patent number: 4814538
    Abstract: In a continuous catalytic process for the production of higher molecular weight hydrocarbons from methane in which a reaction gas containing methane is contacted in a reaction zone with a higher molecular weight hydrocarbon synthesis catalyst under C.sub.2 + hydrocarbon synthesis conditions, the improvement comprising adding a C.sub.2 to C.sub.4 hydrocarbon to the reaction gas such that said C.sub.2 to C.sub.4 hydrocarbon comprises 0.1 to 10 volume percent of the reaction gas, said reaction conditions including a temperature greater than 1000.degree. C. and a gas hourly space velocity of greater than 3200 hr.sup.-1.
    Type: Grant
    Filed: October 23, 1985
    Date of Patent: March 21, 1989
    Assignee: Chevron Research Company
    Inventors: Louis Devries, P. R. Ryason
  • Patent number: 4804797
    Abstract: Natural gas components are converted to unsaturated hydrocarbons and hydrogen, as by a one-step process. The reaction products comprise a mixture containing hydrogen, acetylene, ethylene, propylene, C.sub.4 species, aromatics, hydrogen chloride, etc. Acetylene and ethylene are separated from this mixture as main products; and hydrogen chloride is converted to chlorine for recycle.
    Type: Grant
    Filed: August 24, 1987
    Date of Patent: February 14, 1989
    Assignee: Gas Research Institute
    Inventors: Ronald G. Minet, Stanley C. Che
  • Patent number: 4801762
    Abstract: In an improved method for converting methane to at least one higher hydrocarbon product and coproduct water which comprises contacting a gas comprising methane and at least one added gaseous oxidant with nonacidic solid, the improvement comprising conducting at least a portion of said contacting in the presence of added water.
    Type: Grant
    Filed: February 13, 1987
    Date of Patent: January 31, 1989
    Assignee: Atlantic Richfield Company
    Inventor: David W. Leyshon
  • Patent number: 4795848
    Abstract: Catalysts comprising lead doped zirconium compounds are particularly effective in an oxidative process for upgrading low molecular weight alkanes to higher molecular weight hydrocarbons, and especially for upgrading methane to form ethane and ethylene. The catalysts can be employed in a process performed at elevated temperatures and in the presence or absence of gaseous oxygen. The catalysts are substantially free of PbO and uncombined Pb and remain stable for long periods of time.
    Type: Grant
    Filed: August 28, 1986
    Date of Patent: January 3, 1989
    Assignee: The Standard Oil Company
    Inventors: Raymond G. Teller, James F. Brazdil, Jr., Joseph P. Bartek, Ann M. Brussee
  • Patent number: 4795849
    Abstract: Methane is converted to higher hydrocarbons by contact with a catalyst comprised of a reducible metal oxide which had previously been treated with a reducing agent such as hydrogen to improve characteristics of the catalyst.
    Type: Grant
    Filed: August 23, 1988
    Date of Patent: January 3, 1989
    Assignee: Atlantic Richfield Company
    Inventors: Ann M. Gaffney, C. Andrew Jones, John A. Sofranko
  • Patent number: 4795842
    Abstract: The invention relates to the conversion of methane to higher hydrocarbons by contact with a solid oxidative synthesizing agent, the specific improvement being the addition to the reaction system of one or more components of the oxidative synthesizing agent which are lost during the reaction.
    Type: Grant
    Filed: August 4, 1987
    Date of Patent: January 3, 1989
    Assignee: Atlantic Richfield Company
    Inventors: Anne M. Gaffney, C. Andrew Jones, John A. Sofranko
  • Patent number: 4788372
    Abstract: In a method for converting methane into higher hydrocarbon products and coproduct water which comprises contacting a gas comprising methane and a contact solid comprising at least one reducible metal oxide in the substantial absence of added gaseous oxidant, the improvement comprising conducting at least a portion of the contacting in the presence of added water.
    Type: Grant
    Filed: February 13, 1987
    Date of Patent: November 29, 1988
    Assignee: Atlantic Richfield Company
    Inventor: Anne M. Gaffney
  • Patent number: 4783572
    Abstract: A process for the preparation of ethane and ethylene by oxidation of methane with oxygen at a temperature of 600.degree. to 900.degree. C., in which lead (II) oxide is used as catalyst (a) dispersed on a carrier of pumice, silicon carbide, zinc oxide, zirconium dioxide, and/or oxides of alkaline-earth elements, or (b) in a mixture with manganese (II) oxide dispersed on a carrier of pumice, silicon carbide, silicon dioxide, titanium dioxide, zirconium dioxide, zinc oxide, and/or oxides of alkaline-earth elements, or (c) without a carrier in a mixture with sodium silicate alone or in combination with silicon dioxide, titanium dioxide, zirconium dioxide, manganese (II) oxide, zinc oxide, and/or oxides of alkaline-earth elements. Ethane and ethylene are obtained with this process in high selectivities with good catalyst activities.
    Type: Grant
    Filed: March 6, 1986
    Date of Patent: November 8, 1988
    Assignee: Akzo N.V.
    Inventors: Klaus Wohlfahrt, Manfred Bergfeld, Hans-Georg Zengel
  • Patent number: 4777313
    Abstract: Compositions comprising boron-promoted reducible metal oxides (especially reducible oxides of Mn) and optionally containing alkali and alkaline earth metal components are disclosed, as well as use thereof for hydrocarbon conversions characterized by formation of byproduct water. Particular processes comprise the conversion of methane to higher hydrocarbons and the dehydrogenation of dehydrogenatable hydrocarbons, e.g., dehydrogenation of C.sub.2 -C.sub.5 alkanes to form the corresponding olefins.
    Type: Grant
    Filed: June 23, 1986
    Date of Patent: October 11, 1988
    Assignee: Atlantic Richfield Company
    Inventors: John A. Sofranko, Robert G. Gastinger, C. Andrew Jones
  • Patent number: 4774380
    Abstract: A class of mixed oxide catalysts comprising Mn-containing oxides, alkali metals or compounds thereof, and at least one member of the group consisting of oxides of Zr, mixed oxides of Zr and Si, and mixed oxides of Zr and at least one alkaline earth metal. In the more preferred embodiments, the third component serves as a carrier for the Mn and alkaline metal components. The composition preferably comprises a major amount of the carrier material and minor amounts of the other components. The compositions are useful for hydrocarbon conversion, methane conversion, and oxidative dehydrogenation processes characterized by formation of coproduct water.
    Type: Grant
    Filed: August 27, 1986
    Date of Patent: September 27, 1988
    Assignee: Atlantic Richfield Company
    Inventors: C. Andrew Jones, John A. Sofranko
  • Patent number: 4769508
    Abstract: A class of mixed oxide catalysts comprising Mn-containing oxides, alkali metals or compounds thereof, and at least one member of the group consisting of oxides of Ti, mixed oxides of Ti and Si, and mixed oxides of Ti and at least one alkaline earth metal. In the more preferred embodiments, the third component serves as a carrier for the Mn and alkali metal components. The composition preferably comprises a major amount of the carrier material and minor amounts of the other components. The compositions are useful for hydrocarbon conversion, methane conversion, and oxidative dehydrogenation processes characterized by formation of coproduct water.
    Type: Grant
    Filed: May 15, 1986
    Date of Patent: September 6, 1988
    Assignee: Atlantic Richfield Company
    Inventors: Robert G. Gastinger, Howard P. Withers, Jr., John A. Sofranko
  • Patent number: 4769509
    Abstract: A class of mixed oxide catalysts comprising at least one reducible metal oxide, which oxide produces higher hydrocarbons and water when contacted with a hydrocarbon at synthesizing conditions, at least one oxide of zirconium, and at least one oxide of yttrium. The compositions are useful for hydrocarbon conversion, methane conversion, and oxidative dehydrogenation processes characterized by the formation of coproduct water.
    Type: Grant
    Filed: October 16, 1986
    Date of Patent: September 6, 1988
    Assignee: Atlantic Richfield Company
    Inventor: Jack Y. Josefowicz
  • Patent number: 4761515
    Abstract: Liquified Natural Gas (L.N.G.) is re-vaporized by heat exchange and pre-heated in a furnace at a temperature not exceeding 1100.degree. C. It is fed, together with an ionized hydrogen plasma stream, into a reactor containing a catalyst of the type described in the co-pending application No. 688,058. After heat exchange with the vaporizing L.N.G., the reactor effluent is separated into a condensed low-vapor-pressure liquid hydrocarbon product, rich in aromatics, into a hydrogen-rich gaseous by-product and into a recycle gas stream. The process is of particular interest where thermal or electrical energy is available at low cost. The Liquified Natural Gas Conversion Process may be considered as a method for storing such energy because the resulting liquid hydrocarbon product can be stored at low cost and may be sold during periods when such energy is in surplus.
    Type: Grant
    Filed: December 12, 1985
    Date of Patent: August 2, 1988
    Assignee: S-Cal Research
    Inventor: Oliver M. Gondouin
  • Patent number: 4754093
    Abstract: The catalyzed oxidative coupling of a lower molecular weight alkane to move valuable, higher molecular weight hydrocarbons is disclosed.
    Type: Grant
    Filed: February 28, 1985
    Date of Patent: June 28, 1988
    Assignee: Amoco Corporation
    Inventors: James L. Jezl, Glenn O. Michaels, Michael J. Spangler
  • Patent number: 4754091
    Abstract: The catalyzed oxidative coupling of a lower molecular weight alkane to higher molecular weight hydrocarbons which are then oligomerized to form aromatic hydrocarbons is disclosed.
    Type: Grant
    Filed: February 28, 1985
    Date of Patent: June 28, 1988
    Assignee: Amoco Corporation
    Inventors: James L. Jezl, Glenn O. Michaels, Michael J. Spangler
  • Patent number: 4751336
    Abstract: The catalyzed oxidative coupling of a lower molecular weight alkane to higher molecular weight hydrocarbons which are then oxidatively dehydrogenated to form unsaturated aliphatic hydrocarbons is disclosed.
    Type: Grant
    Filed: February 28, 1985
    Date of Patent: June 14, 1988
    Assignee: Amoco Corporation
    Inventors: James L. Jezl, Glenn O. Michaels, Michael J. Spangler
  • Patent number: 4734537
    Abstract: Disclosed is a catalytic process for the production of higher molecular weight hydrocarbons from lower molecular weight hydrocarbons. More particularly, disclosed is a catalytic process for the conversion of methane to C.sub.2 + hydrocarbons, particularly hydrocarbons rich in ethylene or benzene, or both. The process utilizes a metal-containing catalyst, high reaction temperature of greater than 1000.degree. C., and a high gas hourly space velocity of greater than 3200 hr.sup.-1.
    Type: Grant
    Filed: June 27, 1986
    Date of Patent: March 29, 1988
    Assignee: Chevron Research Company
    Inventors: Louis Devries, P. R. Ryason
  • Patent number: 4731498
    Abstract: In a continuous catalytic process for the production of higher molecular weight hydrocarbons from lower molecular weight hydrocarbons in which a lower molecular weight hydrocarbon containing reaction gas is contacted in a reaction zone with a higher molecular weight hydrocarbon synthesis catalyst under C.sub.2 + hydrocarbon synthesis conditions, the improvement comprising increasing the production of higher molecular weight hydrocarbons by the addition of an effective amount of aluminum metal vapor to the reaction gas, said synthesis conditions including a temperature greater than 1000.degree. C. and a gas hourly space velocity of greater than 3200 hr.sup.-1.
    Type: Grant
    Filed: June 27, 1986
    Date of Patent: March 15, 1988
    Assignee: Chevron Research Company
    Inventors: Louis Devries, P. R. Ryason
  • Patent number: 4727211
    Abstract: A method for synthesizing hydrocarbons from a methane source which comprises contacting methane with an oxide of Pr. The oxide is reduced by the contact which is carried at about 500.degree. to 1000.degree. C. Reducible oxides of Pr are regenerated by oxidizing the reduced composition with oxygen. The oxide Pr.sub.6 O.sub.11 is particularly effective in the process.
    Type: Grant
    Filed: November 5, 1984
    Date of Patent: February 23, 1988
    Assignee: Atlantic Richfield Company
    Inventor: Anne M. Gaffney
  • Patent number: 4727207
    Abstract: The invention relates to a process for converting light hydrocarbon feedstocks such as methane and/or natural gas, to higher molecular weight hydrocarbon products that are more readily handleable and transportable. The process comprises heating a gaseous mixture comprising said light hydrocarbon feedstocks and carbon dioxide at a temperature of at least about 600.degree. C. for a period of time effective to provide said higher molecular weight liquid hydrocarbon product. The invention also relates to the higher molecular weight liquid products obtained by the process of the invention.
    Type: Grant
    Filed: July 2, 1986
    Date of Patent: February 23, 1988
    Assignee: Standard Oil Company
    Inventors: Christos Paparizos, Wilfrid G. Shaw
  • Patent number: 4727212
    Abstract: A method for synthesizing hydrocarbons from a methane source which comprises contacting methane with a reducible oxide of Tb. The Tb oxide is preferably combined with an amount of alkali and/or alkaline earth metal which is sufficient to improve the selectivity to higher hydrocarbon products. The oxide is reduced by the contact which is carried at about 500.degree. to 1000.degree. C. Reducible oxides of Tb are regenerated by oxidizing the reduced composition with molecular oxygen. The oxide Tb.sub.4 O.sub.7 is particularly effective in the process.
    Type: Grant
    Filed: November 5, 1984
    Date of Patent: February 23, 1988
    Assignee: Atlantic Richfield Company
    Inventor: Anne M. Gaffney
  • Patent number: 4727205
    Abstract: The invention relates to a process for converting light hydrocarbon feedstocks such as methane and/or natural gas, to higher molecular weight hydrocarbon products that are more readily handleable and transportable. The process comprises heating a gaseous mixture comprising said light hydrocarbon feedstocks and a minor, effective amount of at least one ether or thioether compound at a temperature of at least about 800.degree. C. for a period of time effective to provide said higher molecular weight liquid hydrocarbon product. The invention also relates to the higher molecular weight liquid products obtained by the process of the invention.
    Type: Grant
    Filed: August 28, 1986
    Date of Patent: February 23, 1988
    Assignee: The Standard Oil Company
    Inventors: Louis J. Velenyi, Christos Paparizos
  • Patent number: 4727206
    Abstract: This invention relates to the aromatization of methane rich hydrocarbon feedstock by contact with a gallium loaded zeolite containing a Group VIIB metal or metal compound as catalyst. The preferred metal is rhenium. The reaction proceeds at a temperature between 600.degree.-800.degree. C. in the absence of oxygen. The reaction products are useful as gasoline blending components.
    Type: Grant
    Filed: December 5, 1986
    Date of Patent: February 23, 1988
    Assignee: British Petroleum Company p.l.c.
    Inventors: David M. Clayson, Timothy K. McNiff
  • Patent number: 4724272
    Abstract: A method of controlling temperature during a pyrolysis reaction wherein the predominant pyrolysis reactions are endothermic. A fuel and oxidizer are combusted in a combustion zone to produce a hot gas stream at a superatmospheric pressure. The hot gas stream is then passed through a converging-diverging nozzle to accelerate the hot gas stream to a velocity of at least about mach 2. The reactant to be pyrolyzed is injected into the supersonic hot gas stream to produce a reaction mixture flowing at supersonic velocity and initiate the endothermic pyrolysis reactions. Substantially immediately thereafter the velocity of the reaction mixture is reduced over a predetermined reaction time to convert the kinetic energy of the reaction mixture to thermal energy in an amount sufficient to substantially offset the endothermic reactions taking place while maintaining supersonic flow. At the end of the predetermined reaction time the velocity of the reaction mixture is reduced to subsonic flow and the reaction quenched.
    Type: Grant
    Filed: April 17, 1984
    Date of Patent: February 9, 1988
    Assignee: Rockwell International Corporation
    Inventors: Frederick D. Raniere, Merlin D. Schuman
  • Patent number: 4721828
    Abstract: A method for synthesizing hydrocarbons from a methane source which comprises contacting methane with a reducible oxide of Fe. The iron oxide is preferably combined with an amount of alkali and/or alkaline earth metal which is sufficient to improve the selectively to higher hydrocarbon products. The oxide is reduced by the contact which is carried at about 500.degree. to 1000.degree. C. Reducible oxides of Fe are regenerated by oxidizing the reduced composition with oxygen. The oxide Fe.sub.3 O.sub.4 is particularly effective in the process. Bulk iron oxides promoted by sodium and/or compounds thereof are particularly preferred contact solids.
    Type: Grant
    Filed: October 31, 1984
    Date of Patent: January 26, 1988
    Assignee: Atlantic Richfield Company
    Inventor: Howard P. Withers
  • Patent number: 4714796
    Abstract: A process for oxidative pyrolysis of halogenated methanes in the presence of oxygen-containing gas under non-flame conditions is provided whereby the formation of solid carbonaceous materials is significantly reduced, while high yields of desired higher molecular weight hydrocarbons such as acetylene and ethylene are maintained.
    Type: Grant
    Filed: April 21, 1987
    Date of Patent: December 22, 1987
    Assignee: Illinois Institute of Technology
    Inventor: Selim M. Senkan
  • Patent number: 4709108
    Abstract: Disclosed is a catalytic process for the production of higher molecular weight hydrocarbons from lower molecular weight hydrocarbons. More particularly, disclosed is a catalytic process for the conversion of methane to C.sub.2 + hydrocarbons, particularly hydrocarbons rich in ethylene or benzene, or both. The process utilizes a metal-containing catalyst, high reaction temperature of greater than 1000.degree. C., and a high gas hourly space velocity of greater than 3200 hr.sup.-1.
    Type: Grant
    Filed: June 27, 1986
    Date of Patent: November 24, 1987
    Assignee: Chevron Research Company
    Inventors: Louis Devries, P. R. Ryason
  • Patent number: 4705908
    Abstract: Natural gas hydrocarbon components, methane to butanes, are converted into low-vapor-pressure liquid hydrocarbons in a combination process which comprises successively passing the heavier fraction (C.sub.2 to C.sub.4) and the lighter fraction (C.sub.1, C.sub.2) with hydrogen over a non silica-based catalyst including crystals of basic mixed oxides and recovering C.sub.5 + hydrocarbons. First the heavier fraction of the feed (C.sub.2 +) is converted at temperatures below 600.degree. C. over a fluidized or moving catalytic bed. Condensible C.sub.3 + products are fractionated for C.sub.5 + recovery and for C.sub.3, C.sub.4 recycling. Gas by-products H.sub.2, C.sub.1, C.sub.2, are separated into an enriched hydrogen stream and into a C.sub.1, C.sub.2 by-product gas which is recycled into the lighter fraction C.sub.1, C.sub.2 of the feed.
    Type: Grant
    Filed: December 31, 1984
    Date of Patent: November 10, 1987
    Inventor: Oliver M. Gondouin
  • Patent number: 4704487
    Abstract: Disclosed is a catalytic process for the production of higher molecular weight hydrocarbons from lower molecular weight hydrocarbons. More particularly, disclosed is a catalytic process for the conversion of methane to C.sub.2 + hydrocarbons, particularly hydrocarbons rich in ethylene or benzene, or both. The process utilizes a metal-containing catalyst, high reaction temperature of greater than 1000.degree. C., and a high gas hourly space velocity of greater than 3200 hr.sup.-1.
    Type: Grant
    Filed: June 27, 1986
    Date of Patent: November 3, 1987
    Assignee: Chevron Research Company
    Inventors: Louis Devries, Porter R. Ryason
  • Patent number: 4704488
    Abstract: Disclosed is a catalytic process for the production of higher molecular weight hydrocarbons from lower molecular weight hydrocarbons. More particularly, disclosed is a catalytic process for the conversion of methane to C.sub.2+ hydrocarbons, particularly hydrocarbons rich in ethylene or benzene, or both. The process utilizes a metal-containing catalyst, high reaction temperature of greater than 1000.degree. C., and a high gas hourly space velocity of greater than 3200 hr.sup.-1.
    Type: Grant
    Filed: June 27, 1986
    Date of Patent: November 3, 1987
    Assignee: Chevron Research Company
    Inventors: Louis Devries, P. R. Ryason
  • Patent number: 4704493
    Abstract: Disclosed is a catalytic process for the production of higher molecular weight hydrocarbons from lower molecular weight hydrocarbons. More particularly, disclosed is a catalytic process for the conversion of methane to C.sub.2 + hydrocarbons, particularly hydrocarbons rich in ethylene or benzene, or both. The process utilizes a metal-containing catalyst, high reaction temperature of greater than 1000.degree. C., and a high gas hourly space velocity of greater than 3200 hr.sup.-1.
    Type: Grant
    Filed: June 27, 1986
    Date of Patent: November 3, 1987
    Assignee: Chevron Corporation
    Inventors: Louis Devries, P. R. Ryason
  • Patent number: 4704496
    Abstract: The invention relates to a process for converting light hydrocarbon feedstocks such as methane, ethane and/or natural gas, to higher molecular weight hydrocarbon products that are more readily handleable and transportable. The process comprises heating a gaseous mixture comprising said light hydrocarbon feedstocks and at least one oxide initiator selected from the group consisting of nitrogen oxides, sulfur trioxide and mixtures thereof at a temperature of at least about 600.degree. C. for a period of time effective to provide said higher molecular weight hydrocarbon product. In one embodiment, the invention provides for a process for converting the feedstocks, to unsaturated compounds such as ethylene. The invention also relates to the higher molecular weight products obtained by the process of the invention.
    Type: Grant
    Filed: March 24, 1986
    Date of Patent: November 3, 1987
    Assignee: The Standard Oil Company
    Inventors: Christos Paparizos, Yihhong Song
  • Patent number: 4695668
    Abstract: A catalyst is disclosed which comprises a molybdenum-tungsten-containing complex represented by the formulaMo.sub.a W.sub.b M.sub.c A.sub.d O.sub.
    Type: Grant
    Filed: March 24, 1986
    Date of Patent: September 22, 1987
    Assignee: The Standard Oil Company
    Inventor: Louis J. Velenyi
  • Patent number: 4695663
    Abstract: This invention relates to a process for producing aromatic hydrocarbons from a feedstock containing a major proportion of methane. The feedstock, in the vapor phase and in the absence of oxygen, is brought into contact with an aluminosilicate at a temperature from 650.degree. C.-800.degree. C. The feedstock may optionally contain ethane.
    Type: Grant
    Filed: July 30, 1986
    Date of Patent: September 22, 1987
    Assignee: The British Petroleum Company p.l.c.
    Inventors: Antony H. P. Hall, John J. McCarroll
  • Patent number: 4678862
    Abstract: Methane is converted into higher hydrocarbons by a process wherein a gas comprising methane and molecular oxygen is contacted at elevated temperatures with a molten salt mixture containing at least one reducible metal oxide.
    Type: Grant
    Filed: January 31, 1986
    Date of Patent: July 7, 1987
    Assignee: Atlantic Richfield Company
    Inventor: Harry Mazurek
  • Patent number: 4672145
    Abstract: A solid composition of matter consisting essentially of:(a) a component comprising: (1) at least one metal selected from the group consisting of Group IA metals and compounds containing said metals and (2), optionally, at least one material selected from the group consisting of tin, compounds containing tin, chloride ions and compounds containing said chloride ions and(b) a component comprising at least one metal selected from the group consisting of Group IIA metals and compounds containing said metals.The composition is particularly useful as a contact material for the oxidative conversion of less valuable organic compounds to more valuable organic compounds, particularly in the presence of a free oxygen containing gas.
    Type: Grant
    Filed: March 19, 1985
    Date of Patent: June 9, 1987
    Assignee: Phillips Petroleum Company
    Inventors: John H. Kolts, Jack P. Guillory
  • Patent number: 4672143
    Abstract: A diffusion flame reactor for cracking hydrocarbon gas has an oxygen-deficient zone in the center of the flame or in the center of an array of flames. Propane, n-octane, iso-octane and decalin are cracked to ethylene, acetylene, propylene, butenes, and butadienes which are withdrawn from the flame.
    Type: Grant
    Filed: November 8, 1985
    Date of Patent: June 9, 1987
    Assignee: Mobil Oil Corporation
    Inventors: Gary J. Green, Tsoung-Y Yan
  • Patent number: 4672144
    Abstract: Methane is converted to higher, more reactive, hydrocarbon products by a diffusion flame. Methane is converted to C.sub.2 + products by pyrolysis in the interior of the flame with oxidizing gas flowing outside of the flame. More reactive products are withdrawn from the center of the flame by a probe tube and cooled by the flowing oxidizing gas to stop the reaction.
    Type: Grant
    Filed: November 8, 1985
    Date of Patent: June 9, 1987
    Assignee: Mobil Oil Corporation
    Inventor: Gary J. Green
  • Patent number: 4670619
    Abstract: An improved method for converting methane to higher hydrocarbon products by contacting a hydrocarbon gas comprising methane, an oxygen-containing gas and a reducible metal oxide under conditions effective to produce higher hydrocarbon products and water, the improvement which comprises conducting the contacting in the presence of at least one stabilizer selected from the group consisting of chalcogens and compounds thereof.
    Type: Grant
    Filed: May 24, 1985
    Date of Patent: June 2, 1987
    Assignee: Atlantic Richfield Company
    Inventors: Howard P. Withers, Jr., C. Andrew Jones, John J. Leonard, John A. Sofranko, Anne M. Gaffney
  • Patent number: 4665261
    Abstract: A process for converting low molecular weight gases such as methane and natural gas to higher hydrocarbons by means of a molten salt containing a synthesizing contact agent. The gas is contacted with a molten salt containing a metal, the oxide of which is reduced when contacted with methane at a temperature in the range of 500.degree. to 1000.degree. C. to produce higher hydrocarbons and water. The reduced metal oxide/salt mixture may be regenerated to the active state by contacting the molten salt mixture with an oxygen-containing gas.
    Type: Grant
    Filed: June 21, 1985
    Date of Patent: May 12, 1987
    Assignee: Atlantic Richfield Company
    Inventor: Harry Mazurek
  • Patent number: 4665259
    Abstract: A process is disclosed for converting methane to a higher order hydrocarbon comprising contacting a gaseous reactant comprising methane with a phosphate-containing catalyst for a sufficient period of time and at an effective temperature to provide said higher order hydrocarbon, said catalyst being represented by the formulaM.sub.x PO.sub.ywhereinM is selected from the group consisting of Pb, Bi, Sb, Sn, Tl, In, Mn, Cd, Ge or a mixture of two or more thereof,x is from about 0.1 to about 10, andy is the number of oxygens needed to fulfill the valence requirements of the other elements.
    Type: Grant
    Filed: August 28, 1985
    Date of Patent: May 12, 1987
    Assignee: The Standard Oil Company
    Inventors: James F. Brazdil, Raymond G. Teller, Joseph P. Bartek, Robert K. Grasselli
  • Patent number: 4665260
    Abstract: A continuous method for synthesizing hydrocarbons from a methane source which comprises contacting methane with moving beds of particles comprising an oxidative synthesizing agent under synthesis conditions wherein particles recirculate between two physically separate zones: a methane contact zone and an oxygen contact zone.
    Type: Grant
    Filed: December 19, 1985
    Date of Patent: May 12, 1987
    Assignee: Atlantic Richfield Company
    Inventors: C. Andrew Jones, John J. Leonard, John A. Sofranko
  • Patent number: 4658076
    Abstract: A solid composition of matter selected from the group consisting of:(a) a component comprising: (1) at least one material selected from the group consisting of Group IA metals and compounds containing said metals, a component comprising: (2) at least one material selected from the group consisting of zinc and compounds containing zinc, and a component comprising: (3) at least one material selected from the group consisting of chloride ions, compounds containing chloride ions; tin and compounds containing tin; and(b) a component comprising: (1) at least one material selected from the group consisting of Group IA metals and compounds containing said metals, a component comprising: (2) zinc oxide, and, optionally, a component comprising: (3) at least one material selected from the group consisting of chloride ions, compounds containing chloride ions tin and compounds containing tin.
    Type: Grant
    Filed: March 19, 1985
    Date of Patent: April 14, 1987
    Assignee: Phillips Petroleum Company
    Inventors: John H. Kolts, James B. Kimble
  • Patent number: 4658077
    Abstract: A solid composition of matter is disclosed consisting essentially of sodium, potassium, a Group IA metal or a Group IA metal and a Group IIA metal, titanium, oxygen and, optionally, at least one of a halogen and tin, in which at least one of the sodium, the potassium, the Group IA metal or the Group IIA metal is present in an amount in excess of any amount present in electrically neutral compounds of the metal, the titanium and oxygen.The above compositions are particularly useful as solid contact materials for the oxidative conversion of feed organic compounds to product organic compounds, particularly in the presence of a free oxygen containing gas. A method for such conversion is also disclosed.
    Type: Grant
    Filed: June 7, 1985
    Date of Patent: April 14, 1987
    Assignee: Phillips Petroleum Company
    Inventors: John H. Kolts, James B. Kimble