Material From Exhaust Structure Fed To Engine Intake Patents (Class 60/278)
  • Patent number: 9821794
    Abstract: When a catalyst temperature is lower than a predetermined temperature on a second or subsequent start of an engine since system activation of a vehicle, a catalyst warm-up request is output for the purpose of warming up a catalyst in a catalytic converter. An output limit Wout of a battery is not increased in response to a second or subsequent output of the catalyst warm-up request, while being increased in response to a first output of the catalyst warm-up request. Accordingly, the catalyst warm-up in response to the second or subsequent output of the catalyst warm-up request since the system activation suppresses excessive output of electric power from the battery and thereby suppresses deterioration of the battery. Catalyst warm-up is performed in response to the second or subsequent output of the catalyst warm-up request. This suppresses deterioration of emission.
    Type: Grant
    Filed: October 21, 2015
    Date of Patent: November 21, 2017
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Koichiro Muta, Hideki Kamatani, Takao Itoh, Makoto Yamasaki, Ryo Mano, Masahiro Kagami, Hiroki Endo
  • Patent number: 9758946
    Abstract: A work vehicle having a plurality of working modes allowing working in accordance with a load state includes an engine, an exhaust gas purification apparatus, a reducing agent tank, a state determination portion, and an engine control unit. The exhaust gas purification apparatus purifies a nitrogen oxide in an exhaust gas. The reducing agent tank stores a reducing agent. The state determination portion determines a state of the reducing agent. The engine control unit controls output of the engine with the use of a restricted-operation engine output torque curve in which horsepower output from the engine is lower than horsepower output from the engine at the time when each of the plurality of working modes is selected, when a state of the reducing agent is equal to or lower than a reference value.
    Type: Grant
    Filed: February 26, 2014
    Date of Patent: September 12, 2017
    Assignee: KOMATSU LTD.
    Inventors: Jin Yogita, Eiji Morinaga, Kozo Okuda, Kazuyoshi Morimoto
  • Patent number: 9739187
    Abstract: A water recovery device includes: an exhaust gas pipe that is connected to a combustion device; a water generation unit that generates water by cooling exhaust gas in the exhaust gas pipe to condense water vapor in the exhaust gas; and a water container that stores water generated by the water generation unit. The water generation unit includes: an acoustic-wave generator that generates acoustic waves by absorbing heat from the exhaust gas pipe and giving the heat to working fluid, which transmits acoustic waves by oscillating, to cause the working fluid to oscillate; a transmission pipe that is internally filled with the working fluid and transmits acoustic waves generated by the acoustic-wave generator; and a cold-heat generator that generates cold heat to supply the cold heat to the exhaust gas pipe by receiving acoustic waves transmitted through the transmission pipe and giving heat to the acoustic waves.
    Type: Grant
    Filed: April 11, 2016
    Date of Patent: August 22, 2017
    Assignee: NGK Insulators, Ltd.
    Inventors: Yukio Miyairi, Shinichi Miwa
  • Patent number: 9719412
    Abstract: Methods and systems are provided for adjusting the opening of a scroll valve of a binary flow turbine. Scroll valve adjustments are used at different engine operating conditions to improve engine performance and boost response. Scroll valve adjustments are coordinated with wastegate and EGR valve adjustments for improved engine control.
    Type: Grant
    Filed: July 21, 2015
    Date of Patent: August 1, 2017
    Assignee: Ford Global Technologies, LLC
    Inventors: Julia Helen Buckland, Jeffrey Allen Doering, Brad Alan Boyer
  • Patent number: 9708971
    Abstract: A supercharged internal combustion engine according to the present invention includes: a compressor arranged in an intake passage through which air that is taken into a combustion chamber flows and for supercharging intake air; an EGR passage that connects an exhaust passage through which exhaust gas that is discharged from the combustion chamber flows and a compressor upstream passage; an EGR valve for opening and closing the EGR passage; an intake bypass passage for releasing gas that has been supercharged by the compressor outside a compressor downstream passage; and an ABV for opening the intake bypass passage by opening when the gas that has been supercharged by the compressor is released outside the compressor downstream passage. The intake bypass passage connects the compressor downstream passage with the EGR passage on the side that is closer to the compressor upstream passage relative to the EGR valve.
    Type: Grant
    Filed: May 8, 2013
    Date of Patent: July 18, 2017
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventor: Wataru Fukui
  • Patent number: 9689331
    Abstract: An internal combustion engine is coupled to an oxidation catalyst disposed upstream of a second catalytic device. A controller includes an instruction set executable to detect a cold start engine starting event, monitor first and second temperature sensors, control each of the fuel injectors to execute a first set of fuel injection events for each cylinder event in response to an output torque request, and execute a second set of fuel injection events for each cylinder event after cylinder top-dead-center. The second set of fuel injection events includes a final injection event, and a duration of the final injection event is determined based upon the first and second temperatures.
    Type: Grant
    Filed: March 24, 2016
    Date of Patent: June 27, 2017
    Assignee: GM Global Technology Operations LLC
    Inventors: Jean-Yves Lavallee, Joshua Clifford Bedford, Giuseppe Mazzara Bologna, Charles E. Solbrig
  • Patent number: 9644498
    Abstract: In a first embodiment, a system, including an exhaust duct configured to flow an exhaust gas, and an air injection system coupled to the exhaust duct, wherein the air injection system comprises a first air injector configured to inject air into the exhaust duct to assist flow of the exhaust gas through the exhaust duct.
    Type: Grant
    Filed: May 23, 2013
    Date of Patent: May 9, 2017
    Assignee: General Electric Company
    Inventors: Yongjiang Hao, Wenjie Wu, Bradly Aaron Kippel, Jianmin Zhang
  • Patent number: 9611793
    Abstract: There is disclosed a method of regenerating at least one aftertreatment device in an exhaust system of an internal combustion engine by changing a calibration of the exhaust gas recirculation system with the engine to increase temperature of exhaust gas provided to the at least one aftertreatment device, and further incrementally changing the calibration to obtain an exhaust gas temperature within a target regeneration temperature range.
    Type: Grant
    Filed: August 4, 2014
    Date of Patent: April 4, 2017
    Assignee: Caterpillar Inc.
    Inventors: Ryan T. Sunley, Sylvain Charbonnel, Spencer Huhn
  • Patent number: 9606092
    Abstract: Systems and methods for diagnosing a sensor for an exhaust system may include perturbing an output signal from the sensor for the exhaust system. The method may further include monitoring an output signal from a controller for controlling a component affecting the exhaust system or an unperturbed output signal from the sensor and diagnosing the sensor based on the monitored output signal from the controller or the unperturbed output signal from the sensor. In another implementation, a first controller may output the output signal from the sensor to a second controller configured to have a predetermined response to output signal. The first controller receives a response from the second controller and diagnoses the sensor based on the received response.
    Type: Grant
    Filed: August 7, 2014
    Date of Patent: March 28, 2017
    Assignee: Cummins Emission Solutions, Inc.
    Inventor: Avra Brahma
  • Patent number: 9599050
    Abstract: A vehicle is disclosed which includes: an engine; a catalyst purifying exhaust gas of the engine; a grille shutter adjusting an opening area of a radiator grille; and an electronic control unit configured to: (a) control an injection quantity of fuel to be supplied to the engine, (b) detect a malfunction of the grille shutter in a state where the grille shutter is closed, and (c) increase the injection quantity when the malfunction is detected in comparison to when the malfunction is not detected.
    Type: Grant
    Filed: April 17, 2014
    Date of Patent: March 21, 2017
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventor: Hitoki Sugimoto
  • Patent number: 9599040
    Abstract: A method for controlling fuel flow in a multi fuel engine is disclosed. An input power for operating the multi fuel engine at a desired engine speed is determined and a fuel flow rate based on the input power, one or more fuel properties and a specified fuel substitution ratio for apportioning the plurality of fuels is determined. Also, a correction factor for the fuel flow rate based on a desired charge density, wherein the desired charge density is based at least on a relationship between an engine load and charge density is determined and a corrected fuel flow rate, based on the determined correction factor, is output to a corresponding actuator of a fluid flow control device for the one of the fuels to cause the corresponding actuator to provide the one of the plurality of fuels at the corrected fuel flow rate.
    Type: Grant
    Filed: May 28, 2014
    Date of Patent: March 21, 2017
    Assignee: Caterpillar Motoren GmbH & Co. KG
    Inventors: Arvind Sivasubramanian, Christopher F. Gallmeyer, Eike J. Sixel, Bert Ritscher
  • Patent number: 9567929
    Abstract: A vehicle is disclosed which includes: an engine; a catalyst purifying exhaust gas of the engine; a grille shutter adjusting an opening area of a radiator grille; and an electronic control unit configured to: (a) control an injection quantity of fuel to be supplied to the engine, (b) detect a malfunction of the grille shutter in a state where the grille shutter is closed, and (c) increase the injection quantity when the malfunction is detected in comparison to when the malfunction is not detected.
    Type: Grant
    Filed: April 17, 2014
    Date of Patent: February 14, 2017
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventor: Hitoki Sugimoto
  • Patent number: 9512793
    Abstract: A method for controlling ammonia generation in an exhaust gas feedstream output from an internal combustion engine equipped with an exhaust aftertreatment system including a first aftertreatment device includes executing an ammonia generation cycle to generate ammonia on the first aftertreatment device. A desired air-fuel ratio output from the engine and entering the exhaust aftertreatment system conducive for generating ammonia on the first aftertreatment device is determined. Operation of a selected combination of a plurality of cylinders of the engine is selectively altered to achieve the desired air-fuel ratio entering the exhaust aftertreatment system.
    Type: Grant
    Filed: October 16, 2012
    Date of Patent: December 6, 2016
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Joel G. Toner, Kushal Narayanaswamy, Gerald A. Szekely, Jr., Paul M. Najt
  • Patent number: 9494066
    Abstract: A controller is provided for an engine comprising urea-SCR catalyst, a urea-water supply section, a low pressure gas recirculating section including a low pressure EGR pipe forming a low pressure EGR passage and a low pressure EGR valve. The controller controls an amount of a fuel supplied to the engine, and an opening degree of the low pressure EGR valve. The controller supplies the urea-water to the urea-SCR catalyst in such a manner that an ammonia flowing out from the urea-SCR catalyst neutralizes an acid condensed water produced by a gas passing through the low pressure EGR passage.
    Type: Grant
    Filed: June 2, 2011
    Date of Patent: November 15, 2016
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventor: Teruhiko Miyake
  • Patent number: 9421488
    Abstract: A particle separator for treating the exhaust gases of an internal combustion engine includes at least one metallic layer through which exhaust gas can flow. The metallic layer is located in a housing that includes an inlet opening, an outlet opening and a central axis. The housing is provided with at least one inspection or maintenance opening that laterally penetrates the housing and provides a passage through to the metallic layer. The particle separator can, in particular, remain operational without having to be dismantled or can autonomously remain fully open to a flow at all times. A motor vehicle having at least one particle separator is also provided.
    Type: Grant
    Filed: May 20, 2013
    Date of Patent: August 23, 2016
    Assignee: EMITEC Gesellschaft fuer Emissionstechnologie mbH
    Inventors: Joachim Sittig, Michael Voit, Ferdi Kurth, Ludwig Wieres
  • Patent number: 9358876
    Abstract: An exhaust port formed on one side portion of an engine body along the vehicle width direction, the exhaust port connected to an exhaust muffler arranged in an extending manner in the vehicle width direction along a rear edge of the vehicle body frame by way of an exhaust pipe passage means that introduces an exhaust gas from the exhaust port. The exhaust pipe passage means is arranged in an extending manner in the longitudinal direction of the vehicle while having a bent portion bent toward the center in the vehicle width direction from one side of the engine body in the vehicle width direction behind the engine body, as viewed in a plan view.
    Type: Grant
    Filed: January 22, 2014
    Date of Patent: June 7, 2016
    Assignee: HONDA MOTOR CO., LTD.
    Inventors: Shun Hanashima, Tadashi Oshima, Takaaki Shomura, Yuji Maki
  • Patent number: 9340202
    Abstract: Unique apparatuses, systems, methods, and techniques for control of engine systems are disclosed. One embodiment is a unique controls process providing engine start/stop functionality. In one form, the controls process includes engine stop controls which evaluate a plurality of engine stop request conditions and a plurality of engine stop capability conditions, as well as engine start controls which evaluate a plurality of engine start request conditions and a plurality of engine start capability conditions.
    Type: Grant
    Filed: June 3, 2014
    Date of Patent: May 17, 2016
    Assignee: Cummins Inc.
    Inventors: Martin Books, Praveen Muralidhar, Vivek Anand Sujan, Fan Zeng, C. Larry Bruner, Anant Puri, Hoseinali Borhan
  • Patent number: 9206761
    Abstract: An engine having two or more fuel injectors is disclosed, where at least one of the injectors is used to port fuel inject fuel into the cylinder when the air intake valve is open. The open valve port fuel injector is used to inject a fuel that has alcohol as a constituent and is the same fuel injected by another fuel injector. In other embodiments, the open valve fuel injector is used to inject an anti-knock fuel containing alcohol while a primary fuel, is introduced by another injector. The operation of the open valve fuel injector can be optimized to maximize the vaporization cooling. In other embodiments, the open valve fuel injector may be used in conjunction with direct injection of the primary fuel or the anti-knock fuel. Heavy EGR can be optimally used with the various embodiments.
    Type: Grant
    Filed: January 19, 2015
    Date of Patent: December 8, 2015
    Assignee: Ethanol Boosting Systems, LLC
    Inventors: Daniel R. Cohn, Leslie Bromberg
  • Patent number: 9163554
    Abstract: A case is connected between an outlet side of a turbocharger and an intake port of an engine. A cooling passage and a bypass passage are partitioned in the case to split intake air into two flows. A storage unit is formed in a bottom portion of the case to accumulate liquid. The cooling passage is located along a gravity direction to flow intake air from a lower side to an upper side. The bypass passage flows intake air to bypass the cooling passage. A valve controls opening of the cooling passage and the bypass passage on an inlet side or on an outlet side. The valve opens the bypass passage to forcedly supply at least a part of intake air, which is drawn into the case, through the storage unit and the bypass passage into the intake port.
    Type: Grant
    Filed: June 16, 2014
    Date of Patent: October 20, 2015
    Assignee: DENSO CORPORATION
    Inventor: Masao Ino
  • Patent number: 9157388
    Abstract: Various methods and systems for an engine driving an electrical power generation system are provided. In one embodiment, an example method for an engine driving an electrical power generation system includes adjusting an engine speed in response to a relationship between oxygen and fuel while maintaining a power transmitted to the electrical power generation system.
    Type: Grant
    Filed: November 5, 2014
    Date of Patent: October 13, 2015
    Assignee: General Electric Company
    Inventors: James Robert Mischler, Jassin Marcel Fritz, Sebastian Walter Freund
  • Patent number: 9145837
    Abstract: At least one donor cylinder is coupled to an intake manifold. The intake manifold is configured to feed a mixture of air and a first fuel, or a mixture of air, the first fuel, and a second fuel to the at least one donor cylinder. At least one non-donor cylinder is coupled to the intake manifold and an exhaust manifold. The intake manifold is further configured to feed air, or a mixture of air and the second fuel to the at least one non-donor cylinder. An exhaust channel extend from the at least one donor cylinder to the intake manifold for recirculating an exhaust emission from the at least one donor cylinder to the at least one donor, and non-donor cylinders via the intake manifold.
    Type: Grant
    Filed: November 29, 2011
    Date of Patent: September 29, 2015
    Assignee: General Electric Company
    Inventor: Adam Edgar Klingbeil
  • Patent number: 9121373
    Abstract: An induction system in an engine is provided. The air induction system includes an induction conduit including an air flow passage in fluidic communication at least one combustion chamber in the engine and a passive-adsorption hydrocarbon trap positioned within the induction conduit, a portion of the passive-adsorption hydrocarbon trap defining a boundary of the air flow passage, the passive-adsorption hydrocarbon trap including a breathable layer coupled to a substrate layer coupled to the induction conduit, a hydrocarbon adsorption layer interposing the breathable layer and the substrate layer.
    Type: Grant
    Filed: April 26, 2012
    Date of Patent: September 1, 2015
    Assignee: Ford Global Technologies, LLC
    Inventors: David S. Moyer, Andrew George Bellis, Roger Khami, Michael G. Heim
  • Patent number: 9115617
    Abstract: Disclosed is a hydrogen combustion system with closed-cycle recycling comprising a hydrogen combustion system with closed-cycle recycling of exhaust gas, comprising: a hydrogen supplier 110 which supply hydrogen used as a fuel, a combustion chamber 120 which is located in the engine 130 and connected to the hydrogen supplying pipe 111 in which the hydrogen is combusted, a condenser 140 which converts the hot exhaust gas emitted through the discharge pipe 121 installed on the outlet of the combustion chamber 120 into the cold exhaust gas and condensed water, and a recycling pipe 150 which performs recycling of a part of the cold exhaust gas from the condenser 140 to the inlet of the combustion chamber 120.
    Type: Grant
    Filed: February 8, 2011
    Date of Patent: August 25, 2015
    Assignee: AGENCY FOR DEFENSE DEVELOPMENT
    Inventor: Hyun Jong Paik
  • Patent number: 9103272
    Abstract: Methods and systems are provided for adjusting the opening of a scroll valve of a binary flow turbine. Scroll valve adjustments are used at different engine operating conditions to improve engine performance and boost response. Scroll valve adjustments are coordinated with wastegate and EGR valve adjustments for improved engine control.
    Type: Grant
    Filed: October 14, 2013
    Date of Patent: August 11, 2015
    Assignee: Ford Global Technologies, LLC
    Inventors: Julia Helen Buckland, Jeffrey Allen Doering, Brad Alan Boyer
  • Patent number: 9068489
    Abstract: Method for reducing oxides of nitrogen and sulphur in exhaust gas from a lean burn internal combustion engine.
    Type: Grant
    Filed: March 6, 2012
    Date of Patent: June 30, 2015
    Assignee: Haldor Topsoe A/S
    Inventors: Joakim Reimer Thøgersen, Henrik Trolle
  • Patent number: 9032707
    Abstract: A diesel exhaust gas collection and treatment system for collecting exhaust gas from a diesel engine powered vehicle, treating the exhaust gas with injected ambient air, then releasing the air and exhaust gas mixture to the atmosphere features a vehicle powered by a diesel engine. A stream of exhaust gas from operation of the diesel engine flows through an exhaust manifold into a generally tubular exhaust collector via an exhaust inlet port. A plurality of ambient air injection ports is located on a posterior collector end, each having an ambient air injection tube connected to a corresponding air injection port. The exhaust collector features a plurality of collector outlet ports located on the exhaust collector side wall, each having a collector outlet pipe located on and fluidly connected to a corresponding collector outlet port. The exhaust collector is flexibly suspended underneath a vehicle.
    Type: Grant
    Filed: September 25, 2013
    Date of Patent: May 19, 2015
    Inventor: Rosolino J. Piazza, Sr.
  • Patent number: 9032715
    Abstract: A method and device for controlling emissions of VOC's comprises transporting VOC's to an engine and transporting the exhaust from the engine into a manifold. Supplemental air is transporting into the manifold and heat is transferred from the exhaust to the supplemental air within the manifold. The supplemental air is mixed with the exhaust and the mixture is transferred to a pollution abatement device.
    Type: Grant
    Filed: March 21, 2012
    Date of Patent: May 19, 2015
    Assignee: BRB/SHERLINE, INC.
    Inventor: Bernhardt R. Bruns
  • Publication number: 20150121851
    Abstract: Systems, methods and techniques for exhaust gas recirculation are provided. The system includes controlling the mixing of exhaust flow from at least one cylinder of an engine with air in an air intake system prior to combustion in response to an EGR fraction deviation condition. The exhaust flow from the at least one cylinder is accumulated prior to mixing and distributed into the intake air system in a controlled manner to mitigate or prevent the EGR flow from deviating from an expected EGR fraction.
    Type: Application
    Filed: November 4, 2014
    Publication date: May 7, 2015
    Inventors: Marten H. Dane, John C. Wall, Wayne A. Eckerle
  • Publication number: 20150121846
    Abstract: The invention relates to a system for recovering energy from an exhaust gas circuit (3) of a heat engine (1), including an exhaust gas by-pass pipe (12) that includes a heat exchanger with two compartments, and has a first manifold (14) leading into one compartment (16) and a second manifold (15) leading into the other compartment (17), said system comprising a first valve (18) installed in the exhaust circuit (3) and capable of controlling the flow of gases into each of said manifolds (14, 15), and a second valve (20) intended to control the flow of gases at the outlet of the heat exchanger (13). The main technical feature of a system for recovering energy according to the invention is that the first valve (18) can only be used in two positions, a first position wherein same seals the first manifold (14), and a second position wherein same seals the exhaust circuit (3) and only allows the exhaunt gases to flow into the first manifold (14).
    Type: Application
    Filed: April 26, 2013
    Publication date: May 7, 2015
    Inventors: Grégory Hodebourg, Samuel Leroux
  • Publication number: 20150121853
    Abstract: An engine system for a machine is disclosed. The engine system may have an intake manifold configured to direct air into a donor cylinder and a non-donor cylinder of an engine. The engine system may also have a first exhaust manifold configured to direct exhaust from the non-donor cylinder to the atmosphere. The engine system may also have a second exhaust manifold configured to receive exhaust from the donor cylinder. The engine system may further have a control valve configured to selectively direct a first amount of exhaust from the second exhaust manifold to the intake manifold. In addition, the engine system may have an orifice configured to allow a second amount of exhaust to flow from the second exhaust manifold to the first exhaust manifold.
    Type: Application
    Filed: January 8, 2015
    Publication date: May 7, 2015
    Applicant: ELECTRO-MOTIVE DIESEL, INC.
    Inventors: Keith E. MORAVEC, Teoman UZKAN
  • Publication number: 20150121848
    Abstract: Embodiments for heating a vehicle cabin are disclosed. In one example, a method for an engine comprises pumping coolant from a coolant reservoir to an exhaust component and then to a heater core, the coolant heated by the exhaust component, and during engine warm-up conditions, adjusting a flow rate of coolant into a heater core to maximize heat transfer to a vehicle cabin.
    Type: Application
    Filed: November 5, 2013
    Publication date: May 7, 2015
    Applicant: Ford Global Technologies, LLC
    Inventor: Ross Dykstra Pursifull
  • Publication number: 20150121847
    Abstract: Embodiments for heating a vehicle cabin are disclosed. In one example, a method for heating a vehicle cabin comprises closing an exhaust throttle while diverting at least a portion of throttled exhaust gas through an exhaust gas recirculation (EGR) cooler coupled upstream of the throttle, and transferring heat from the EGR cooler to a heater core configured to provide heat to the vehicle cabin. In this way, exhaust heat may be directly routed to the cabin heating system.
    Type: Application
    Filed: November 5, 2013
    Publication date: May 7, 2015
    Applicant: FORD GLOBAL TECHNOLOGIES, LLC
    Inventor: Ross Dykstra Pursifull
  • Patent number: 9021785
    Abstract: An engine system for a machine is disclosed. The engine system may have an intake manifold configured to direct air into a donor cylinder and a non-donor cylinder of an engine. The engine system may also have a first exhaust manifold configured to direct exhaust from the non-donor cylinder to the atmosphere. The engine system may also have a second exhaust manifold configured to receive exhaust from the donor cylinder. The engine system may further have a control valve configured to selectively direct a first amount of exhaust from the second exhaust manifold to the intake manifold. In addition, the engine system may have an orifice configured to allow a second amount of exhaust to flow from the second exhaust manifold to the first exhaust manifold.
    Type: Grant
    Filed: March 14, 2013
    Date of Patent: May 5, 2015
    Assignee: Electro-Motive Diesel, Inc.
    Inventors: Keith E. Moravec, Teoman Uzkan
  • Patent number: 9021805
    Abstract: Methods and systems are disclosed for controlling an exhaust gas recirculation valve in an engine by determining errors in exhaust backpressure estimates and adapting EGR flow estimations based on these errors to meet target EGR dilutions in the engine. In one example approach, a method comprises adjusting valve position based on desired EGR flow and estimated EGR flow, where the estimated flow is based on estimated exhaust backpressure, and the estimated exhaust backpressure is updated based on errors between actual and desired intake oxygen concentration.
    Type: Grant
    Filed: July 31, 2013
    Date of Patent: May 5, 2015
    Assignee: Ford Global Technologies, LLC
    Inventors: Imad Hassan Makki, Timothy Joseph Clark
  • Publication number: 20150113961
    Abstract: An engine system for treating nitrogen oxides present in an exhaust gas generated by the combustion of fuel. The engine system includes one or more long breathing lean nitrogen oxide traps that is/are configured to store at least a portion of the nitrogen oxide in the exhaust gas when the lean nitrogen oxide trap operates in an absorption mode. The lean nitrogen oxide trap is also configured for the conversion of the nitrates stored by the lean nitrogen oxide trap during a regeneration event. The engine-out nitrogen oxide levels may be reduced to extend the duration of the absorption process, thereby reducing both the frequency of regeneration events and the associated fuel penalty. The system may include primary and secondary exhaust gas recirculation systems, with exhaust gas from the secondary system being returned to the engine cylinder to reduce the level of nitrogen oxides in that exhaust gas.
    Type: Application
    Filed: October 31, 2013
    Publication date: April 30, 2015
    Inventors: William de Ojeda, Ming Zheng, Xiaoye Han, Marko Jeftic, Meiping Wang
  • Patent number: 9016044
    Abstract: A method is provided for operating an internal combustion engine of a motor vehicle. The method includes, but is not limited to storing exhaust gas while the engine is working, and supplying the stored exhaust gas into at least an engine cylinder during a subsequent start phase of the engine.
    Type: Grant
    Filed: December 14, 2010
    Date of Patent: April 28, 2015
    Assignee: GM Global Technology Operations LLC
    Inventors: Giovanni Mafrici, Lorenzo Magro
  • Publication number: 20150107230
    Abstract: In an exhaust gas purification apparatus for an internal combustion engine which is provided with an NOx catalyst arranged in an exhaust passage of the internal combustion engine, the present invention has for its problem to be solved to suppress an increase in exhaust emissions, which results from processing for raising the temperature of the NOx catalyst, to a small level. In order to solve the above-mentioned problem, the exhaust gas purification apparatus for an internal combustion engine of the invention is constructed such that when an amount of increase in the NOX removal rate becomes smaller with respect to an amount of rise in the temperature of the NOx catalyst, the execution of temperature raising processing is deferred, and processing to make small the flow rate of exhaust gas discharged from the internal combustion engine and processing to make small the amount of smoke discharged from the internal combustion engine are executed.
    Type: Application
    Filed: June 1, 2012
    Publication date: April 23, 2015
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventor: Katsuhiro Ito
  • Publication number: 20150101564
    Abstract: Methods and systems are provided for correcting an EGR rate determined based on an intake manifold oxygen sensor based on an air-fuel ratio of EGR. The output of the sensor is corrected to compensate for extra fuel in rich EGR or extra air in lean EGR and used to reliably estimate the EGR rate. One or more engine operating parameters are adjusted based on an uncorrected output of the sensor.
    Type: Application
    Filed: October 11, 2013
    Publication date: April 16, 2015
    Applicant: Ford Global Technologies, LLC
    Inventors: Gopichandra Surnilla, Timothy Joseph Clark, James Alfred Hilditch, Matthew John Gerhart
  • Publication number: 20150096284
    Abstract: A valve assembly and air flow management assembly for use in an exhaust gas recirculation system capable of providing substantially zero air flow at closure, is described. The valve assembly includes a valve housing having a central axis bore, a rotatable support shaft disposed centrally within the housing, a flapper having an outer circumferential edge, the flapper operably connected to the support shaft and, a ring seal integral with the outer circumferential edge of the flapper, wherein the ring seal closes an opening between the flapper and the bore when the flapper is in the closed position. The outer circumferential edge of the flapper further includes a groove having the ring seal disposed within the groove, wherein the seal floats within the groove, eliminating thermal stress and providing improved sealing capabilities.
    Type: Application
    Filed: May 3, 2012
    Publication date: April 9, 2015
    Applicant: International Engine Entellectual Property Company ,LLC
    Inventors: Paul Gottemoller, Luis Carlos Cattani
  • Publication number: 20150082772
    Abstract: An engine includes an engine body, a DPF case therein, high pressure and low pressure EGR paths, and a supercharger. The high pressure EGR path is between exhaust and intake manifolds. An exhaust gas discharge path extends from the DPF case. An intake pipe extends from the supercharger air compressor. The low pressure EGR path is between the exhaust gas discharge path of the DPF case and the intake pipe. The low pressure EGR path includes a low pressure EGR cooler. An extending direction of a crankshaft defines a longitudinal direction. A flywheel exists on a rear side. A width direction of the engine body defines a lateral direction. The low pressure EGR path includes a rear path portion extending along a rear side of the engine body, and a side path portion extending along a lateral side of the engine body on a side close to the exhaust manifold.
    Type: Application
    Filed: August 8, 2014
    Publication date: March 26, 2015
    Inventors: Kazumichi MATSUISHI, Tetsuya KOSAKA, Tomohiro NINOMIYA, Yusuke SUZUKI, Toshio NAKANISHI, Yongchol LEE, Takashi KUSHIGEMACHI
  • Patent number: 8978359
    Abstract: A turbocharged internal combustion engine disclosed that may comprise an engine block with a first end side opposing a second end side and a two-stage turbocharged system. The two-stage turbocharged system may comprise a low-pressure turbocharger with a first turbine and a first compressor and a high-pressure turbocharger with a second turbine and a second compressor. A turbine connection may fluidly connect the first turbine and the second turbine and a compressor connection fluidly connects the first compressor and the second compressor. The low-pressure turbocharger is mounted at the first end side of the engine block and the high-pressure turbocharger is mounted at a second end side of the engine block.
    Type: Grant
    Filed: August 5, 2011
    Date of Patent: March 17, 2015
    Assignee: Caterpillar Motoren GmbH & Co. KG
    Inventor: Udo Schlemmer-Kelling
  • Publication number: 20150047322
    Abstract: Various methods and systems are provided for blocking backflow of exhaust through an exhaust gas recirculation system. In one embodiment, a method comprises flowing exhaust gas through an exhaust gas recirculation (EGR) passage in a first direction from at least a first cylinder group of an engine to an intake manifold of the engine, the exhaust gas flowing in the first direction through a filter arranged in the EGR passage prior to reaching the intake manifold, and blocking flow of gas through the filter in a second, opposite direction with a mechanical one-way valve positioned in the EGR passage between the filter and the intake manifold.
    Type: Application
    Filed: August 19, 2013
    Publication date: February 19, 2015
    Applicant: General Electric Company
    Inventors: Eric David Peters, Nicholas Eric Hansen, Rose Denning
  • Patent number: 8943798
    Abstract: Various systems and methods are described for detecting ammonia slip. In one example method, an amount of exhaust gas recirculation is reduced when output from an exhaust gas sensor indicates an increase in nitrogen oxide above a threshold amount. When the sensor output increases above a second threshold while the exhaust gas recirculation is reduced, the sensor output is allocated to nitrogen oxide; and when the sensor output does not increase above a second threshold while the exhaust gas recirculation is reduced, the sensor output is allocated to ammonia.
    Type: Grant
    Filed: October 12, 2012
    Date of Patent: February 3, 2015
    Assignee: Ford Global Technologies, LLC
    Inventors: Chris Riffle, Frank M. Korpics, Michiel J. Van Nieuwstadt, Devesh Upadhyay, John Paul Bogema, Jeff Reich
  • Patent number: 8943802
    Abstract: An exhaust gas purification system for an internal combustion engine, which is provided with: a selective reduction type catalyst arranged in an exhaust passage of the internal combustion engine; a low pressure EGR mechanism that is equipped with a low pressure EGR passage for introducing a part of an exhaust gas flowing through a portion of the exhaust passage downstream of a turbine of a centrifugal supercharger to a portion of an intake passage upstream of a compressor as a low pressure EGR gas, and a low pressure EGR valve for changing a channel cross section of the low pressure EGR passage; a supply device.
    Type: Grant
    Filed: December 8, 2009
    Date of Patent: February 3, 2015
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Bungo Kawaguchi, Tomihisa Oda, Tomomi Onishi, Masaaki Sato, Satoshi Kobayakawa, Takeru Shirasawa
  • Patent number: 8943804
    Abstract: A compression-ignition engine (10) comprises an exhaust system (16) with an exhaust gas after-treatment assembly, the after-treatment assembly comprising a three-way catalyst device (30) and an SCR device (34), the three-way catalyst device being arranged upstream the SCR device in close-coupled position with respect to the engine. An engine control unit (47) is provided for controlling operation of the engine. The engine control unit is configured to monitor the temperature of the SCR device and to control the engine to change over from an operation with a lean air/fuel mixture to an operation with a stoichiometric or a rich air/fuel mixture in response to the temperature of the SCR device dropping below a temperature threshold.
    Type: Grant
    Filed: January 13, 2011
    Date of Patent: February 3, 2015
    Assignee: Delphi International Operations Luxembourg, S.A.R.L.
    Inventor: Bart Hubert Schreurs
  • Patent number: 8943801
    Abstract: A valve (10) may be used with an internal combustion engine exhaust breathing system (12) and may include a body (60), a partition (62), and a plate (66). The body (60) may define a first port (70) that has a first interior surface (76), and may also define a second port (82) that has a second interior surface (84). The partition (62) may be located within the body (60), may at least partially separate the first port (70) and the second port (82) from each other, and may define an opening (104). The plate (66) may be dimensioned to seat and seal against the opening (104) and against the first and second interior surfaces (76, 84). The plate (66) may rotate, depending on predetermined factors, between a first position and a second position.
    Type: Grant
    Filed: March 12, 2009
    Date of Patent: February 3, 2015
    Assignee: BorgWarner Inc.
    Inventor: Todd R. Peterson
  • Patent number: 8931254
    Abstract: An exhaust pipe injection control device to optimally control a degree of exhaust gas recirculation (“EGR”) opening during diesel particulate filter (“DPF”) regeneration. The device includes a regeneration-time opening control unit which controls a degree of EGR opening of an EGR device during DPF regeneration, and a regeneration-time opening map in which an optimal degree of EGR opening of the EGR device during DPF regeneration is set in advance according to an engine rotation speed and a fuel injection amount of an engine. The regeneration-time opening control unit performs exhaust gas recirculation by referring to the regeneration-time opening map based on the engine rotation speed and the fuel injection amount of the engine and controlling the degree of EGR opening of the EGR device.
    Type: Grant
    Filed: June 10, 2011
    Date of Patent: January 13, 2015
    Assignee: Isuzu Motors Limited
    Inventors: Naofumi Ochi, Shinji Hara, Kenzou Yaginuma
  • Patent number: 8925302
    Abstract: A system and method for operating an engine turbocharger is described. In one example, the turbocharger is rotated in different directions in response to operating conditions. The system and method may reduce engine emissions.
    Type: Grant
    Filed: August 29, 2012
    Date of Patent: January 6, 2015
    Assignee: Ford Global Technologies, LLC
    Inventors: William Charles Ruona, Kevin Durand Byrd, Keith Michael Plagens
  • Patent number: 8919107
    Abstract: A control device of a diesel engine with a turbocharger is provided. The device includes an engine body having a cylinder, a fuel injection valve, a turbine of the turbocharger, a bypass passage for bypassing the turbine, a bypass valve for opening and closing the bypass passage, an oxidation catalyst for purifying HC, and a DPF for capturing soot. The device includes a fuel cutting module for stopping, when the diesel engine is in a deceleration state, a main injection of the fuel performed on compression stroke, a DPF regenerating module for performing, when a predetermined DPF regeneration condition is satisfied, a post injection on expansion stroke to supply HC to the oxidation catalyst and regenerate the DPF by heat generated from an oxidation reaction of HC, and a bypass valve control module for controlling the bypass valve.
    Type: Grant
    Filed: November 30, 2012
    Date of Patent: December 30, 2014
    Assignee: Mazda Motor Corporation
    Inventor: Hiroyuki Nishimura
  • Patent number: 8915063
    Abstract: The present invention provides for a system for controlling NOx emissions based on the calculation of an error given by the difference between a first measured value obtained from a NOx sensor (7) and a second one estimated from a NOx estimation. Said sensor (7) can be used in an adaptation loop, where an open-loop or closed-loop EGR control system is adapted such that the expected NOx emissions (from the EGR controller) match the ones measured with the NOx sensor under steady-state conditions.
    Type: Grant
    Filed: December 22, 2010
    Date of Patent: December 23, 2014
    Assignee: Iveco Motorenforschung AG
    Inventor: Theophil Auckenthaler