Having Means Analyzing Composition Of Exhaust Gas Patents (Class 60/276)
  • Patent number: 8943798
    Abstract: Various systems and methods are described for detecting ammonia slip. In one example method, an amount of exhaust gas recirculation is reduced when output from an exhaust gas sensor indicates an increase in nitrogen oxide above a threshold amount. When the sensor output increases above a second threshold while the exhaust gas recirculation is reduced, the sensor output is allocated to nitrogen oxide; and when the sensor output does not increase above a second threshold while the exhaust gas recirculation is reduced, the sensor output is allocated to ammonia.
    Type: Grant
    Filed: October 12, 2012
    Date of Patent: February 3, 2015
    Assignee: Ford Global Technologies, LLC
    Inventors: Chris Riffle, Frank M. Korpics, Michiel J. Van Nieuwstadt, Devesh Upadhyay, John Paul Bogema, Jeff Reich
  • Patent number: 8943799
    Abstract: In a control device for an internal combustion engine including an air-fuel ratio sensor that includes a catalyst layer that covers an exhaust gas-side electrode, an oxygen storage capacity of the catalyst layer is acquired based on a sensor output of the air-fuel ratio sensor. The sensor output is corrected if the oxygen storage capacity is higher than a predetermined value and the sensor output is in a predetermined range in the vicinity of the theoretical air-fuel ratio. Preferably, the oxygen storage capacity is calculated by integrating the product of a deviation amount ?A/F of the sensor output with respect to the theoretical air-fuel ratio and a dwell time thereof. A correction period in which a correction operation is performed is set based on the oxygen storage capacity.
    Type: Grant
    Filed: January 21, 2011
    Date of Patent: February 3, 2015
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventor: Takanori Sasaki
  • Publication number: 20150027103
    Abstract: Various methods and system are described for determining ambient humidity via an exhaust gas sensor disposed in an exhaust system of an engine. In one example, a reference voltage of the sensor is modulated between a first and second voltage during non-fueling conditions of the engine. The ambient humidity is determined based on an average change in pumping current while the voltage is modulated.
    Type: Application
    Filed: October 14, 2014
    Publication date: January 29, 2015
    Inventors: Gopichandra Surnilla, Richard E. Soltis, Timothy Schram, Timothy Joseph Clark, Evangelos Skoures
  • Patent number: 8938947
    Abstract: A catalyst degradation detection apparatus includes: calculation means for calculating, as an oxygen storage amount of a catalyst, an amount of oxygen stored into or desorbed from the catalyst during a period from when a change that corresponds to a change in an air/fuel ratio occurs in the signal of a pre-catalyst sensor to when the signal of a post-catalyst sensor reaches a criterion value regarding the change in the air/fuel ratio; catalyst degradation determination means for determining of degradation of the catalyst on the basis of the oxygen storage amount; and correction means for correcting the oxygen storage amount calculated for use for determining of degradation of the catalyst more to a decrease side as a measured responsiveness of the post-catalyst sensor becomes more deteriorated relative to a reference value.
    Type: Grant
    Filed: February 24, 2011
    Date of Patent: January 27, 2015
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventor: Takashi Nakamura
  • Publication number: 20150020505
    Abstract: A method for the calculation of the NO2 content at the inlet of a selective catalytic reduction—SCR—device (22) of an exhaust system (4) with: an exhaust pipe (10); a tank for a reducing agent and injection elements (18); a first sensor (20) for measuring the concentration of nitrogen oxides upstream of the SCR; and a second sensor (24) for measuring the concentration of nitrogen oxides downstream of the SCR,includes the following stages: halting the injection of reducing agent; measuring the concentration of nitrogen oxides upstream and downstream of the SCR during a period of time; calculating the amount of NO2 accumulated in the SCR during the period of time; and determining the NO2 content upstream of the SCR from the calculated amount of NO2 accumulated per unit of time.
    Type: Application
    Filed: February 20, 2013
    Publication date: January 22, 2015
    Applicants: CONTINENTAL AUTOMOTIVE GMBH, CONTINENTAL AUTOMOTIVE FRANCE
    Inventor: Steven Maertens
  • Patent number: 8935914
    Abstract: An exhaust device includes: an exhaust manifold, an upstream-side cone of a catalyst, an exhaust gas sensor, an outer shell, and a sensor chamber. Between the upstream-side cone and the outer shell, an inflow channel is formed. The inflow channel has an opening that opens inside the exhaust manifold so as to communicate with the sensor chamber.
    Type: Grant
    Filed: February 17, 2011
    Date of Patent: January 20, 2015
    Assignee: Futaba Industrial Co., Ltd.
    Inventors: Hirohisa Okami, Masatoshi Kato
  • Patent number: 8935915
    Abstract: A system and method for calculating quantity of ammonia stored on an SCR catalyst at various times during an interval of time by processing certain data, including the aggregate quantity of ammonia introduced into an exhaust flow during the interval of time, calculating the efficiency of catalytic conversion of NOx to N2 and H2O by ammonia at each of the various times by processing certain data, including NOx measurements obtained from upstream and downstream NOx sensors, and establishing a correlation between efficiency of catalytic conversion of NOx to N2 and H2O by ammonia and quantity of ammonia stored on the SCR catalyst over the interval of time which comprises calculated efficiency of catalytic conversion of NOx and calculated quantity of ammonia stored on the SCR catalyst at each of the various times.
    Type: Grant
    Filed: November 4, 2013
    Date of Patent: January 20, 2015
    Assignee: International Engine Intellectual Property Company, LLC.
    Inventors: Adam C. Lack, Navtej Singh, Paul Boon Charintranond, Michael James Miller
  • Patent number: 8932871
    Abstract: A system for a vehicle includes a first ozone sensor that generates a first sensor signal indicating a first amount of ozone in air flowing into a radiator. A second ozone sensor generates a second sensor signal indicating a second amount of ozone in air flowing out of the radiator. A control module receives the first sensor signal and the second sensor signal and determines an ozone conversion rate based on the first sensor signal and the second sensor signal.
    Type: Grant
    Filed: November 8, 2011
    Date of Patent: January 13, 2015
    Inventors: Scott H. Wittkopp, Chang H. Kim, Brian T. Heil
  • Patent number: 8925300
    Abstract: A catalyst degradation detection method for use with a zero ceria catalyst. The method uses techniques to measure transient responses to engine control events of upstream and downstream sensors to determine catalyst degradation and performance. By measuring transient behavior, the method can determine catalyst degradation and performance based on the limited oxygen storage of precious metal catalysts that do not include added ceria or other materials with high oxygen capture rates.
    Type: Grant
    Filed: December 17, 2012
    Date of Patent: January 6, 2015
    Assignee: Chrysler Group LLC
    Inventors: James J Daley, Robert J Jerger, Wei-Jun Yang, Jeffrey P Wuttke, Michael G Zammit, Andrew Brocker
  • Patent number: 8919101
    Abstract: An exhaust system is provided. The exhaust system includes a first sensor that senses a level of nitrous oxide (NOx) in exhaust gas and generates a first sensor signal. A second sensor senses a level of ammonia (NH3) in the exhaust gas and generates a second sensor signal. A control module receives the first sensor signal and the second sensor signal, determines a desired reductant dosage based on the first sensor signal and the second sensor signal, and generates an injector control signal based on the desired reductant dosage.
    Type: Grant
    Filed: February 23, 2012
    Date of Patent: December 30, 2014
    Assignee: GM Global Technology Operations LLC
    Inventors: Kevin Andrew Gady, Joshua Clifford Bedford
  • Patent number: 8920758
    Abstract: A method for operating an exhaust gas aftertreatment system is provided that comprises at least one first SCR device and at least one second SCR device. Furthermore, a dosing device for reactant for supplying the SCR devices is provided upstream of the first SCR device in the exhaust gas flow direction. In one embodiment, a target overall efficiency ?Des of the SCR devices is specified. Using modeling of the exhaust gas aftertreatment system, depending on the target overall efficiency ?Des a target value ?1,Des is determined that represents the degree of charge of the first SCR device with reactant. The dosing of the reactant is adjusted accordingly to achieve the target value ?1,Des.
    Type: Grant
    Filed: November 26, 2013
    Date of Patent: December 30, 2014
    Assignee: Robert Bosch GmbH
    Inventors: Andreas Fritsch, Andreas Holzeder
  • Publication number: 20140373512
    Abstract: In a system having an oxygen sensor arranged downstream of a NOx storage-reduction catalyst, a constant current is made to flow between sensor electrodes by a constant current circuit provided in the outside of the oxygen sensor, which makes it possible to change an output characteristic of the oxygen sensor. Further, during a lean combustion control of an engine, a sensing responsiveness to a lean component of the oxygen sensor is improved. In this way, when NOx (lean component) is emitted to the downstream of the catalyst, the NOx can be quickly sensed by the oxygen sensor. Meanwhile, during a rich combustion control of the engine, the sensing responsiveness to a rich component of the oxygen sensor is improved. In this way, when HC and CO (rich components) are emitted to the downstream of the catalyst, the HC and the CO can be quickly sensed by the oxygen sensor.
    Type: Application
    Filed: January 22, 2013
    Publication date: December 25, 2014
    Inventors: Masahiro Yokoi, Mikiyasu Matsuoka, Shingo Nakata
  • Patent number: 8915063
    Abstract: The present invention provides for a system for controlling NOx emissions based on the calculation of an error given by the difference between a first measured value obtained from a NOx sensor (7) and a second one estimated from a NOx estimation. Said sensor (7) can be used in an adaptation loop, where an open-loop or closed-loop EGR control system is adapted such that the expected NOx emissions (from the EGR controller) match the ones measured with the NOx sensor under steady-state conditions.
    Type: Grant
    Filed: December 22, 2010
    Date of Patent: December 23, 2014
    Assignee: Iveco Motorenforschung AG
    Inventor: Theophil Auckenthaler
  • Publication number: 20140366510
    Abstract: An exhaust gas sampling device coupled to an aftertreatment system for treating exhaust gas flowing therethrough. The exhaust gas sampling device comprises an inlet passage, an outlet passage, a sensor passage, and a sensor. The inlet passage extracts a portion of the exhaust gas from the aftertreatment system, and the portion of the exhaust gas has a physical property that that is substantially similar to an equivalent physical property of a cross section of the exhaust gas flowing through the aftertreatment system. The sensor passage is positioned fluidly between the inlet passage and the outlet passage, and the sensor is in fluid communication with the sensor passage for providing a signal indicative of a property of the portion of the exhaust gas. The outlet passage reintroduces the portion of the exhaust gas back into the aftertreatment system.
    Type: Application
    Filed: June 12, 2013
    Publication date: December 18, 2014
    Inventors: William F. GAVIN, Danan DOU, Colton J. SALYARDS
  • Patent number: 8910466
    Abstract: An apparatus and method of controlling a vehicle aftertreatment system is provided. The aftertreatment system treats exhaust gas produced by the vehicle engine and includes a particulate filter, and a NOx reducing device such as a selective catalytic reduction (SCR) device. The particulate filter is configured to regenerate to remove accumulated particles when the exhaust gas is heated above a regeneration temperature. A diagnostic device is included for monitoring the aftertreatment system. The diagnostic device may be a sensor for measuring the oxides of nitrogen (NOx) and/or an SCR efficiency monitor. A controller is employed to optimize the function of the diagnostic device. The controller does not enable the diagnostic device when the vehicle is powered until one or more entry conditions are satisfied.
    Type: Grant
    Filed: May 9, 2012
    Date of Patent: December 16, 2014
    Assignee: GM Global Technology Operations LLC
    Inventors: Janean E. Kowalkowski, Stephen Paul Levijoki, James M. Perrin, John Coppola
  • Patent number: 8904769
    Abstract: An internal combustion engine system includes: an engine with a plurality of pistons housed in respective ones of a plurality of cylinders; an air intake system to provide air to the plurality of cylinders through respective ones of a plurality of intake valves; an exhaust system to release exhaust gas from the plurality of cylinders through respective one of a plurality of exhaust valves; an aftertreatment system to treat exhaust emission from the engine; at least one sensor to provide a sensor signal corresponding to an efficiency of the aftertreatment system; and a controller coupled to the at least one sensor and operable to regulate an internal exhaust gas recirculation operation in the cylinders when the aftertreatment system operates at less than a desired efficiency.
    Type: Grant
    Filed: March 8, 2012
    Date of Patent: December 9, 2014
    Assignee: Cummins Inc.
    Inventors: Axel Otto zur Loye, John D. Ridge
  • Patent number: 8904755
    Abstract: A heater control device of an oxygen concentration sensor is provided in which even in a case where an internal combustion engine is automatically stopped by idle stop control after cold start-up, it is possible to start energization of a heater at an appropriate time.
    Type: Grant
    Filed: March 29, 2012
    Date of Patent: December 9, 2014
    Assignee: Bosch Corporation
    Inventors: Keiichi Takeda, Ken Noguchi
  • Patent number: 8899015
    Abstract: A catalyst degradation detection device, determines whether a three-way catalyst has degraded on the basis of the maximum value of the amount of oxygen stored by the catalyst. When determining whether the three-way catalyst has degraded, the amount of stored oxygen is calculated, and the responsiveness of change in the output signal of an oxygen sensor to oxygen concentration change in catalyst-downstream exhaust is measured. Then, on the basis of the responsiveness of the oxygen sensor which measured the oxygen storage amount, the oxygen storage amount is corrected by reducing the same such that the worsened the measured responsiveness relative to a reference value, the greater the reduction in the oxygen storage amount used in determining whether the three-way catalyst has degraded. The corrected oxygen storage amount used is prevented from deviating from the correct value on the basis of a worsening of the responsiveness of the oxygen sensor.
    Type: Grant
    Filed: March 9, 2010
    Date of Patent: December 2, 2014
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventor: Makoto Sato
  • Patent number: 8899014
    Abstract: An emission control system for an engine includes a catalyst and an exhaust-gas sensor provided downstream of the catalyst in a flow direction of exhaust gas. The exhaust-gas sensor includes a sensor element that includes a pair of electrodes and a solid electrolyte body located between the electrodes. The emission control system further includes a constant current supply portion that changes an output characteristic of the exhaust-gas sensor by applying a constant current between the electrodes, a rich direction control portion that performs a rich direction control after a fuelling-stop control, and a characteristic control portion that performs a rich responsiveness control during the rich direction control. In the rich direction control, an air-fuel ratio of the exhaust gas is made to be richer. In the rich responsiveness control, the constant current supply portion increases a detection responsiveness of the exhaust-gas sensor with respect to rich gas.
    Type: Grant
    Filed: January 29, 2013
    Date of Patent: December 2, 2014
    Assignee: Denso Corporation
    Inventors: Kosuke Nakano, Shingo Nakata, Mikiyasu Matsuoka
  • Patent number: 8899019
    Abstract: An air-fuel ratio control apparatus of the present invention includes a determination section and a reverse direction correction introducing section. The determination section determines whether or not an output of the downstream air-fuel ratio sensor falls within a predetermined range whose center corresponds to a target value corresponding to the stoichiometric air-fuel ratio. When the output of the downstream air-fuel ratio sensor falls within the predetermined range, the reverse direction correction introducing section temporarily introduces, to an air-fuel ratio correction in a direction requested by the output, an air-fuel ratio correction in a direction opposite to the requested direction.
    Type: Grant
    Filed: September 15, 2010
    Date of Patent: December 2, 2014
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Ryota Onoe, Junichi Suzuki, Takahiko Fujiwara, Makoto Tomimatsu, Koichi Kimura, Shuntaro Okazaki
  • Patent number: 8899029
    Abstract: Apparatuses for marine propulsion systems having an internal combustion engine comprise an exhaust conduit conveying exhaust from the internal combustion engine; a cooling jacket on the exhaust conduit; and a cooling passage between the exhaust conduit and the cooling jacket. The cooling passage guides flow of cooling liquid from upstream to downstream towards a location where the cooling liquid is mixed with exhaust in the exhaust conduit. First and second baffles are axially spaced apart and extend transversely with respect to the cooling passage so as to disperse the flow of cooling liquid at the location where the cooling liquid is mixed with the exhaust, thereby reducing reversion of cooling liquid in the exhaust conduit. At least one catalyst and at least one oxygen sensor are disposed in the exhaust conduit. The oxygen sensor is adjacent to and oriented parallel to a downstream face of the catalyst so that exhaust flows perpendicularly across the sensor.
    Type: Grant
    Filed: December 3, 2012
    Date of Patent: December 2, 2014
    Assignee: Brunswick Corporation
    Inventors: Robert Dreyer, Mark J. Glodowski, Daniel B. Slanker
  • Patent number: 8893482
    Abstract: An exhaust gas treatment system for an internal combustion engine for determining a total amount of sulfur that is stored on at least one aftertreatment device is provided. The exhaust gas treatment system includes a control module that monitors operation of the internal combustion engine for an amount of fuel consumed and an amount of oil consumed by the internal combustion engine. The control module includes a sulfur adsorption module and a total sulfur storage module. The sulfur adsorption module determines a rate of sulfur adsorption in at least one aftertreatment device. The rate of sulfur adsorption is based on the amount of fuel consumed and the amount of oil consumed. The total sulfur storage module is in communication with the sulfur adsorption module. The total sulfur storage module determines the total amount of sulfur stored based on the rate of sulfur adsorption.
    Type: Grant
    Filed: March 19, 2012
    Date of Patent: November 25, 2014
    Assignee: GM Global Technology Operations LLC
    Inventors: Sarah Funk, Rebecca J. Darr, Paul Jasinkiewicz, Amr Radwan
  • Patent number: 8893473
    Abstract: An emission control system for an engine includes an upstream sensor provided upstream of a catalyst in a flow direction of exhaust gas, a downstream sensor provided downstream of the catalyst to detect an air-fuel ratio so that the air-fuel ratio approaches a target air-fuel ratio in a sub feedback control, a constant current supply portion which changes an output characteristic of the downstream sensor by applying a constant current on a pair of electrodes thereof. A characteristic control portion controls the constant current supply portion in the sub feedback control to advance a timing of lean detection of the downstream sensor when the air-fuel ratio is richer than the target air-fuel ratio, and to advance a timing of rich detection of the downstream sensor when the air-fuel ratio is leaner than the target air-fuel ratio.
    Type: Grant
    Filed: February 15, 2013
    Date of Patent: November 25, 2014
    Assignee: Denso Corporation
    Inventors: Shingo Nakata, Mikiyasu Matsuoka, Hiroki Nogami
  • Patent number: 8893471
    Abstract: Provided is an exhaust apparatus for a utility vehicle which discharges exhaust gas from exhaust pipes connected to exhaust ports of an engine including cylinders, the apparatus including an exhaust gathering portion gathering the exhaust pipes, a catalyst portion located on a downstream side of the exhaust gathering portion and purifying the exhaust gas, and a sensor attaching pipe provided between the exhaust gathering portion and the catalyst portion and to which an exhaust gas sensor is detachably attached, wherein the sensor attaching pipe, in a state where the exhaust gas sensor is attached, has a height in which a sensing portion of the exhaust gas sensor is located in the sensor attaching pipe, and the sensor attaching pipe is provided such that a top end to which the exhaust gas sensor is detachably attached is located above a base end and away from a surrounding heat source.
    Type: Grant
    Filed: February 28, 2013
    Date of Patent: November 25, 2014
    Assignee: Kawasaki Jukogyo Kabushiki Kaisha
    Inventor: Jun Takagi
  • Patent number: 8893476
    Abstract: A method for an exhaust after treatment system of an engine including at least one selective catalyst reaction (SCR), at least one clean up catalyst downstream from the SCR, a urea injector upstream of the SCR and a first NOx sensor downstream the clean up catalyst. The method includes the steps of injecting a predetermined amount of urea by the injector, providing a second NOx sensor between the SCR and the clean up catalyst, measuring the NOx content received by the first NOx sensor, measuring the NOx content received by the second NOx sensor, comparing the first and the second NOx content with each other, and reducing the predetermined amount of urea if the first NOx sensor measures a higher NOx content than the second NOx sensor.
    Type: Grant
    Filed: December 12, 2008
    Date of Patent: November 25, 2014
    Assignee: Volvo Lastvagnar AB
    Inventors: Johan Dahl, Moataz Ali
  • Publication number: 20140338312
    Abstract: A method of estimating an ideal air-fuel ratio in an internal combustion engine, comprises receiving an output of an upstream air-fuel ratio sensor and an output of a downstream air-fuel ratio sensor, the upstream air-fuel ratio sensor being attached to an exhaust gas passage such that it is positioned upstream of a catalyst provided in the exhaust gas passage to purify an exhaust gas, the downstream air-fuel ratio sensor being attached to the exhaust gas passage such that it is positioned downstream of the catalyst; detecting a state in which the catalyst does not store or release oxygen based on the output of the downstream air-fuel ratio sensor; and deciding as an estimated ideal air-fuel ratio in the internal combustion engine an air-fuel ratio detected by the upstream air-fuel ratio sensor when the state in which the catalyst does not store or release oxygen is detected.
    Type: Application
    Filed: May 19, 2014
    Publication date: November 20, 2014
    Applicant: Kawasaki Jukogyo Kabushiki Kaisha
    Inventors: Daisuke Yanase, Junji Tamura, Kouzou Suzuki, Takashi Abe, Yoshinobu Mori
  • Patent number: 8887490
    Abstract: A catalyst system may include a catalyst and a first sensor that detects contents of gases entering the catalyst and reports the contents of the gases entering the catalyst to an emissions control module. A second sensor and a third sensor may detect contents of gases exiting the catalyst and report the contents of the gases exiting the catalyst to the emissions control module. The emissions control module may determine an air-fuel ratio based on the contents of gases entering the catalyst and the contents of gases exiting the catalyst. The emissions control module may instruct an air-fuel regulator to operate an engine using the air-fuel ratio.
    Type: Grant
    Filed: February 6, 2013
    Date of Patent: November 18, 2014
    Assignee: General Electric Company
    Inventors: Jared J. Wentz, Pin Zeng, Ryan Michael Rudnitzki
  • Patent number: 8887491
    Abstract: A control apparatus for an internal combustion engine determines, based on an output value of the downstream air-fuel ratio sensor, an air-fuel ratio of a gas flowing into the catalyst that is set to either a “target rich ratio” or a “target lean ratio”, and determines a fuel injection amount. Disclosed is an evaporated fuel purge section for introducing an evaporated fuel generated in a fuel tank into an intake passage. The purge section starts the purge when the target air-fuel ratio is set to the target rich ratio at a purge execution condition satisfied time point at which a state has changed from a state in which the purge execution condition is unsatisfied to a state in which it is satisfied, and does not start the purge when the target air-fuel ratio is set to the target lean air-fuel ratio at the purge execution condition satisfied time point.
    Type: Grant
    Filed: March 1, 2011
    Date of Patent: November 18, 2014
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Koichi Kimura, Junichi Suzuki, Shuntaro Okazaki
  • Patent number: 8881507
    Abstract: A dosing system for delivering reductant to an exhaust gas treatment system of an internal combustion engine using air driven hydraulic pumps for closed-loop controlling reductant pressure and a two-stage PWM control method for controlling dosing rate. Reductant residue in the dosing systems is purged by using compressed air after a dosing process completes, and when the air driven hydraulic pumps are positioned inside a reductant tank, dedicated heating means for the pumps is not necessary. The air driven hydraulic pumps can also use low pressure compressed air, and the closed-loop pressure control together with the two-stage PWM control allow dosing accuracy insensitive to pressure variations in compressed air. These new features enable the dosing system use a variety of compressed air sources, including an engine turbo.
    Type: Grant
    Filed: August 22, 2012
    Date of Patent: November 11, 2014
    Inventors: Mi Yan, Baohua Qi
  • Patent number: 8881508
    Abstract: Systems and method are disclosed in which a portion of an exhaust gas stream is received into an exhaust outlet flow path downstream of a first selective catalytic reduction (SCR) catalyst and upstream of a second SCR catalyst. The removed portion is treated with a diagnostic SCR catalyst element and an NH3 concentration composition of the treated removed portion is determined. The NH3 concentration is used to control injection of reductant upstream of the first SCR catalyst.
    Type: Grant
    Filed: October 31, 2012
    Date of Patent: November 11, 2014
    Assignee: Commins Inc.
    Inventor: Mert Geveci
  • Publication number: 20140325960
    Abstract: To operate an internal combustion engine, a specified forced stimulation is applied to an air ratio as the basis for a target value of a lambda controller. In diagnostic operation, a diagnostic function is used to identify a probe error of the exhaust gas probe, and a value of the measurement signal is recorded as a start value in chronological correlation with an edge of the target value curve of the lambda controller and the current value of the measurement signal is recorded as an end value after a specified first time duration. The start and end values are used to determine whether a filter error or a dead time error of the exhaust gas probe exists. The first time duration is specified such that start value/end value difference for a filter error differs start value/end value difference for a dead time error by at least a specified difference value.
    Type: Application
    Filed: September 27, 2012
    Publication date: November 6, 2014
    Inventors: Harsha Mahaveera, Tino Arlt
  • Patent number: 8875490
    Abstract: A method includes determining a current mid-bed NH3 amount by operating an NH3 sensor positioned at a mid-bed location for an engine aftertreatment system having two SCR catalyst beds. The method further includes operating a NOx sensor positioned at the mid-bed location, and interpreting a current mid-bed ammonia to NOx ratio (ANR) and a current mid-bed NOx in response to the mid-bed NH3 amount and the operating the NOx sensor. The method further includes correcting an output value of the NOx sensor for cross-sensitivity to NH3. The method includes determining a mid-bed ANR constraint, determining a feedforward mid-bed NOx target, and providing a reductant injector command in response to the current mid-bed ANR, the current mid-bed NOx, the ANR constraint, and the feedforward mid-bed NOx target.
    Type: Grant
    Filed: March 19, 2012
    Date of Patent: November 4, 2014
    Assignee: Cummins Inc.
    Inventors: Mert Geveci, Andrew Osburn
  • Publication number: 20140311123
    Abstract: An exhaust gas treatment system for an internal combustion engine is provided. The system includes an exhaust gas conduit extending from the engine configured to receive an exhaust gas stream from the engine, a first injector in fluid communication with the exhaust gas conduit configured to selectively inject fuel containing unburned hydrocarbon (HC) into the exhaust gas conduit and an oxidation catalyst disposed in the exhaust gas conduit downstream from the first injector. The system further includes a hydrocarbon selective catalyst reduction (HCSCR) catalyst applied on the oxidation catalyst, a heating device positioned at an upstream side of the oxidation catalyst configured to heat the oxidation catalyst and HCSCR catalyst, a selective catalyst reduction (SCR) device disposed within the exhaust gas conduit downstream from the oxidation catalyst, and a particulate filter positioned downstream from the selective catalyst reduction device.
    Type: Application
    Filed: April 19, 2013
    Publication date: October 23, 2014
    Applicant: GM Global Technology Operations LLC
    Inventors: Eugene V. Gonze, Charles Gough
  • Patent number: 8863498
    Abstract: The present invention has for its subject to avoid a situation that condensed water stays around electrode terminals, in an electric heating type exhaust gas purification apparatus which is arranged in an exhaust system of an internal combustion engine.
    Type: Grant
    Filed: July 15, 2010
    Date of Patent: October 21, 2014
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Mamoru Yoshioka, Noriaki Kumagai, Naoya Takagi
  • Patent number: 8863496
    Abstract: A particulate matter control system includes: an electrode that is provided in an exhaust pipe of an internal combustion engine; a power supply that is connected to the electrode and that applies voltage; a particle number detecting unit that detects the particle number of particulate matter on a downstream side of the electrode; a calculation unit that calculates a reduction rate of the particle number at the time when voltage is applied on the basis of the particle number detected by the particle number detecting unit at the time when voltage is applied and the particle number detected by the particle number detecting unit at the time when no voltage is applied; and a determination unit that determines that there is a failure when the reduction rate of the particle number, calculated by the calculation unit, is smaller than a threshold.
    Type: Grant
    Filed: April 4, 2012
    Date of Patent: October 21, 2014
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Shinichi Mitani, Hiroshi Nomura, Eiji Murase
  • Patent number: 8863499
    Abstract: An exhaust gas treatment system for an internal combustion engine is provided having an exhaust gas conduit, a diesel exhaust fluid (“DEF”) source, a selective catalytic reduction (“SCR”) device, a NOx sensor, and a control module. The DEF source supplies a DEF having a quality factor. The NOx sensor is in fluid communication with the exhaust gas conduit. The NOx sensor is located downstream of the SCR device and is configured for detecting a NOx concentration value. The control module is in communication with the DEF source and the NOx sensor. The control module stores a diagnostic adaptation factor and an expected NOx value. The control module includes a dosing module for determining a controls adaptation factor that is based on a deviation between the NOx concentration value and the expected NOx value. The diagnostic adaptation factor is selectively updated with the controls adaptation factor.
    Type: Grant
    Filed: May 10, 2012
    Date of Patent: October 21, 2014
    Assignee: GM Global Technology Operations LLC
    Inventors: Janean E. Kowalkowski, Robert J. Sutschek, John Coppola
  • Publication number: 20140305198
    Abstract: Accurate measurement of exhaust gas compounds is necessary for correct operation of exhaust treatment systems, such as Selective Catalytic Reduction (SCR) units used in diesel engines. However, accurate sensor readings assume an even distribution of compounds in an exhaust stream in order to use a sampled measurement to be extrapolated to the compound concentrations in the full stream. A structure placed in an exhaust passage downstream of an SCR reaction unit causes turbulence in the exhaust gas while developing a minimal backpressure. This turbulence helps create a more uniform distribution of compounds in the exhaust. As a result, an exhaust gas sensor gives more accurate readings even when the sensor is placed in relatively close proximity to an output of the SCR system.
    Type: Application
    Filed: April 12, 2013
    Publication date: October 16, 2014
    Applicant: Caterpillar Inc.
    Inventors: James Joshua Driscoll, Arvind Jujare, Shawn Herold, Jason Hudgens, Sachin S. Deshmukh
  • Patent number: 8857153
    Abstract: A system and method for determining a rate of ammonia deposition and controlling an engine is described. In one example, an amount of ammonia deposited in an engine exhaust is determined and the deposited ammonia is purged after the amount of ammonia deposited reaches a threshold level. The method may decrease ammonia use and ammonia emissions from a vehicle.
    Type: Grant
    Filed: October 6, 2011
    Date of Patent: October 14, 2014
    Assignee: Ford Global Technologies, LLC
    Inventor: Yasser Mohamed sayed Yacoub
  • Patent number: 8857155
    Abstract: Various methods and system are described for determining ambient humidity via an exhaust gas sensor disposed in an exhaust system of an engine. In one example, a reference voltage of the sensor is modulated between a first and second voltage during non-fueling conditions of the engine. The ambient humidity is determined based on an average change in pumping current while the voltage is modulated.
    Type: Grant
    Filed: January 18, 2013
    Date of Patent: October 14, 2014
    Assignee: Ford Global Technologies, LLC
    Inventors: Gopichandra Surnilla, Richard E. Soltis, Timothy Schram, Timothy Joseph Clark, Evangelos Skoures
  • Publication number: 20140298778
    Abstract: Various systems and methods are described for detecting ammonia slip. In one example method, an exhaust system with two NOx sensors uses transient responses of the NOx sensors to allocate tailpipe NOx sensor output to NOx and NH3 levels therein. An ammonia slip detection counter with gains is included that determines a probability of NOx and NH3 based on the measured sensor activities that are further processed by a controller to adjust one or more parameters based on the allocation and changes of sensor output.
    Type: Application
    Filed: April 9, 2013
    Publication date: October 9, 2014
    Applicant: Ford Global Technologies, LLC
    Inventors: Chris Riffle, Frank M. Korpics, Michiel J. Van Nieuwstadt, Devesh Upadhyay, David Robert Nader
  • Publication number: 20140290219
    Abstract: A control device of an internal combustion engine according to the present invention has units configured to inject fuel at a first predetermined ratio from first and second fuel injection valves which are provided in each of cylinders to calculate a first value indicating a degree of variation in air-fuel ratios between the cylinders based on a output of the engine, and inject fuel at a second predetermined ratio therefrom to calculate a second value in the same manner. Furthermore, the control device has a unit configured to select one mode from modes relating to abnormality in the first fuel injection valve or the second fuel injection valve on the basis of the first and second values, and calculate a value indicating the degree of the variation in the air-fuel ratios between the cylinders, thereby calculating a fuel amount of the basis of them.
    Type: Application
    Filed: March 11, 2014
    Publication date: October 2, 2014
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Toshihiro Kato, Yoshifumi Matsuda, Yoshihisa Oda, Masashi Hakariya, Masahide Okada, Isao Nakajima, Hiroaki Tsuji, Tokiji Ito, Yuya Yoshikawa
  • Patent number: 8844267
    Abstract: A vehicle includes an engine, an exhaust system, a selective catalytic reduction (SCR) device, a first and a second NOx sensor configured to respectively measure an upstream and a downstream NOx level, and a controller or host machine. The controller, via the present method, calculates a NOx conversion efficiency rate of the SCR device using the NOx levels from the sensors. At the end of a key cycle when an accumulated amount of upstream NOx is less than a calibrated upstream NOx level, the controller determines if the NOx conversion efficiency rate is presently passing or failing. The accumulated upstream NOx is recorded in memory for use in calculating the NOx conversion efficiency rate during a subsequent key cycle only when the NOx conversion efficiency rate is presently passing at the end of the key cycle. A control system for the vehicle uses the controller and sensors as noted above.
    Type: Grant
    Filed: March 17, 2011
    Date of Patent: September 30, 2014
    Assignee: GM Global Technology Operations LLC
    Inventors: Stephen Paul Levijoki, Rebecca J. Darr, Steve L. Melby
  • Patent number: 8844268
    Abstract: It is determined quickly whether there is a shortage in reducing agent supplied to an NOx selective reduction catalyst. After it is determined that a quantity of reducing agent equal to or larger than a predetermined quantity is absorbed in the NOx selective reduction catalyst on the assumption that there is no abnormality in reducing agent supply unit, the supply of a quantity of reducing agent needed to reduce a quantity of NOx flowing into the NOx selective reduction catalyst is started. A determination of an abnormality in the reducing agent supply unit is made based on the NOx removal rate after the lapse of a predetermined period of time since the start of the supply of reducing agent. The NOx removal rate becomes lower when there is an abnormality in the reducing agent supply unit.
    Type: Grant
    Filed: January 19, 2009
    Date of Patent: September 30, 2014
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Daisuke Shibata, Satoshi Endo, Taiga Hagimoto, Hiroshi Sawada
  • Patent number: 8839604
    Abstract: In a method and apparatus for operating an internal combustion engine, a lambda control is carried out, in which a trim regulation is provided, which operates with a P regulator component and an I regulator component. To prevent overshooting when the trim regulation is carried out, operation takes place in a first mode with compulsory adjustment and in a following second mode with increased regulator amplification factors.
    Type: Grant
    Filed: December 17, 2010
    Date of Patent: September 23, 2014
    Assignee: Continental Automotive GmbH
    Inventors: Paul Rodatz, Sebastian Viehöver
  • Patent number: 8839602
    Abstract: A method of assessing non-methane hydrocarbon (NMHC) conversion efficiency in a diesel after-treatment (AT) system having a diesel oxidation catalyst (DOC) arranged upstream of a diesel particulate filter (DPF) includes regenerating the AT system. Additionally, the method monitors DOC inlet and outlet temperatures during the regeneration. The method also assesses whether the DOC is operating at or above threshold efficiency by determining a DOC inlet/outlet temperature difference and comparing the determined inlet/outlet temperature difference with a threshold inlet/outlet temperature difference. The method also monitors DPF outlet temperature if the DOC is operating at or above the threshold efficiency and determines a DOC temperature/DPF outlet temperature difference.
    Type: Grant
    Filed: April 10, 2012
    Date of Patent: September 23, 2014
    Assignee: GM Global Technology Operations LLC
    Inventors: Igor Anilovich, Janean E. Kowalkowski, Cheryl J. Stark, John F. Van Gilder, Ognyan N. Yanakiev
  • Patent number: 8839605
    Abstract: A system for a vehicle, includes a conversion temperature determination module and a heating control module. The conversion temperature determination module generates a methane conversion temperature corresponding to a predetermined methane conversion efficiency. The heating control module selectively applies power to a substrate of an electrically heated catalyst (EHC) based on a temperature of the EHC and the methane conversion temperature. The EHC includes at least one catalyst that reacts with methane in exhaust output from an engine.
    Type: Grant
    Filed: March 30, 2011
    Date of Patent: September 23, 2014
    Inventors: Eugene V. Gonze, David B. Brown
  • Patent number: 8839608
    Abstract: A method of controlling an internal combustion engine that includes an exhaust line fitted with a particulate filter, the method including: a) acquiring a charge parameter relating to a fill level of the particulate filter, b) comparing the charge parameter with at least one determined threshold, and c) bringing the internal combustion engine to a set operating point determined as a function of various criteria of differing levels of importance. Prior to c) and with one of the criteria being the mass flow rate of particles entering the particulate filter, a constraint level coefficient is determined as a function of the result of the comparing b) and applied to the particulate mass flow rate to weight importance of this criterion in determining the engine operating point.
    Type: Grant
    Filed: October 28, 2009
    Date of Patent: September 23, 2014
    Assignee: RENAULT s.a.s.
    Inventor: Yann Chazal
  • Publication number: 20140260197
    Abstract: Exhaust after treatment systems for internal combustion engine powered vehicles are provided. One system includes logic in the form of one or more routines implemented by one or more of the system's components for determining the quantity of NO2 present in the exhaust that exits an oxidation catalyst, such as a diesel oxidation catalyst (DOC), without the use of an NO2 sensor. Results from such a determination may then be used to estimate the amount of soot present in the particulate filter. This estimated value of soot present in the particulate filter can then be subsequently used to determine when the particulate filter should be actively regenerated.
    Type: Application
    Filed: March 15, 2013
    Publication date: September 18, 2014
    Applicant: PACCAR Inc
    Inventor: Michael Gerty
  • Patent number: 8834821
    Abstract: A method includes providing: a selective catalytic reduction (SCR) catalyst disposed in an exhaust gas stream of an internal combustion engine, a reagent injector operationally coupled to the exhaust gas stream at a position upstream of the SCR catalyst, and a NOx sensor coupled to the exhaust gas stream at a position downstream of at least a first portion of the SCR catalyst. The method includes operating an extremum seeking controller to determine a first reagent injection amount corresponding to a predetermined slope of ?NOx/?ANR, the ?NOx/?ANR determined according to the NOx sensor, providing a reagent injection command in response to the first reagent injection amount, and injecting an amount of the reagent in response to the reagent injection command.
    Type: Grant
    Filed: November 1, 2013
    Date of Patent: September 16, 2014
    Assignee: Cummins Inc.
    Inventors: Mert Geveci, Andrew Osburn, Michael Haas
  • Patent number: 8826642
    Abstract: An electronic control device calculates the maximum actual oxygen storage capacity of a catalyst. The gradient of a linear expression formed between the catalyst temperature and the maximum oxygen storage capacity of the catalyst is stored for each degradation level of the catalyst. The gradient can be learned in accordance with the same temperature of the catalyst and the maximum actual oxygen storage capacity. When the maximum actual oxygen storage capacity is calculated, it is revised in accordance with the temperature of the catalyst, a reference temperature, the linear expression, and the learned gradient. The revised maximum oxygen storage capacity which is the maximum oxygen storage capacity when the temperature of the catalyst during the same calculation period is equal to the reference temperature is then calculated. If a response delay is detected in the output of an oxygen sensor, the gradient of the learned linear expression is discarded.
    Type: Grant
    Filed: April 13, 2010
    Date of Patent: September 9, 2014
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Takeho Aisaka, Takashi Nakamura, Takuya Matsumoto, Makoto Sato, Hiroshi Sawada, Yasushi Iwazaki, Yusuke Kawamura