Having Means Analyzing Composition Of Exhaust Gas Patents (Class 60/276)
  • Patent number: 10663444
    Abstract: Evaluation method of exhaust gas simulation capable of simply and appropriately evaluating the validity of the simulation is provided. In analysis data, an analysis amplitude curve is calculated in which a change in the concentration of virtual exhaust gas at the observation point in the converged pipe portion is plotted, and an analysis time interval between the zero point and the reference point in the analysis amplitude curve is plotted. In actual measurement data, an actual amplitude curve is provided in which a change in the specific gas component at an observation point is measured with time, and an actual time interval is provided in which a time interval from a zero point to a reference point in the actual amplitude curve. The analysis data is determined as valid when a difference between the analysis time interval and the actual time interval is within a predetermined correlation range.
    Type: Grant
    Filed: February 21, 2018
    Date of Patent: May 26, 2020
    Assignee: DENSO CORPORATION
    Inventor: Naohiro Hayashi
  • Patent number: 10626815
    Abstract: The internal combustion engine comprises an exhaust purification catalyst and downstream side air-fuel ratio sensor. The control system performs feedback control so that the air-fuel ratio of the exhaust gas flowing into the exhaust purification catalyst becomes a target air-fuel ratio and performs learning control which corrects the control center air-fuel ratio based on the output air-fuel ratio of the downstream side air-fuel ratio sensor. The target air-fuel ratio is switched between the lean air-fuel ratio and the rich air-fuel ratio. In the learning control, when the target air-fuel ratio is set to the rich air-fuel ratio and the output air-fuel ratio of the downstream side air-fuel ratio sensor is maintained in an air-fuel ratio region in proximity to the stoichiometric air-fuel ratio for the stoichiometric air-fuel ratio judgment time or more, stoichiometric air-fuel ratio stuck learning is performed, changing air-fuel ratio of the exhaust gas to the rich side.
    Type: Grant
    Filed: July 23, 2015
    Date of Patent: April 21, 2020
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Shuntaro Okazaki, Norihisa Nakagawa, Yuji Yamaguchi
  • Patent number: 10598073
    Abstract: An exhaust system includes a turbine housing and an air-fuel ratio sensor. The turbine housing includes a first collecting exhaust pipe including a first passage, a second collecting exhaust pipe including a second passage, and a junction exhaust pipe including a junction passage. The first passage and the second passage are arranged in parallel. When an inner wall forming the junction passage is defined into a first continuous inner wall and a second continuous inner wall, the air-fuel ratio sensor is provided in the first continuous inner wall so as to protrude toward the center of the junction passage. A guide portion that protrudes toward the center of the junction passage is provided in the first continuous inner wall on the upstream side of the air-fuel ratio sensor.
    Type: Grant
    Filed: May 16, 2018
    Date of Patent: March 24, 2020
    Assignee: HONDA MOTOR CO., LTD.
    Inventors: Minoru Hideshima, Noritaka Yamamoto
  • Patent number: 10591386
    Abstract: An emission control system, such as an emission control system for a diesel engine, which includes both a NOx sensor and an electrostatic Particulate Matter (ePM) sensor, and uses the signal from the ePM sensor to determine when it is safe to activate and heat up the NOx sensor after engine ignition. This is performed as soon as moisture clears the exhaust, without having to wait any additional time as a safety factor to maximize the reliability of the NOx sensor against damage from water thermal shock. It also allows for a higher degree of application flexibility for a specific engine and aftertreatment combination to be used in a variety of vehicle applications, environmental conditions, and vehicle operating profiles.
    Type: Grant
    Filed: June 8, 2017
    Date of Patent: March 17, 2020
    Assignee: Continental Automotive Systems, Inc.
    Inventor: John Patrick Schuster
  • Patent number: 10578044
    Abstract: Disclosed is a method for diagnosis of an oxygen probe for a combustion engine, with the steps: When an engine's fuel injection is inactive, measuring the output electric voltage from the oxygen probe; If the measured output electrical voltage of the oxygen probe is greater than a predetermined minimum voltage threshold, measuring a pressure prevailing in an intake distributor of the engine; If the measured pressure in the intake distributor is less than a predetermined minimum pressure threshold, increasing the pressure to a value greater than the predetermined minimum pressure threshold; Determining the time period between the time when the output electrical voltage of the probe falls below a second predetermined voltage threshold and the time when the output electrical voltage of the probe falls below a third predetermined voltage threshold; and diagnosing the oxygen probe depending on elapsed the time period.
    Type: Grant
    Filed: December 19, 2016
    Date of Patent: March 3, 2020
    Assignee: CONTINENTAL AUTOMOTIVE FRANCE S.A.S.
    Inventors: Bastien Elmerich, Frèdèric Cousin, Thomas Mauge, Alexandre Jhean
  • Patent number: 10578039
    Abstract: A proactive heating system for a vehicle, which is used to increase the temperature of an exhaust catalyst prior to ignition of an engine to reduce emissions. The proactive heating system is part of an exhaust system for a vehicle, and includes an electrically heated catalyst and an air pump, which are activated prior to engine ignition, to increase the temperature of a three-way catalyst such that the three-way catalyst is at the desired target threshold temperature, or light-off temperature, prior to engine ignition, eliminating the delay in emissions treatment after cold-start of the engine. The proactive heating system addresses the high level of untreated emissions emitted from an internal combustion engine before the catalytic emissions system reaches the light-off temperature. The proactive heating system provides heating of a catalyst to light-off temperature without combusting hydrocarbon fuel, which leads to engine out emissions.
    Type: Grant
    Filed: August 25, 2017
    Date of Patent: March 3, 2020
    Assignee: Continental Automotive Systems, Inc.
    Inventors: Brian McKay, Ben Bargman
  • Patent number: 10578038
    Abstract: Methods and systems are provided for controlling and coordinating control of a post-catalyst exhaust back pressure valve and secondary air injection to expedite catalyst heating. By adjusting the exhaust back pressure valve to increase the exhaust backpressure and injecting secondary air into an exhaust passage upstream of the catalyst during cold start conditions, exhaust catalyst activation may be expedited.
    Type: Grant
    Filed: June 23, 2014
    Date of Patent: March 3, 2020
    Assignee: Ford Global Technologies, LLC
    Inventor: Thomas G. Leone
  • Patent number: 10563596
    Abstract: An internal combustion engine-based system includes an internal combustion engine. The internal combustion engine-based system includes an engine interrupt connected to the engine. The engine interrupt is configured to selectively stop the operation of the engine. The internal combustion engine-based system includes a controller in communication with the engine interrupt. The internal combustion engine-based system includes a carbon monoxide detector in communication with the controller. The controller uses the engine interrupt to stop the operation of the engine when the carbon monoxide detector provides the controller with signals that are representative of a carbon monoxide level proximate the internal combustion engine that together form a trend of building carbon monoxide amounts over a set time interval.
    Type: Grant
    Filed: March 30, 2018
    Date of Patent: February 18, 2020
    Assignee: Generac Power Systems, Inc.
    Inventors: Gregory A. Wischstadt, Adam M. Schroeder, Mitchell L. Horn, Brandon Schmidt, Kevin Cole, Tod R. Tesch
  • Patent number: 10539058
    Abstract: An aftertreatment system comprises a SCR system including at least one catalyst. A NOx sensor is positioned downstream of the SCR system. A controller is configured to determine an estimated engine NOx amount in the exhaust gas produced by an engine fluidly coupled to the aftertreatment system. The controller interprets an output value indicative of a first amount of oxygen in the exhaust gas downstream of the SCR system. The controller determines an adjusted engine NOx amount in response to the output value. A NOx sensor is positioned downstream of the selective catalytic reduction system and communicatively coupled to the controller. The NOx sensor is structured to provide the output value.
    Type: Grant
    Filed: July 29, 2016
    Date of Patent: January 21, 2020
    Assignee: Cummins Emission Solutions Inc.
    Inventors: Sriram Srinivasan, Nassim Khaled, Priya Naik
  • Patent number: 10519840
    Abstract: An object of the disclosure is to provide a technology that enables abnormality diagnosis of an NOx trap catalyst to make the diagnosis that the NOx trap catalyst is abnormal even if the degree of deterioration of the NOx trap catalyst is relatively small yet. When performing abnormality diagnosis of an NOx trap catalyst, a system according to the disclosure performs a lean temperature raising process, which is the process of raising the temperature of the NOx trap catalyst to or above a predetermined temperature while keeping the air-fuel ratio of the exhaust gas flowing into the NOx trap catalyst at a lean air-fuel ratio. The system diagnoses abnormality of the NOx trap catalyst on the basis of the NOx storage efficiency of the NOx trap catalyst or a parameter correlating with that NOx storage efficiency after the completion of the lean temperature raise process.
    Type: Grant
    Filed: July 18, 2018
    Date of Patent: December 31, 2019
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Kazuya Takaoka, Toru Kidokoro
  • Patent number: 10480368
    Abstract: Methods and systems are provided for differentiating an exhaust air leak from a catalyst monitor sensor degraded with a slow-response. In one example, a pressure proximate an exhaust system particulate filter less than a threshold pressure may indicate an exhaust air leak and responsive to the indication of the exhaust air leak, the thresholds for monitoring the catalyst monitor sensor response may be adjusted. In this way, the impact of an exhaust air leak on catalyst monitor output may be accounted for so that subsequent monitoring for threshold catalyst may continue to be performed accurately in the presence of an exhaust air leak.
    Type: Grant
    Filed: August 28, 2017
    Date of Patent: November 19, 2019
    Assignee: Ford Global Technologies, LLC
    Inventors: Mario Anthony Santillo, Michael James Uhrich, Joseph Norman Ulrey, Andrew Bagnasco, Michael Casedy
  • Patent number: 10464550
    Abstract: A control device executes abnormality detection processing for detecting an abnormality of a current sensor. The abnormality detection processing includes first processing which is executed in a case where, during reception of electric power from a power supply, a state of charge of a power storage device is equal to or greater than a predetermined amount and electric power is supplied to an electrically heated catalyst device. The first processing includes processing for detecting an abnormality of the current sensor by estimating a current supplied to the electrically heated catalyst device using a detection value of a charging current sensor and comparing the estimated value with a detection value of the current sensor.
    Type: Grant
    Filed: April 18, 2017
    Date of Patent: November 5, 2019
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Keita Hashimoto, Takahiro Suzuki
  • Patent number: 10443470
    Abstract: Nitrogen oxide multiplexing systems are provided. Various embodiments provide for systems comprising an aftertreatment component configured to treat exhaust exiting an engine, a sensor, a conduit, and a switching device. The sensor is configured to detect nitrogen oxide in the exhaust from both upstream of and downstream of an aftertreatment component. The conduit has a first end positioned upstream of the aftertreatment component and a second end communicable with the sensor positioned downstream of the aftertreatment component. The conduit receives a sample of the exhaust flowing from upstream of the aftertreatment component through the first end and delivers the sample of the exhaust to the sensor through the second end. The switching device is connected to the conduit and configurable to selectively prevent the flow of exhaust upstream of the aftertreatment component from reaching the sensor.
    Type: Grant
    Filed: November 16, 2015
    Date of Patent: October 15, 2019
    Assignee: Cummins Emission Solutions, Inc.
    Inventor: Dale G. Gibby
  • Patent number: 10443577
    Abstract: A wind power generation system includes one or both of a memory or storage device storing one or more processor-executable executable routines, and one or more processors configured to execute the one or more executable routines which, when executed, cause acts to be performed. The acts include receiving weather data, wind turbine system data, or a combination thereof; transforming the weather data, the wind turbine system data, or the combination thereof, into a data subset, wherein the data subset comprises a first time period data; selecting one or more wind power system models from a plurality of models; transforming the one or more wind power system models into one or more trained models at least partially based on the data subset; and executing the one or more trained models to derive a forecast, wherein the forecast comprises a predicted electrical power production for the wind power system.
    Type: Grant
    Filed: June 30, 2016
    Date of Patent: October 15, 2019
    Assignee: General Electric Company
    Inventors: Krishna Kumar Swaminathan, Deepak Raj Sagi, Pritesh Jain, Sridhar Dasaratha, Nitika Bhaskar, Rahul Kumar Srivastava, Milesh Shrichandra Gogad
  • Patent number: 10436142
    Abstract: Methods and systems for evaluating whether or not a fuel amount that is greater than a threshold has been release to an engine via fuel injectors when the fuel injectors are commanded off are presented. In one example, an oxygen sensor is activated and engine cranking is prevented until a pumping current of the oxygen sensor is proportionate to a concentration of oxygen sensed via the oxygen sensor so that released fuel may be observed during engine starting.
    Type: Grant
    Filed: May 22, 2019
    Date of Patent: October 8, 2019
    Assignee: Ford Global Technologies, LLC
    Inventors: Joseph Ulrey, Michael Uhrich, Ross Pursifull, Steven Schwochert
  • Patent number: 10428715
    Abstract: Disclosed is an exhaust gas analyzing system which includes a main flow passage provided with a PM collection filter, a diluted exhaust gas sampling flow passage connected upstream of the PM collection filter of the main flow passage for sampling a part of diluted exhaust gas, a diluted exhaust gas flow rate adjusting mechanism connected downstream of the PM collection filter of the main flow passage, and control equipment altering a setting flow rate of the diluted exhaust gas flow rate adjusting mechanism depending on a flow rate of sampling diluted exhaust gas flowing through the diluted exhaust gas sampling flow passage.
    Type: Grant
    Filed: October 27, 2015
    Date of Patent: October 1, 2019
    Assignee: HORIBA, LTD.
    Inventor: Yoshinori Otsuki
  • Patent number: 10422265
    Abstract: An exhaust gas purifying system includes a differential pressure detector that detects a differential pressure between an inlet/outlet of a filter, a flow rate detector that detects a flow rate of exhaust gas in the filter, a differential based-deposition-amount calculator that calculates a differential-based deposition amount of particulate matters in the filter based on detection results of the differential pressure detector and the flow rate detector, a regeneration temperature setting unit that sets a regeneration processing temperature of the filter based on the calculated differential-based deposition amount, and a regeneration processing unit that performs a regeneration processing of the filter based on the set regeneration processing temperature.
    Type: Grant
    Filed: December 14, 2016
    Date of Patent: September 24, 2019
    Assignee: Komatsu Ltd.
    Inventors: Nobuaki Motegi, Yuta Okubo, Satoshi Nakazawa, Shinichi Saitou
  • Patent number: 10401273
    Abstract: A particle detection system (1) includes a particle sensor (10) having a detection section (11) exposed to a gas under measurement EG. The particle sensor (10) includes an insulating member (121, 100), and a heater section (150, 105) for heating at least a portion of the gas contact surface (121s, 101s) of the insulating member (121, 100). The particle detection system (1) includes adhesive restraining energization means (225, 223, S4, S10) for heating the gas contact surface (121s, 101s) to an adhesion restraining temperature Td at which adhesion of the particles S to the gas contact surface (121s, 101s) is restrained as compared with the case where the heater section is not energized, wherein adhering particles SA which are particles adhering to the gas contact surface (121s, 101s) burn at the particle burning temperature Tb.
    Type: Grant
    Filed: October 13, 2015
    Date of Patent: September 3, 2019
    Assignee: NGK SPARK PLUG CO., LTD.
    Inventors: Takeshi Sugiyama, Masayuki Motomura, Norimasa Osawa, Hirokazu Murase
  • Patent number: 10393000
    Abstract: A failure determination apparatus for an oxygen concentration sensor disposed downstream of a catalyst provided in an exhaust system is provided for detecting a failure in the oxygen concentration sensor. The failure determination apparatus comprises: a failure determination device for determining a failure in the oxygen concentration sensor based on the length of a period when the output of the oxygen concentration sensor passes through a predetermined output section during enrichment control after a fuel cut mode of the internal combustion engine is released; a rich fuel supply amount calculation device for calculating the time average of an enriching fuel supply amount, relative to a fuel supply amount necessary for stoichiometric combustion, based on an actual fuel supply amount during the enrichment control; and a failure determination restriction device for restricting failure determination of the failure determination device based on the time average of the enriching fuel supply amount.
    Type: Grant
    Filed: November 9, 2015
    Date of Patent: August 27, 2019
    Assignee: MITSUBISHI JIDOSHA KOGYO KABUSHIKI KAISHA
    Inventors: Kenta Imaoka, Junya Kitada, Hideo Matsunaga
  • Patent number: 10376871
    Abstract: A device for purifying exhaust gas provided to purify exhaust gas in an engine, may include an exhaust line through which exhaust gas discharged from the engine passes, a NOx storage catalyst that is installed in the exhaust line to absorb a nitrogen oxide discharged from the exhaust gas, and detach an absorbed nitrogen oxide when a temperature of a catalyst is higher than a predetermined value, and a three way catalyst (TWC) arranged in rear of the NOx storage catalyst for reducing the nitrogen oxide detached from the NOx storage catalyst, wherein the NOx storage catalyst includes an LTA zeolite catalyst.
    Type: Grant
    Filed: July 19, 2017
    Date of Patent: August 13, 2019
    Assignees: Hyundai Motor Company, Kia Motors Corporation
    Inventors: Yoon Sang Nam, Hyokyung Lee
  • Patent number: 10371038
    Abstract: A connection piece assembly unit, especially for an exhaust gas treatment device of an exhaust system of an internal combustion engine, includes a connection piece (30) with a base area (32) for fixing the connection piece (30) to a carrier assembly unit. A covering element (40) projects over an outside (42) of the connection piece (30).
    Type: Grant
    Filed: July 17, 2017
    Date of Patent: August 6, 2019
    Assignee: EBERSPÄCHER EXHAUST TECHNOLOGY GMBH & CO. KG
    Inventors: Dan Liu, Peter Kast
  • Patent number: 10364725
    Abstract: Systems and methods for an aftertreatment system configured for use with a dual-fuel engine system are described. The method comprises determining an operating mode of the dual-fuel engine. Upon determining that the dual-fuel engine is operating in a dual-fuel mode or a natural gas mode, the dual-fuel engine operates in a stoichiometric operating condition, and the exhaust is received into a three-way catalyst communicatively connected to a selective catalytic reduction catalyst. Upon determining that the dual-fuel engine is not operating in the dual-fuel mode or the natural gas mode, the engine operates in a lean operating condition.
    Type: Grant
    Filed: October 16, 2014
    Date of Patent: July 30, 2019
    Assignee: Cummins Emission Solutions Inc.
    Inventors: Yi Liu, Arvind V. Harinath, Arpad Somogyvari
  • Patent number: 10364716
    Abstract: An exhaust gas control apparatus includes a first catalyst, a filter, and an electronic control unit. The electronic control unit is configured to alternately execute lean control and rich control multiple times. The lean control is control for, over a period longer than a period from when a target air-fuel ratio is set to a predetermined lean air-fuel ratio until an air-fuel ratio of exhaust gas flowing out from the first catalyst becomes greater than the stoichiometric air-fuel ratio, setting the target air-fuel ratio to the predetermined lean air-fuel ratio. The rich control is control for, over a period longer than a period from when the target air-fuel ratio is set to a predetermined rich air-fuel ratio until the air-fuel ratio of exhaust gas flowing out from the first catalyst becomes smaller than the stoichiometric air-fuel ratio, setting the target air-fuel ratio to the predetermined rich air-fuel ratio.
    Type: Grant
    Filed: December 29, 2017
    Date of Patent: July 30, 2019
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Naoya Kaneko, Takayuki Ohtsuka
  • Patent number: 10358960
    Abstract: A method is provided for controlling the torque of an engine when a DPF is regenerated and includes detecting outputs of a gear pump and a main hydraulic pump as parameters for correcting a DPF regeneration condition, increasing the flow rate of the gear pump or main hydraulic pump, controlling the torque of an engine so as to reach a predetermined target engine torque value as the flow rate of the gear pump or main hydraulic pump is increased, starting DPF regeneration when the torque of the engine reaches the predetermined target engine torque value, allowing the number of revolutions of the engine to be increased on the basis of the target engine torque value during the DPF regeneration, and performing the DPF regeneration until the temperature of exhaust gas reaches a predetermined target DPF regeneration temperature.
    Type: Grant
    Filed: February 16, 2015
    Date of Patent: July 23, 2019
    Assignee: Volvo Construction Equipment AB
    Inventor: Seong-Cheol Park
  • Patent number: 10352224
    Abstract: In a method of operating a drive device, a probe temperature of an exhaust gas exhaust gas probe in an exhaust tract is measured, as the exhaust gas probe is heated by a probe heater. A temperature growth value representative of an increase in temperature of the exhaust gas probe is determined during heating of the exhaust gas probe, and the presence of a defect of the probe heater is recognized, when the temperature growth value deviates from an input value.
    Type: Grant
    Filed: July 20, 2016
    Date of Patent: July 16, 2019
    Assignee: Audi AG
    Inventor: Bodo Odendall
  • Patent number: 10337436
    Abstract: Methods and systems are provided for converting an asymmetric sensor response of an exhaust gas sensor to a symmetric response. In one example, a method includes adjusting fuel injection responsive to a modified exhaust oxygen feedback signal from an exhaust gas sensor, where the modified exhaust oxygen feedback signal is modified by transforming an asymmetric response of the exhaust gas sensor to a symmetric response. Further, the method may include adapting parameters of an anticipatory controller of the exhaust gas sensor based on the modified symmetric response.
    Type: Grant
    Filed: November 6, 2017
    Date of Patent: July 2, 2019
    Assignee: Ford Global Technologies, LLC
    Inventors: Hassene Jammoussi, Imad Hassan Makki, Gladys G. Galicia, Kenneth John Behr, Zena Yanqing Yee
  • Patent number: 10323557
    Abstract: On a revolving frame (5), a counterweight (6), an engine (7), a cooling fan (9), a heat exchanger (10), an exterior cover (14) forming a machine room (15) on the revolving frame (5), an exhaust gas purifying device (16) including a urea selective reduction catalyst (24), a urea water injection valve (26) injecting a urea water which is a reducing agent toward an upstream side of the urea selective reduction catalyst (24), and a urea water supply line (28) through which the urea water to be supplied to the urea water injection valve (26) flows are provided. A horizontal support member (34) supporting the exterior cover (14) is provided on a front side of the counterweight (6), and a heat shield cover (38) is mounted on the horizontal support member (34). A line accommodating space (41) is formed between the horizontal support member (34) and the heat shield cover (38), and a urea water supply line (28) for shielding heat from the engine (7) is accommodated in this line accommodating space (41).
    Type: Grant
    Filed: September 7, 2016
    Date of Patent: June 18, 2019
    Assignee: Hitachi Construction Machinery Co., Ltd.
    Inventors: Hayato Kubota, Kazuhiko Mizoguchi, Hiroki Sugawara, Shigeru Hirasawa
  • Patent number: 10316842
    Abstract: To provide an air compressor capable of achieving energy saving. The air compressor is provided with a compressor body compressing air with injecting oil into a compression chamber; an air-pressure-operated intake throttle valve provided on an intake side of the compressor body; a separator provided on a delivery side of the compressor body and separating, from the compressed air delivered from the compressor body, a liquid contained in the compressed air; a compressed air system supplying the compressed air separated by the separator to a supply destination; an air release system connected to a primary side of a check valve in the compressed air system; an air-pressure-operated air release valve provided in the air release system; and an air-pressure operation circuit having a solenoid-operated three-way valve.
    Type: Grant
    Filed: March 13, 2015
    Date of Patent: June 11, 2019
    Assignee: Hitachi Industrial Equipment Systems Co., Ltd.
    Inventor: Ryusuke Oshiro
  • Patent number: 10294877
    Abstract: A straddle-type vehicle comprises an engine which generates driving power and emits an exhaust gas; an exhaust device including: a catalyst which cleans the exhaust gas, an inner tube in which the catalyst is disposed and through which the exhaust gas flows, the inner tube extending to a location downstream of the catalyst; and an outer tube which covers an outer peripheral surface of the inner tube in an axial direction of the inner tube, and has a muffling space through which the exhaust gas discharged from the inner tube is flowed to reduce an exhaust noise radiated from the engine; at least one exhaust pipe through which the exhaust gas is led to the catalyst; and a downstream oxygen sensor which detects an oxygen concentration of the exhaust gas after flowing through the catalyst, at a location downstream of the catalyst in the inner tube.
    Type: Grant
    Filed: October 13, 2016
    Date of Patent: May 21, 2019
    Assignee: KAWASAKI JUKOGYO KABUSHIKI KAISHA
    Inventors: Hisatoyo Arima, Takahiro Ono, Kunihiro Tanaka
  • Patent number: 10287957
    Abstract: An exhaust gas purification device includes: an actual pressure difference obtainer that acquires an actual pressure difference which is an actual measurement value of a pressure difference of a filter; a flow rate obtainer that acquires a flow rate of exhaust gas flowing into the filter; a calculation pressure difference calculator that calculates a calculation pressure difference which is a calculated value of the pressure difference of the filter in a normal state when the exhaust gas flows into the filter with the flow rate acquired by the flow rate obtainer; and an abnormality determiner that performs an abnormality determination of the filter based on a pressure difference variation ratio which is a ratio between a variation in the actual pressure difference and a variation in the calculation pressure difference in response to a variation in the flow rate of the exhaust gas.
    Type: Grant
    Filed: March 23, 2016
    Date of Patent: May 14, 2019
    Assignee: DENSO CORPORATION
    Inventor: Shingo Nakata
  • Patent number: 10280823
    Abstract: The present disclosure provides an engine control device including: an adjustment section that adjusts a flow amount per unit time of exhaust gas from an engine; and a control section that, in a case in which a temperature below freezing point is detected by a temperature detection section that detects an external air temperature or an intake air temperature, a preceding engine operation duration is shorter than a first duration, and a value in a predetermined range in which water in an exhaust pipe can be drained by the flow amount being raised by a certain amount is detected by a value detection section that detects a value representing an acceleration, an accelerator opening or an engine rotation speed, controls the adjustment section so as to raise the flow amount by the certain amount until a second duration has passed from starting of the engine.
    Type: Grant
    Filed: July 19, 2016
    Date of Patent: May 7, 2019
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Toshio Murata, Tadashi Nakagawa
  • Patent number: 10273909
    Abstract: Provided is a catalytic converter to be disposed in a branch portion between an exhaust gas passage that guides exhaust gas from an internal combustion engine to outside and an exhaust gas recirculation passage that recirculates a portion of the exhaust gas from the exhaust gas passage to an intake system of the internal combustion engine. The catalytic converter comprises a catalyst storage case that stores a catalyst, a recirculation pipe that forms the exhaust gas recirculation passage, an abutment portion that makes the catalyst storage case and the recirculation pipe be in surface contact with each other and be arranged in parallel to each other, and a downstream cone that makes the exhaust gas passage and the exhaust gas recirculation passage merge with each other.
    Type: Grant
    Filed: December 9, 2014
    Date of Patent: April 30, 2019
    Assignee: Futaba Industrial Co., Ltd.
    Inventor: Katsuhisa Takagi
  • Patent number: 10267202
    Abstract: Methods and systems are provided for catalyst control. In one example, a method may include controlling an air-fuel ratio downstream of a catalyst by adjusting fuel injection. The fuel injection is adjusted based on control parameters updated online through system identification at a point of feedback control instability.
    Type: Grant
    Filed: October 4, 2016
    Date of Patent: April 23, 2019
    Assignee: Ford Global Technologies, LLC
    Inventors: Stephen William Magner, Mrdjan J. Jankovic, Mario Anthony Santillo
  • Patent number: 10260441
    Abstract: An engine controller is configured to perform fuel cut-off, which temporarily stops fuel injection, calculate an in-cylinder air amount, which is an amount of air used for combustion in a cylinder, and control an engine based on the in-cylinder air amount. The engine controller includes a residual air amount calculation unit configured to calculate a residual air amount that is an amount of air in the cylinder remaining from a previous cycle during the fuel cut-off so that the residual air amount increases as the number of cycles of intake-exhaust actions in the cylinder increases during the fuel cut-off.
    Type: Grant
    Filed: August 1, 2017
    Date of Patent: April 16, 2019
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Ryusuke Kuroda, Masanao Idogawa
  • Patent number: 10233811
    Abstract: An engine control system includes a selective catalyst reduction (SCR) device that reduces nitrogen oxide (NOx) in exhaust gas in the presence of the reductant. A particulate filter (PF) is disposed downstream from the SCR device to collect particulate matter from the exhaust gas stream. The engine control system further includes an electronic hardware that calculates a particulate matter load value indicating an amount of particulate matter collected in the PF, and calculate a CCB value that compensates for pressure differential variations across the PF. The controller further calculates a CCB correction value that modifies the CCB value and compensates for an amount of reductant that slips from the SCR device and induces the pressure differential variations. In this manner, the electronic hardware controller can control a regeneration system to increase the temperature of the PF to burn off particulate matter from the PF based on the modified CCB value.
    Type: Grant
    Filed: March 27, 2017
    Date of Patent: March 19, 2019
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Michael A. Smith, Pu Sun, Harish Kohli
  • Patent number: 10221789
    Abstract: A control system of an internal combustion engine which can suppress a drop in the purification performance of an exhaust purification catalyst is provided. The control system of an internal combustion engine is provided with an exhaust purification catalyst and downstream side air-fuel ratio sensor, performs feedback control so that an air-fuel ratio of the exhaust gas which flows into the exhaust purification catalyst becomes a target air-fuel ratio, and performs target air-fuel ratio setting control which alternately switches the target air-fuel ratio to a lean set air-fuel ratio which is leaner than a stoichiometric air-fuel ratio and a rich set air-fuel ratio which is richer than the stoichiometric air-fuel ratio. In the control system, when an engine operating state is a steady operating state, compared with when it is not a steady operating state, at least one of a rich degree of the rich set air-fuel ratio or a lean degree of the lean set air-fuel ratio is made to increase.
    Type: Grant
    Filed: December 18, 2014
    Date of Patent: March 5, 2019
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Norihisa Nakagawa, Shuntaro Okazaki, Yuji Yamaguchi
  • Patent number: 10221792
    Abstract: A system and method are described for reducing NOx emissions following deceleration fuel shut off (DFSO). The method comprises: cutting off fuel to the engine during a deceleration event; open loop operating the engine air/fuel ratio rich of stoichiometry for a predetermined time after the deceleration event; feedback controlling the air/fuel ratio on average near a value rich of stoichiometry for a preselected time after said predetermined time; and feedback controlling the air/fuel ratio returning to stoichiometry after the preselected time.
    Type: Grant
    Filed: August 15, 2013
    Date of Patent: March 5, 2019
    Assignee: Ford Global Technologies, LLC
    Inventors: Mario Santillo, Mrdjan J. Jankovic, Steve William Magner, Michael James Uhrich
  • Patent number: 10209173
    Abstract: A particulate sensor includes: an inner metallic member which is maintained at a first potential and which has a gas introduction pipe into which a target gas is introduced; a tubular outer metallic member which surrounds the radially outer circumference of the inner metallic member and which is attached to a gas flow pipe to thereby be maintained at a ground potential; and an insulating spacer which is interposed between the inner metallic member and the outer metallic member so as to electrically insulate them from each other and which has a tubular gas contact portion which is exposed to the interior of the gas flow pipe and comes into contact with the gas under measurement. The insulating spacer has a heater for heating the gas contact portion. The heater includes a heat generation resistor embedded in the insulating spacer.
    Type: Grant
    Filed: August 21, 2015
    Date of Patent: February 19, 2019
    Assignee: NGK SPARK PLUG CO., LTD.
    Inventors: Takeshi Sugiyama, Masayuki Motomura, Norimasa Osawa, Keisuke Tashima, Toshiya Matsuoka
  • Patent number: 10202879
    Abstract: Technical features are described for an emissions control system for a motor vehicle that includes an internal combustion engine are described. The emissions control system includes a selective catalytic reduction (SCR) device fluidically including an SCR inlet and an SCR outlet. The emissions control system further includes a controller that computes a correction factor for a kinetics model of the SCR device based on an amount of NO and an amount of NOx in the emissions control system. The controller further predicts an amount of NOx output by the SCR device using the kinetics model and the correction factor. The controller further inputs an amount of catalyst into the SCR device based on the predicted amount of NOx. The correction factor is a ratio of the amount of NO and the amount of NOx at the SCR inlet.
    Type: Grant
    Filed: March 23, 2017
    Date of Patent: February 12, 2019
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Fuhe Mao, Yue-Yun Wang
  • Patent number: 10191848
    Abstract: The present invention provides a method and system for caching time series data. A computer system for caching time series data is disclosed. The computer system comprises one or more processors, at least one cache, and a computer readable storage medium. The computer readable storage medium contains instructions that, when executed by the one or more processors, causes the one or more processors to perform a set of steps comprising fetching the time series data from a time series data source, calculating one or more expiry timestamps, grouping the plurality of time series datum in to one or more time data chunks based on the one or more expiry timestamps, and storing a copy of the time series data and the one or more expiry timestamps in the at least one cache.
    Type: Grant
    Filed: March 6, 2018
    Date of Patent: January 29, 2019
    Assignee: InMobi PTE Ltd.
    Inventor: Arvind Jayaprakash
  • Patent number: 10180109
    Abstract: An internal combustion engine 100 comprises an air-fuel ratio control device. The air-fuel ratio control device controls the amount of fuel fed to the combustion chamber by feedback control so that the air-fuel ratio detected by the upstream side air-fuel ratio sensor matches the target air-fuel ratio when a blow-through amount of air blown from the intake passage through a cylinder to the exhaust passage due to an occurrence of valve overlap is a reference blow-through amount or less. The air-fuel ratio control device sets the target air-fuel ratio of the inflowing exhaust gas based on the air-fuel ratio detected by the downstream side air-fuel ratio sensor and, without performing the feedback control, feeds the amount of fuel calculated from the target air-fuel ratio to the combustion chamber when the blow-through amount is greater than the reference blow-through amount.
    Type: Grant
    Filed: March 28, 2016
    Date of Patent: January 15, 2019
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Takuya Okubo, Norihisa Nakagawa, Koichi Kimura
  • Patent number: 10174389
    Abstract: A method for treating desulfurization slag involves conveying desulfurization slag from pig iron desulfurization to a unit where the desulfurization slag is melted at a temperature of at least 1,400° C. In the unit, a thorough mixing is achieved. The treatment takes place in the unit under oxidizing conditions. Sulfur dioxide is generated and collected from the roasting gas and supplied for further utilization.
    Type: Grant
    Filed: November 27, 2014
    Date of Patent: January 8, 2019
    Assignee: voestalpine Stahl GmbH
    Inventors: Karl Pilz, Bertram Fritz, Jürgen Antrekowitsch, Gerald Schneeberger
  • Patent number: 10167785
    Abstract: An exhaust line element comprises a valve body, a shutter, a pivot link connecting the shutter to the valve body, an upstream tube, and a downstream tube. At least one first stopper is attached on an inner surface of the valve body. The shutter abuts against the first stopper in the closing off position. The first stopper defines a longitudinal position of at least one of the upstream tube and the downstream tube relative to the valve body.
    Type: Grant
    Filed: September 28, 2016
    Date of Patent: January 1, 2019
    Assignee: Faurecia Systemes D'Echappement
    Inventors: Benjamin Oblinger, Laurent Viardot, Sebastien Royer, Gilbert Delplanque
  • Patent number: 10167796
    Abstract: The method determines whether soot loading of a gas particulate filter (GPF) requires regeneration. If it does, the temperature of the GPF is read to determine whether it is sufficiently high to achieve particulate (soot) burning. If it is not, an engine control module is commanded to adjust variables such as spark timing, fuel injection timing and valve timing. If the temperature of the particulate filter is sufficiently high that regeneration can occur, other variables may be adjusted such as leaning the air/fuel mixture, retarding the spark timing, the fuel injection and valve timing. Because the latter adjustments may limit or reduce either engine speed or power, messages in a message center are provided indicating, first, that the driver should continue driving for GPF regeneration and, subsequently, under certain conditions, that the engine power has been reduced.
    Type: Grant
    Filed: May 17, 2017
    Date of Patent: January 1, 2019
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Rafat F. Hattar, Alexander Michel, Simon Schiesser, Nils Oth, Markus Kraft
  • Patent number: 10139842
    Abstract: Disclosed are a method of correcting a control logic of a selective catalytic reduction (SCR) catalyst and an exhaust system. The control logic may be adapted to calculate an injection amount of a reducing agent for the SCR catalyst at the least. The method may include detecting input variables including temperature of the SCR catalyst and exhaust flow rate, discretizing the input variables, standardizing the discretized input variables, determining whether the discretized input variables are within a correction range, and correcting the control logic of the SCR catalyst if the discretized input variables are within the correction range.
    Type: Grant
    Filed: January 11, 2018
    Date of Patent: November 27, 2018
    Assignees: Hyundai Motor Company, FEV Europe GmbH, Kia Motors Corporation
    Inventors: Ji Ho Cho, Jin Ha Lee, Holderbaum Bastian, Bernhard Luers, Alexander Vovk
  • Patent number: 10138778
    Abstract: An exhaust purification system including a particulate filter, a selective reduction catalyst provided at a downstream side from the filter, an ammonia ingredient feed device which feeds an ammonia ingredient to the selective reduction catalyst, a control device which controls the amount of the ammonia ingredient which is adsorbed at the selective reduction catalyst to become a target adsorption amount, and a filter regeneration system which performs filter regeneration processing to remove PM which has built up on the particulate filter when an execution start condition stands. When removal of PM is demanded, so long as the execution start condition of the filter regeneration processing by the filter regeneration system does not stand, the target adsorption amount is decreased a plurality of times in stages, and the execution start condition of the filter regeneration processing is changed to a different condition at each stage of the target adsorption amount.
    Type: Grant
    Filed: May 22, 2015
    Date of Patent: November 27, 2018
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Hiromasa Nishioka, Kazuhiro Ito, Daichi Imai, Yoshihisa Tsukamoto, Hiroshi Otsuki, Yasumasa Notake
  • Patent number: 10132218
    Abstract: The present disclosure relates to engines for a motor vehicle and some embodiments include a method for operating an exhaust train of a motor vehicle engine including: measuring a particle concentration downstream of a particle filter at a first operating point; determining the filter efficiency at the first operating point; changing operation of the engine to a second operating point to increase the particle emissions; measuring the particle concentration downstream of the filter at the second operating point; determining the filter efficiency at the second operating point; determining a difference between the efficiency levels; detecting an offset error, if the difference exceeds a defined threshold; and identifying a particle sensor as defective if an offset error is detected, rather than identifying the particle filter as defective.
    Type: Grant
    Filed: April 16, 2014
    Date of Patent: November 20, 2018
    Assignee: CONTINENTAL AUTOMOTIVE GMBH
    Inventors: Paul Rodatz, Michael Nienhoff, Tino Arlt, Thomas Schoen
  • Patent number: 10125708
    Abstract: An air-fuel ratio control device switches a target air-fuel ratio from a lean set air-fuel ratio to a rich set air-fuel ratio after judging that an air-fuel ratio of an outflowing exhaust gas has become a stoichiometric air-fuel ratio and an oxygen storage amount of an exhaust purification catalyst has become a switching reference storage amount, and makes an average value of the target air-fuel ratio the stoichiometric air-fuel ratio to less than the lean set air-fuel ratio, from after the estimated value of the oxygen storage amount has become the switching reference storage amount or more until judging that the air-fuel ratio of the outflowing exhaust gas has become the stoichiometric air-fuel ratio if the estimated value of the oxygen storage amount becomes the switching reference storage amount or more before judging that the air-fuel ratio of the outflowing exhaust gas has become the stoichiometric air-fuel ratio.
    Type: Grant
    Filed: August 3, 2016
    Date of Patent: November 13, 2018
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Yukihiro Okabe, Tatsuya Tahara
  • Patent number: 10113497
    Abstract: A method for operating a drive device with an internal combustion engine and an exhaust gas tract having a storage catalytic converter for purifying exhaust gas, a first lambda probe disposed upstream of the storage catalytic converter and a second lambda probe disposed downstream of the storage catalytic converter, includes determining a lambda value for controlling a mixture composition for the internal combustion engine based on a measurement signal from the first lambda probe and an offset value. The offset value is determined with a trim control when a measurement signal of the second lambda probe is in a normal operating range of values, and is adjusted in a regeneration period, during which the storage catalytic converter regenerated, with a predetermined correction value when the measurement signal of the second lambda probe is outside the normal operating range of values. A corresponding drive device is also disclosed.
    Type: Grant
    Filed: October 19, 2015
    Date of Patent: October 30, 2018
    Assignee: Audi AG
    Inventor: Bodo Odendall
  • Patent number: 10107733
    Abstract: The present disclosure relates to a system, apparatus, and method for reconditioning a particulate matter sensor in an exhaust aftertreatment system that will resist poisoning. The system and method includes receiving particulate matter data indicating a state of the particulate matter sensor; determining that the particulate matter sensor is in a full state based on the particulate matter data; activating a heating element of the particulate matter sensor to a multiple of intermittent temperatures that clean the sensor pre-patory to the next measurement. By this manner, many reactive chemicals are removed before they can react with and poison the sensor materials.
    Type: Grant
    Filed: November 3, 2015
    Date of Patent: October 23, 2018
    Assignee: Cummins Emission Solutions Inc.
    Inventors: Matthew W. Hormann, Nathan Charles Schattke