Valve At Reactor Outlet Controlled Patents (Class 60/292)
  • Patent number: 11002166
    Abstract: Methods and systems are provided for opportunistically mitigating an intermittent degradation of an active exhaust valve. In one example, a method may include differentiating between a permanent degradation of the active exhaust valve and an intermittent degradation of the active exhaust valve and adjusting actuation of the valve based on a vehicle operating condition and a road condition to mitigate the intermittent degradation.
    Type: Grant
    Filed: May 17, 2019
    Date of Patent: May 11, 2021
    Assignee: Ford Global Technologies, LLC
    Inventors: Vinod Kumar Ravi, Sumanth Reddy Dadam
  • Patent number: 9109484
    Abstract: The purpose of the present invention is to provide a DPF travel-time regeneration control system of stably raising the temperature even during travel and capable of decreasing the frequency of DPF regeneration when the vehicle is stopped. In this control system, if the DPF (5) needs to be regenerated, the vehicle is traveling on cruise control, and the exhaust temperature detected by an exhaust temperature sensor (11) is higher than a threshold value, then fuel is injected into the exhaust pipe by a fuel injection means (7), and if the exhaust temperature is lower than the threshold value, the exhaust temperature is raised by operating the exhaust brake without injecting fuel into the exhaust pipe.
    Type: Grant
    Filed: July 30, 2012
    Date of Patent: August 18, 2015
    Assignee: UD TRUCKS CORPORATION
    Inventor: Takafumi Amano
  • Patent number: 9021787
    Abstract: A fluid delivery apparatus with a flow sensing means for delivering a first fluid into a second fluid. In a fluid delivery apparatus using a common rail method, which produces a pulsated flow, the flow sensing means generates sensing signals indicative of the flow rate and the temperature of the second fluid, the delivery rate of the first fluid, and the evaporating rate of the first fluid, while in a fluid delivery apparatus using a pump metering method, the flow sensing means is able to provide a sensing signal indicative of the delivery rate of the first fluid. The sensing signals can be used in a feedback control for controlling delivery rate, in limiting delivery rate according to the evaporation capability of the first fluid, and in a diagnostic system detecting failures and abnormalities in the fluid delivery apparatus.
    Type: Grant
    Filed: September 5, 2012
    Date of Patent: May 5, 2015
    Inventors: Mi Yan, Baohua Qi
  • Patent number: 8935916
    Abstract: A method for the operation of a particulate filter system for an internal combustion engine wherein an. An exhaust gas stream enters a housing via a gas inlet opening. The housing receives a particulate filter, the stream flows into crude gas ducts connected to the gas inlet opening, and the stream can flow out of the particulate filter via clean gas ducts that are in fluid connection with a gas outlet opening, and are separated from the crude gas ducts. The crude gas ducts are connected to a connecting space in the direction of flow, and the connecting space has an exhaust port controlled by a closing mechanism. According to the invention, a method for operating an open particulate filter system is provided, by which the degree of separation of the soot particles from the exhaust gas can be increased.
    Type: Grant
    Filed: December 9, 2009
    Date of Patent: January 20, 2015
    Assignee: Deutz Aktiengesellschaft
    Inventors: Rolf Miebach, Stephan Schraml, Bernhard Hoffschmidt, Daniel Gonsior, Fabian Holzheid
  • Patent number: 8904767
    Abstract: The present invention relates to a method for achieving reduced emissions at cold start of an internal combustion engine having an exhaust gas after treatment system comprising at least one Diesel Oxygen Catalyst (DOC), at least one Diesel Particulate Filter (DPF) and a Selective Catalytic Reduction (SCR) unit, comprising the steps of: heating the DOC prior to cold starting said internal combustion engine, starting and controlling the internal combustion engine towards low NOx emission when said DOC has reached a predetermined temperature, optimizing the fuel consumption at a given total emission level when said DPF and SCR has reached a predetermined temperature.
    Type: Grant
    Filed: October 31, 2008
    Date of Patent: December 9, 2014
    Assignee: Volvo Lastvagnar AB
    Inventors: Lennart Andersson, Bert-Inge Bertilsson
  • Patent number: 8893479
    Abstract: In order to relief a sudden change of engine sound during the transition to recovery control of a particulate removing filter or during returning from the recovery control, a system of treating exhaust gas of an engine includes an exhaust-gas particulate removing filter in an exhaust path, closes down the opening of an inlet throttle valve or an exhaust throttle valve to a recovery opening smaller than a normal opening during recovery of the particulate removing filter, and returns the opening from the recovery opening to the normal opening after the recovery of the particulate removing filter. The opening of the inlet throttle valve or the exhaust throttle valve during the closing process from the normal opening to the recovery opening and during the returning process from the recovery opening to the normal opening is changed at a gradually decreasing or gradually increasing rate of change of the opening.
    Type: Grant
    Filed: March 3, 2011
    Date of Patent: November 25, 2014
    Assignee: Yanmar Co., Ltd.
    Inventors: Taichi Togashi, Atsushi Ohta
  • Patent number: 8839606
    Abstract: In an engine system with a reformer being installed in an exhaust pipe to reform a fuel, a control valve for controlling a flow rate of exhaust gas is provided downstream from an installed position of the reformer in the exhaust pipe. In the engine system with the reformer, since a part of the exhaust gas can be trapped in a space between the reformer and an engine chamber by closing the control valve during an exhaust stroke, the reforming efficiency of the reformer can be heightened.
    Type: Grant
    Filed: December 25, 2009
    Date of Patent: September 23, 2014
    Assignee: Hitachi, Ltd.
    Inventors: Atsushi Shimada, Takao Ishikawa, Tadashi Sano
  • Patent number: 8839607
    Abstract: Methods and systems are provided for expediting catalyst heating and generating vacuum by controlling an EBV to direct exhaust through an ejector arranged in parallel with the EBV. A position of the EBV may be controlled to achieve a desired exhaust backpressure for current engine operating conditions and stored vacuum level. Compensation for the effect of EBV position on engine airflow may be provided by adjustment of other parameters such as intake throttle position and spark timing.
    Type: Grant
    Filed: December 13, 2012
    Date of Patent: September 23, 2014
    Assignee: Ford Global Technologies, LLC
    Inventors: Ross Dykstra Pursifull, Joseph Norman Ulrey
  • Patent number: 8828342
    Abstract: An exhaust gas treatment system for treating an exhaust gas. The exhaust gas treatment system includes a first section, a bypass section, and a common second section. The first section may include a first valve and at least one exhaust gas treatment component, such as, for example, a DOC and/or DPF. The bypass section may include a bypass valve and a heater that is configured to elevate the temperature of at least a portion of the exhaust gas. The second section is in fluid communication with the first section and the bypass section and includes a selective catalytic reduction system. Further, exhaust gas may be diverted into the bypass section when the exhaust gas fails to satisfy the threshold condition, so that the heater may elevate the temperature of the passing exhaust gas.
    Type: Grant
    Filed: October 10, 2013
    Date of Patent: September 9, 2014
    Assignee: International Engine Intellectual Property Company, LLC
    Inventors: Matthew Albert Tyo, Bradley Jay Adelman
  • Patent number: 8800271
    Abstract: Disclosed herein is an SCR system of a vessel for discharging exhaust gas from an exhaust gas source in the vessel to an outside after performing purification of the exhaust gas. The SCR system includes an SCR reactor connected at a leading end thereof to the exhaust gas source and including a catalyst activated by the exhaust gas introduced into the SCR reactor, a reducing agent supply line supplying NH3 or urea into the SCR reactor, and a bypass system forcing the exhaust gas discharged from the exhaust gas source to bypass the SCR reactor.
    Type: Grant
    Filed: October 16, 2009
    Date of Patent: August 12, 2014
    Assignee: Kwang Sung Co., Ltd.
    Inventors: Keai Yoon Hwang, Sung Chul Hwang
  • Patent number: 8793985
    Abstract: An exhaust emission control system for an engine that provides both early activation of a catalyst during cold-engine, low-load operation of the engine and protection of the catalyst during hot-engine, high-load operation of the engine. The exhaust emission control system includes a catalyst provided in an intermediate portion of an exhaust pipe; an exhaust valve provided in an upstream-side exhaust passage of the exhaust pipe between the catalyst and the engine; and an auxiliary exhaust passage, which is smaller in passage cross-sectional area than the upstream-side exhaust passage and is connected to the upstream-side exhaust passage so as to bypass the exhaust valve. The auxiliary exhaust passage has an inlet connected in the vicinity of an exhaust port of the engine and an outlet connected to the vicinity of the catalyst.
    Type: Grant
    Filed: February 23, 2012
    Date of Patent: August 5, 2014
    Assignee: Honda Motor Co., Ltd.
    Inventors: Kenichiro Nakamura, Masaya Yazaki
  • Patent number: 8790094
    Abstract: A diaphragm vacuum pump has an electrically operated drive unit and a vacuum diaphragm, which separates a pump chamber into a drive-side part and a drive-remote part and which can be deflected by means of a movable part of the drive unit. The drive unit is an electromagnetic drive unit and the vacuum diaphragm is deflected in the direction of a linear movement generated electromagnetically in the drive unit. Preferably, a ventilation valve is also actuated the movable part. The vacuum pump is relatively small and compact and operates quietly. The vacuum pump is suitable in particular for “hands-free” applications of breastpumps.
    Type: Grant
    Filed: September 15, 2011
    Date of Patent: July 29, 2014
    Assignee: Medela Holding AG
    Inventors: Armin Felber, Beda Weber, Roland Koch, Etienne Furrer
  • Patent number: 8733084
    Abstract: A bypass HC—NOx system includes a NOx conversion control module that generates a signal indicating whether a close coupled catalyst is active. The system further includes a bypass valve control module that, in response to the signal, opens a bypass valve located in an active HC—NOx adsorber assembly to purge hydrocarbons from an HC adsorber, wherein the bypass valve is located upstream from the HC adsorber and a NOx adsorber. The bypass valve control module also determines a temperature of a three way catalyst and closes the bypass valve to purge nitrogen dioxide from the NOx adsorber if the temperature of the three way catalyst is greater than a predetermined temperature threshold.
    Type: Grant
    Filed: November 22, 2011
    Date of Patent: May 27, 2014
    Inventors: Eugene V. Gonze, Halim G. Santoso
  • Patent number: 8728422
    Abstract: System to reduce the amount of NOx in exhaust gases of a vehicle. The system includes a storage space 1 containing an agent, a SCR catalytic converter 5, an injection module 6c to inject the agent upstream of the converter, a heat exchanger 2 containing a porous matrix, a shutter or injector 11 to control the flow rate of the agent to the exchanger, a valve 12 between the storage space and exchanger, to transfer thermal energy to gases during the starting period. The shutter or injector controls the flow of agent into the exchanger during the starting period to raise its temperature, and is closed when gases have reached a certain temperature. The valve regulates exchanger pressure during a period at operating temperature and conveys the agent to storage space when the exchanger pressure is higher than storage space pressure.
    Type: Grant
    Filed: October 20, 2011
    Date of Patent: May 20, 2014
    Assignee: Aaqius & Aaqius S.A.
    Inventors: Arnaud Audouin, Jean-Baptiste Dementhon
  • Patent number: 8689547
    Abstract: An annular heat exchanger for cooling hot gases comprises an inner shell, an intermediate shell and an outer shell. Where the heat exchanger is integrated with a catalytic converter for treatment of hot exhaust gases in a motor vehicle, the inner shell contains a catalyst for treatment of the exhaust gases. Inner and outer gas flow passages are provided between the shells, and a coolant flow passage is provided, either on the outer surface of the outer shell, or between the intermediate and outer shells. The exhaust gases change direction twice as they pass through the heat exchanger, and the annular structure of the heat exchanger provides a large surface area, and a large flow section, relative to volume, and thereby provides effective heat exchange without significantly increasing space requirements.
    Type: Grant
    Filed: March 18, 2013
    Date of Patent: April 8, 2014
    Assignee: Dana Canada Corporation
    Inventors: John G. Burgers, Michael A. Martin, Ihab Edward Gerges, Herve Palanchon
  • Patent number: 8683789
    Abstract: An exhaust valve assembly includes a flapper valve that is mounted on a shaft for rotation within an exhaust component housing between a closed position, an intermediate position, and an open position. An electric actuator is coupled to the shaft to control movement of the flapper valve. The electric actuator moves the flapper valve to the open position for high speed engine conditions. When engine speeds are lowered, and while all engine cylinders remain active, the electric actuator moves the flapper valve to the intermediate position. Once the flapper valve is in the intermediate position, if an engine cylinder is subsequently deactivated, the electric actuator quickly and quietly moves the flapper valve from the intermediate position to the closed position.
    Type: Grant
    Filed: November 21, 2006
    Date of Patent: April 1, 2014
    Assignee: Faurecia Emissions Control Technologies
    Inventors: Robin Willats, Joseph Callahan, Kwin Abram
  • Patent number: 8661799
    Abstract: An exhaust system for an internal combustion engine is provided. The engine comprises an exhaust line, at least one exhaust gas aftertreatment device arranged in the exhaust line, and a heat source and a heat sink arranged in separate branches of the exhaust line upstream of the exhaust gas aftertreatment device, an exhaust gas flow rate through each respective separate exhaust branch controlled by at least one flow control device. In this way, the temperature of the exhaust entering the aftertreatment device may be controlled by an amount of exhaust that flows through each branch of the exhaust line.
    Type: Grant
    Filed: October 6, 2011
    Date of Patent: March 4, 2014
    Assignee: Ford Global Technologies, LLC
    Inventor: Yasser Mohamed sayed Yacoub
  • Patent number: 8656705
    Abstract: A method for controlling an exhaust gas purification device 1 equipped with branch exhaust passages 2 and 3 connected to an exhaust passage 100 on the engine side; a shutoff valve 4 capable of shutting off exhaust gas at the exhaust inlets 2a and 3a of the branch exhaust passages 2 and 3; a nitrogen oxide adsorbing material 5, disposed inside each of the branch exhaust passages 2 or 3, temporarily adsorbing nitrogen oxides in an excess air atmosphere, and detaching the adsorbed nitrogen oxides in a rising temperature atmosphere or a reducing atmosphere; a first combustion device 6, disposed on the exhaust upstream side of the nitrogen oxide adsorbing material 5 inside each of the branch exhaust passages 2 or 3, having an air nozzle 61, and changing the air supplied from the air nozzle 61 into the rising temperature atmosphere or the reducing atmosphere; and a second combustion device 7, disposed on the exhaust downstream side of the nitrogen oxide adsorbing material 5 inside each of the branch exhaust passage
    Type: Grant
    Filed: February 20, 2009
    Date of Patent: February 25, 2014
    Assignee: Yanmar Co., Ltd.
    Inventor: Taisuke Ono
  • Patent number: 8646262
    Abstract: A unit (1, 1?) for recovering and converting thermal energy from the exhaust gases of an internal combustion engine (14) of a vehicle comprises a heat exchanger (2, 2?) to be traversed by exhaust gases flowing along a by-pass path (5,5?) branching out from an exhaust gas main line (4) of said internal combustion engine (14) and valve means (12) for controlling the flow of the exhaust gases through said path, said valve means (12) being driven by an actuator device (12A). The by-pass path (5, 5?) is a U-shaped path defined entirely within the heat exchanger (2, 2?), starting from an inlet section (6, 6?) and ending at an outlet section of the heat exchanger, the inlet and outlet sections (7,7?) being located on a same side of the heat exchanger (2) and both opening on an interface conduit portion (3) interposed in said exhaust gas main line (4).
    Type: Grant
    Filed: November 26, 2010
    Date of Patent: February 11, 2014
    Assignee: C.R.F. Società Consortile per Azioni
    Inventor: Daniela Magnetto
  • Patent number: 8640445
    Abstract: This disclosure provides an exhaust flow detection and variable dosing system and method for treating exhaust flow from an engine. The system includes first and second exhaust flow legs, a cross passage connecting these legs upstream of SCRs and a sensor positioned along the cross passage to detect at least one of differential pressure between the exhaust flow legs, and exhaust flow in the cross passage. A dosing circuit connects a dosing treatment supply to each of the exhaust flow legs at or upstream of the SCRs, and at least one dosing device positioned along the dosing circuit to control the amount of the dosing agent delivered to each exhaust leg. An electronic control unit controls the amount of a dosing agent delivered to the exhaust flow legs independently based on exhaust flows determined for each leg using at least one of the differential pressure and cross passage exhaust flow.
    Type: Grant
    Filed: November 16, 2011
    Date of Patent: February 4, 2014
    Assignee: Cummins Intellectual Property, Inc.
    Inventors: Phanindra Garimella, Ousmane Gueye, Anita Singhal, Randy W. Nelson, Axel zur Loye
  • Patent number: 8590293
    Abstract: The exhaust purification system of an internal combustion engine of the present invention is provided with an NOX storage reduction catalyst and a particulate filter which is arranged at the upstream side of the NOX storage reduction catalyst. When causing the NOX storage reduction catalyst to release the stored NOX, the particulate filter is raised to the temperature at which the particulate matter is oxidized, the flow rate of the exhaust gas which flows into the particulate filter is made to decrease, the air-fuel ratio of the exhaust gas which flows into the particulate filter is made rich, and the particulate matter which builds up on the particulate filter is made to oxidize to produce carbon monoxide.
    Type: Grant
    Filed: October 21, 2009
    Date of Patent: November 26, 2013
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Hiromasa Nishioka, Yoshihisa Tsukamoto, Kazuhiro Umemoto, Junichi Matsuo
  • Patent number: 8578704
    Abstract: An assembly and method for reducing nitrogen oxides, carbon monoxide and hydrocarbons in exhausts of internal combustion engines, wherein the exhaust is acted upon in a first stage catalytic converter. A first portion of the first stage catalytic converter output is cooled and a second portion of the catalytic converter output is not cooled. The cooled and not cooled exhausts are united and directed to a second stage catalytic converter. Air is injected into a selected one of (1) the not cooled exhaust prior to the juncture thereof with the cooled exhaust, and (2) the combined cooled and not cooled exhausts after the juncture thereof.
    Type: Grant
    Filed: June 16, 2010
    Date of Patent: November 12, 2013
    Assignee: Tecogen, Inc.
    Inventors: Joseph B. Gehret, Robert A. Panora, Ranson Roser
  • Patent number: 8534048
    Abstract: An exhaust purification system of an internal combustion engine provided with an NOx storage reduction catalyst an oxidation catalyst which is arranged downstream of the NOx storage reduction catalyst an exhaust gas tank which is connected to the engine exhaust passage between the NOx storage reduction catalyst and the oxidation catalyst, and a switching valve which closes the engine exhaust passage toward the oxidation catalyst and makes the exhaust gas flow into the tank. When making the air-fuel ratio of the exhaust gas which flows into the NOx storage reduction catalyst rich, the engine exhaust passage toward the oxidation catalyst is shut and the flow path is switched so that the exhaust gas flows to the tank to thereby store the exhaust gas in the tank.
    Type: Grant
    Filed: November 27, 2009
    Date of Patent: September 17, 2013
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventor: Mikio Inoue
  • Patent number: 8516802
    Abstract: An exhaust system for an engine having a plurality of combustion chambers includes a housing containing a first array of parallel positioned emission treatment devices and a second array of parallel positioned emission treatment devices axially spaced apart from one another. A first exhaust passageway is in fluid communication with the combustion chambers and contains the first array of emission treatment devices. A second and separate exhaust passageway is in fluid communication with the combustion chambers and contains the second array of emission treatment devices. A first valve restricts the exhaust flow through the first exhaust passageway. A second valve restricts the exhaust flow through the second exhaust passageway.
    Type: Grant
    Filed: October 29, 2010
    Date of Patent: August 27, 2013
    Assignee: Tenneco Automotive Operating Company Inc.
    Inventors: Adam J. Kotrba, Jeremy Popovich, Guanyu Zheng, Timothy Gardner, Argun Yetkin
  • Publication number: 20130213017
    Abstract: An annular heat exchanger for cooling hot gases comprises an inner shell, an intermediate shell and an outer shell. Where the heat exchanger is integrated with a catalytic converter for treatment of hot exhaust gases in a motor vehicle, the inner shell contains a catalyst for treatment of the exhaust gases. Inner and outer gas flow passages are provided between the shells, and a coolant flow passage is provided, either on the outer surface of the outer shell, or inbetween the intermediate and outer shells. The exhaust gases change direction twice as they pass through the heat exchanger, and the annular structure of the heat exchanger provides a large surface area, and a large flow section, relative to volume, and thereby provides effective heat exchange without significantly increasing space requirements.
    Type: Application
    Filed: March 18, 2013
    Publication date: August 22, 2013
    Inventor: Dana Canada Corporation
  • Patent number: 8499549
    Abstract: An exhaust gas control system and an exhaust gas control method are provided. The exhaust gas control system includes an exhaust gas throttle valve in an exhaust gas duct and an actuation device of the exhaust gas throttle valve having an actuating rod. An exhaust gas pressure control device controls the exhaust gas pressure occurring upstream of the exhaust gas throttle valve in the exhaust gas duct. The actuating rod also includes a control actuator that interacts with a pressure compensation volume. The pressure compensation volume is pneumatically connected to a throttle opening upstream of the exhaust gas throttle valve.
    Type: Grant
    Filed: August 6, 2010
    Date of Patent: August 6, 2013
    Assignee: KNORR-BREMSE Systeme fuer Nutzfahrzeuge GmbH
    Inventor: Michael Herges
  • Patent number: 8453435
    Abstract: Disclosed is a method for controlling an exhaust gas purification device, wherein the regeneration operation includes main regeneration operation for detaching the nitrogen oxides adsorbed onto the nitrogen oxide adsorbing material, the method comprising: operating the first combustion device and the second combustion device while the exhaust gas is prevented from flowing into the branch exhaust passage subjected to the regeneration operation by the switching of a changeover valve during the regeneration operation; and decreasing the flow rate of the first mixture gas as the stage of the main regeneration operation advances.
    Type: Grant
    Filed: March 13, 2009
    Date of Patent: June 4, 2013
    Assignee: Yanmar Co., Ltd.
    Inventor: Taisuke Ono
  • Patent number: 8429901
    Abstract: An exhaust gas purification device 1 is equipped with a plurality of branch exhaust passages 2 and 3; a junction exhaust passage 110; a shutoff valve 4 switching between allowing and shutting off the flow of exhaust gas to the respective branch exhaust passages 2 and 3; a nitrogen oxide adsorbing material 5 temporarily adsorbing nitrogen oxides in an excess air atmosphere and detaching the adsorbed nitrogen oxides in a reducing atmosphere and reducing the nitrogen oxides in the reducing atmosphere to produce ammonia; a first combustion device 6, disposed on the exhaust upstream side of the nitrogen oxide adsorbing material 5 and having an air supply unit, changing the air supplied from the air supply unit into the reducing atmosphere; and a selective reduction catalyst 19, provided inside the junction exhaust passage 110, selectively reducing the nitrogen oxides by using ammonia as a reducing agent.
    Type: Grant
    Filed: February 23, 2009
    Date of Patent: April 30, 2013
    Assignee: Yanmar Co., Ltd.
    Inventors: Taisuke Ono, Toshihisa Kanda
  • Patent number: 8424296
    Abstract: An annular heat exchanger for cooling hot gases comprises an inner shell, an intermediate shell and an outer shell. Where the heat exchanger is integrated with a catalytic converter for treatment of hot exhaust gases in a motor vehicle, the inner shell contains a catalyst for treatment of the exhaust gases. Inner and outer gas flow passages are provided between the shells, and a coolant flow passage is provided, either on the outer surface of the outer shell, or between the intermediate and outer shells. The exhaust gases change direction twice as they pass through the heat exchanger, and the annular structure of the heat exchanger provides a large surface area, and a large flow section, relative to volume, and thereby provides effective heat exchange without significantly increasing space requirements.
    Type: Grant
    Filed: June 11, 2010
    Date of Patent: April 23, 2013
    Assignee: Dana Canada Corporation
    Inventors: John G. Burgers, Michael A. Martin, Ihab Edward Gerges, Hervé Palanchon
  • Patent number: 8413428
    Abstract: The invention relates to an exhaust component in a gas exhaust line for gases produced by the combustion of a fuel in a heat engine. In the gas flow direction, there is a first connection to an upstream pipe carrying gases from the engine. There is also a first exhaust tube and a second exhaust tube, these two tubes being parallel and being connected to the first connection. There is a second connection to a downstream gas discharge pipe, connected to the parallel exhaust tubes. The component is characterized in that, firstly the first tube has a depolluting component, and the second tube has a silencer. The second connection is a three-way valve.
    Type: Grant
    Filed: January 31, 2007
    Date of Patent: April 9, 2013
    Assignee: Faurecia Systemes d'Echappement, Société Par Actions Simplifiée
    Inventor: Stéphane Devismes
  • Patent number: 8362351
    Abstract: According to a first aspect, the invention relates to a TEG module, in particular for a power source (10), comprising a space (14) at least partially delimited by walls (16), at least one thermoelectric generator (20) for the conversion of heat into electricity, in which at least one electrically insulated wall part is in thermally conducting contact with a first side (52) of the thermo-electric generator (20), and the second side (54) is in heat-exchanging connection with an electrically insulated discharge element (12) for discharging heat used by the thermoelectric generator, as well as electrical conductors connected to the first and second side respectively (52, 54) for the conduction of generated electricity, with thermally conducting pressure means for applying pressure to the said second side being provided between the second side (54) and the discharge element (12), the said means comprises a thermally conducting flexible container (50), which is filled with a pressure medium in a state of over-press
    Type: Grant
    Filed: May 15, 2007
    Date of Patent: January 29, 2013
    Assignee: Stork Fokker AESP B.V.
    Inventors: Franklin Hagg, Bouke Fokkes Tuinstra
  • Patent number: 8359833
    Abstract: A method of introducing reductant to an exhaust stream is disclosed. The method may include ordering a first dosing event, supplying a reductant to a dispensing device in response to ordering the first dosing event, dispensing reductant from the dispensing device into the exhaust stream, and forcing reductant from the dispensing device toward a reductant source, wherein sufficient reductant remains in a pumping device and a fluid passage to keep the pumping device primed.
    Type: Grant
    Filed: December 23, 2009
    Date of Patent: January 29, 2013
    Assignee: Caterpillar Inc.
    Inventors: Purna Chander Nalla, Amit Jayachandran, James Mutti, Baoyong Liu, Ethan D. Sanborn
  • Patent number: 8347608
    Abstract: A degree of dispersion of a reducing agent added to an exhaust gas flowing into an exhaust gas purification apparatus is controlled. Before addition fuel is added, a valve opening Vd of a flow area changing valve is changed to generate pulsation of the exhaust gas, so that addition valve vicinity exhaust gas pressure Pg varies periodically. Addition timing TMad is controlled to synchronize with extremum arrival timing TMe. High or low dispersion type addition control adds fuel at timing (CP) when the addition valve vicinity exhaust gas pressure Pg becomes a maximum value Pgmax, at timing (TP) when at a minimum value Pgmin, or at both timings (CP, TP).
    Type: Grant
    Filed: June 5, 2008
    Date of Patent: January 8, 2013
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventor: Kenichi Tsujimoto
  • Patent number: 8336291
    Abstract: When switching an exhaust throttle valve from full opening to a closed position to warm up an engine, an intake throttle valve is fixed to full opening, an EGR valve is fixed to full closing, and a variable turbo-vane is fixed to a predetermined opening degree to accelerate a gas flow rate from an intake passage to an exhaust passage, a fully opened flow rate is detected and stored by gas flow rate detector, with the exhaust throttle valve being full opening. Then, an instruction is issued to the exhaust throttle valve to switch from the full opening to a closed position, after which a rotation number of the engine is detected, a threshold value is determined based thereon, a closed position flow rate is detected, a flow rate difference relative to the stored fully opened flow rate is determined, and failure of the exhaust throttle valve is judged based on whether the flow rate difference is less than the determined threshold value.
    Type: Grant
    Filed: February 28, 2008
    Date of Patent: December 25, 2012
    Assignee: Isuzu Motors Limited
    Inventors: Akira Hanari, Kouichirou Yomogida
  • Patent number: 8322128
    Abstract: A hydrogen engine 10 supplies hydrogen, oxygen, and an argon gas serving as a working to a combustion chamber 21 to combust the hydrogen. H2O in a recirculating gas discharged from the combustion chamber 21 is separated and eliminated from the gas by a condenser 66. A three-way valve 72 is switched over in such a manner that the recirculating gas flows through a product eliminating section 70 (a carbon dioxide absorbing unit 71), when the concentration of carbon dioxide in the recirculating gas is higher than a predetermined concentration, so that the carbon dioxide is separated and eliminated from the recirculating gas.
    Type: Grant
    Filed: February 26, 2007
    Date of Patent: December 4, 2012
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventor: Shinichi Mitani
  • Patent number: 8307629
    Abstract: An exhaust emission purification system and a related method of control, wherein an exhaust throttle valve is opened if an engine load reaches at least a predetermined first judgment value during execution of forced regeneration control, and generating an alarm of failure of the exhaust throttle valve if the engine load reaches at least a second judgment value which is larger than the predetermined first judgment value.
    Type: Grant
    Filed: December 19, 2007
    Date of Patent: November 13, 2012
    Assignee: Isuzu Motors Limited
    Inventors: Shinji Gotou, Takashi Haseyama, Takao Onodera, Tatsuo Mashiko
  • Patent number: 8272205
    Abstract: A process for sequestering carbon dioxide in fresh concrete from the exhaust emitted from the combustion of carbonaceous fuel in a concrete mixing truck is disclosed. In the process, exhaust from the engine containing carbon dioxide is redirected after passing through the required environmental controls to the concrete mixing chamber on the concrete truck. This carbon dioxide is allowed to physically mix with the ingredients producing fresh concrete. When the concrete is made from cementitious material which include calcium oxide, then the carbon dioxide may chemically bind with the calcium to form calcium carbonate and be permanently sequestered in the concrete product.
    Type: Grant
    Filed: May 26, 2010
    Date of Patent: September 25, 2012
    Inventors: Christopher J. Estes, Liv M. Haselbach
  • Patent number: 8256214
    Abstract: Internal combustion engine provided with a plurality of cylinders divided into a first group and a second group; a control unit for deactivating all the cylinders of the second group; a first exhaust conduit and a second exhaust conduit, which are reciprocally connected at an intersection and which are respectively connected to cylinders of the first group and to cylinders of the second group; a catalyzer, which is arranged along the first exhaust conduit upstream of the intersection and is provided with first sensors for detecting the exhaust gases; and a second catalyzer, which is arranged downstream of the intersection and is provided with second sensors for detecting the exhaust gas composition.
    Type: Grant
    Filed: March 24, 2006
    Date of Patent: September 4, 2012
    Assignee: Ferrari S.p.A.
    Inventors: Mauro Rioli, Luca Poggio
  • Patent number: 8201401
    Abstract: A passive valve assembly for a vehicle exhaust system includes an exhaust component that defines an exhaust gas flow path and a vane that is positioned within the exhaust gas flow path. The vane is positioned at an initial start position and is movable between a closed position to provide a minimum exhaust gas flow and an open position to provide a maximum exhaust gas flow. The start position is orientated at a negative angle relative to the closed position.
    Type: Grant
    Filed: February 2, 2009
    Date of Patent: June 19, 2012
    Assignee: Emcon Technologies, LLC
    Inventors: Kwin Abram, Robin Willats
  • Patent number: 8191354
    Abstract: Systems and methods for reducing NOx emissions using a branched exhaust system with a first and second turbine including an emission-control device containing a zeolite, are described. In one example approach, a method comprises: during a first duration when exhaust temperature is below a first temperature threshold, directing exhaust gas through the second turbine and the emission-control device, and adjusting the second turbine to control intake boost; and during a second duration following the first, directing exhaust gas through the first turbine, and adjusting the first turbine to control intake boost. In this way, the first and second turbines may provide a greater degree of boost control in order to reduce boost fluctuations while enabling storing cold start NOx emissions for later reduction.
    Type: Grant
    Filed: October 20, 2009
    Date of Patent: June 5, 2012
    Assignee: Ford Global Technologies, LLC
    Inventors: Giovanni Cavataio, Jeong Yeol Kim, Michael Goebelbecker, Paul M Laing, Christine Kay Lambert
  • Patent number: 8186150
    Abstract: An exhaust tract for an internal combustion engine of a motor vehicle includes a first exhaust gas line, which conducts exhaust gases from the internal combustion engine to an exhaust-gas treatment device, and a second exhaust gas line, which forms a bypass line bypassing the exhaust gas treatment device. In order to ensure sufficient treatment of the exhaust gas even in the lean operating mode of an internal combustion engine, at least one first valve and one second valve are provided in series in the bypass line. An exhaust line is provided between the first valve and the second valve to reduce the pressure between the first and second valves. The pressure upstream of the second valve and the pressure downstream of the second valve, or the ambient pressure of the motor vehicle, are determined and negative pressure is applied to the exhaust line such that an exhaust gas flow via the second valve to the outside into the environment of the motor vehicle is prevented.
    Type: Grant
    Filed: September 21, 2009
    Date of Patent: May 29, 2012
    Assignee: Bayerische Motoren Werke Aktiengesellschaft
    Inventors: Klaus Bourdon, Hubert Graf
  • Patent number: 8136347
    Abstract: A control module and method for an exhaust system of an engine can include a secondary air intake (SAI) pressure module that monitors SAI pressure. An accumulation module can accumulate an SAI string length based on the monitored SAI pressure. A calculation module can determine an average SAI string length based on the accumulated SAI string length. A determination module can determine an operating characteristic of the vehicle exhaust based on the average SAI string length.
    Type: Grant
    Filed: September 5, 2008
    Date of Patent: March 20, 2012
    Inventors: Ian J. Mac Ewen, Martin L. Hall, Lawrence O Murray, Julia C. Grow, Richard A. Van Camp, David Edward Prout, Igor Anilovich
  • Patent number: 8109084
    Abstract: An exhaust throttle valve protected from disturbance due to stones scattered during operation of a vehicle. Front side exhaust pipes and rear side exhaust pipes are connected to a catalyst chamber disposed below a crankcase. The catalyst chamber and an exhaust chamber disposed to the rear thereof are connected to each other via a rear exhaust pipe. The diameter of the rear exhaust pipe is smaller than the lateral width of each of the catalyst chamber and the exhaust chamber, so that a recessed space is externally formed so as to recede inside of the vehicle. An exhaust throttle valve is received in the space. The exhaust throttle valve is partially exposed to the outside of the rear exhaust pipe and a throttle valve is received in the rear exhaust pipe to throttle-control the passage-sectional area of the rear exhaust pipe according to the rotation of the engine.
    Type: Grant
    Filed: March 26, 2008
    Date of Patent: February 7, 2012
    Assignee: Honda Motor Co., Ltd.
    Inventors: Kenji Morita, Yuichi Tanaka
  • Patent number: 8091348
    Abstract: A method and system for managing an exhaust gas feedstream from an internal combustion engine operative lean of stoichiometry includes steps and apparatus for diverting exhaust around a three-way catalytic converter during NOx adsorber regeneration thereby increasing reductants available in the NOx adsorber to react with the adsorbed NOx.
    Type: Grant
    Filed: November 6, 2008
    Date of Patent: January 10, 2012
    Assignee: GM Global Technology Operations LLC
    Inventors: David J. Cleary, Wei Li
  • Patent number: 8091344
    Abstract: An exhaust gas aftertreatment device for an internal combustion engine producing the exhaust gas comprises an inlet configured to receive the exhaust gas, an outlet from which the exhaust gas exits the device, an aftertreatment element disposed between the inlet and the outlet, and a flow modification mechanism. The aftertreatment element has a front face receiving the exhaust gas from the inlet of the device, and the flow modification mechanism is configured to modify exhaust gas flow through the aftertreatment element in a manner that maintains uniform temperature across the front face of the element.
    Type: Grant
    Filed: June 13, 2006
    Date of Patent: January 10, 2012
    Assignee: Cummins Inc.
    Inventor: Steven M. Bellinger
  • Patent number: 8069657
    Abstract: A diesel combustion engine comprises multiple particulate filters and corresponding exhaust piping and valving in the exhaust manifold and/or exhaust line, configured to enable regeneration to occur in one of the DPF filters through heating the exhaust from a single cylinder of the engine, while the exhaust from the remaining cylinders is temporarily routed through the other DPF filter during the regeneration event. Flow redirection devices are placed within the DPF filters to direct flow of exhaust gas through the DPF filters during regeneration in a manner to facilitate complete regeneration, including in outer volumes along the interior walls of the DPF filters.
    Type: Grant
    Filed: June 4, 2008
    Date of Patent: December 6, 2011
    Assignee: The United States of America as represented by the Administrator of the U.S. Environmental Protection Agency
    Inventor: Charles L. Gray, Jr.
  • Patent number: 8037676
    Abstract: An exhaust gas purification system including a reducing agent supplying apparatus and an exhaust gas purification apparatus, in that order from an upstream side of an exhaust passage in an internal combustion engine, and a control unit for controlling an amount of reducing agent supplied into the exhaust gas to recover purification capability of the exhaust gas purification apparatus. A concentration of the reducing agent in the exhaust gas, which flows into the exhaust gas purification apparatus, is varied temporally. The reducing agent is supplied in a proper amount to efficiently recover the purification capability. At the same time, the outflow of the reducing agent to the downstream side of the exhaust gas purification apparatus can be prevented.
    Type: Grant
    Filed: September 20, 2006
    Date of Patent: October 18, 2011
    Assignee: Isuzu Motors Limited
    Inventors: Masashi Gabe, Daiji Nagaoka
  • Patent number: 8028514
    Abstract: The problem is to regenerate the purification ability of an exhaust gas purification device more reliably or efficiently in an exhaust gas purification system that combines a plurality of branch passages branch off from an exhaust gas passage and exhaust gas purification devices. When the purification ability of an exhaust gas purification device is regenerated, in the branch passage where the exhaust gas purification device is provided whose purification ability is to be regenerated, the opening angle of an exhaust gas flow volume control valve is set to the minimum opening angle that can reliably transport a reducing agent that is added from a reducing agent addition section. While the opening angle is maintained, the reducing agent is added. After the addition of the reducing agent is complete, the opening angle of an exhaust gas flow volume control valve is closed completely.
    Type: Grant
    Filed: September 19, 2006
    Date of Patent: October 4, 2011
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Kuniaki Niimi, Kenichi Tsujimoto, Tomihisa Oda, Shinya Hirota, Takanori Ueda
  • Patent number: 8006488
    Abstract: An exhaust system for a motorcycle provided with a multicylinder engine, includes an exhaust aggregating member for unifying a pair of exhaust passages, through which an exhaust gas exhausted from the engine is transported to a muffler, so as to form a single exhaust passage therein. The single exhaust passage is connected to the muffler without being merged with another exhaust passage. The exhaust system also includes an exhaust control valve incorporated into the exhaust aggregating member and capable of changing sectional area of the single exhaust passage formed in the exhaust aggregating member.
    Type: Grant
    Filed: September 7, 2004
    Date of Patent: August 30, 2011
    Assignee: Kawasaki Jukogyo Kabushiki Kaisha
    Inventors: Makoto Momosaki, Hisatoyo Arima
  • Patent number: 8001774
    Abstract: At regeneration control while a vehicle mounting an internal combustion engine (10) is parked, both an exhaust throttle valve (13) and an exhaust brake valve (18) are used and if a catalyst temperature index temperature (Tg2) is lower than a predetermined first determining temperature (Tc1), first exhaust gas temperature rise control is conducted that the exhaust brake valve (18) is set to a fully closed side and multiple injection is carried out in in-cylinder fuel injection control, while if a catalyst temperature index temperature (Tg2) is equal to the predetermined first determining temperature (Tc1) or above, second exhaust gas temperature rise control is conducted that the exhaust brake valve (18) is set to an open side, the exhaust throttle valve (13) is set to the fully closed side, and post injection is carried out in the in-cylinder fuel injection control.
    Type: Grant
    Filed: January 10, 2007
    Date of Patent: August 23, 2011
    Assignee: Isuzu Motors Limited
    Inventors: Takao Onodera, Takashi Haseyama, Yoshinobu Watanabe, Takuro Iwashita, Kenji Hagio, Tatsuo Mashiko