With Combustible Gas Generator Patents (Class 60/39.12)
  • Patent number: 11952944
    Abstract: Jet engine thermal transport bus pumps are disclosed. Disclosed herein is an aircraft comprising a gas turbine engine configured to burn fuel at a fuel flow rate to generate an engine power (Pengine), the fuel characterized by a first specific heat capacity (cp_fuel) and a net heat of combustion (NHCfuel); and a thermal management system configured to transfer heat from a working fluid to the fuel, the working fluid characterized by a second specific heat capacity (cp_pump) and a first density (?pump), the thermal management system including a pump configured to generate a pump power (Ppump) to pressurize the working fluid, and wherein P ? O ? W = P p ? u ? m ? p ( c p_pump c p_water ) ? ( ? w ? a ? t ? e ? r ? p ? u ? m ? p ) 2 , F ? F ? R = ( P e ? n ? g ? i ? n ? e N ? H ? C f ? u ? e ? l ) ? ( c p_fuel c p_pump ) 0.008?POW/FFR5/3?12, FFR is between 0.
    Type: Grant
    Filed: February 10, 2023
    Date of Patent: April 9, 2024
    Assignee: General Electric Company
    Inventors: Daniel A. Niergarth, Giridhar Jothiprasad, Rodrigo Rodriguez Erdmenger, Adam Joseph Wangler
  • Patent number: 11946419
    Abstract: Methods and apparatus to produce hydrogen gas turbine propulsion are disclosed. An example apparatus to produce propulsion in a gas turbine engine includes a fluid line to transport hydrogen from a hydrogen supply and an inert gas from an inert gas supply to a gas turbine combustor. The apparatus also includes at least one heat exchanger coupled to the fluid line to heat the inert gas and the hydrogen in the fluid line.
    Type: Grant
    Filed: February 23, 2022
    Date of Patent: April 2, 2024
    Assignees: General Electric Company, GE AVIO S.R.L.
    Inventors: David Justin Brady, Mirko Gernone, Nathan E Gibson
  • Patent number: 11905855
    Abstract: A combined power generation system includes a gas turbine, a heat recovery steam generator (HRSG) configured to heat feedwater using combustion gases discharged from the gas turbine and having a high-pressure section, a medium-pressure section, and a low-pressure section having different pressure levels, an ammonia decomposer decomposing ammonia with the combustion gases discharged from the gas turbine, a first exhaust gas line through which the exhaust gases discharged from the gas turbine are transferred to the HRSG, a second exhaust gas line through which the exhaust gases discharged from the gas turbine are transferred to the ammonia decomposer, a third exhaust gas line through which the exhaust gases discharged from the ammonia decomposer are transferred to the HRSG, and a decomposed gas transfer tube connecting the ammonia decomposer and the combustor to transfer decomposed gases generated with the decomposition of ammonia to the combustor.
    Type: Grant
    Filed: February 14, 2023
    Date of Patent: February 20, 2024
    Assignee: DOOSAN ENERBILITY CO., LTD.
    Inventors: Byoung Youn Kim, Myung Son Kang, Chang Rim Lee, Eun Seong Cho
  • Patent number: 11859517
    Abstract: The present disclosure relates to cogeneration of power and one or more chemical entities through operation of a power production cycle and treatment of a stream comprising carbon monoxide and hydrogen. A cogeneration process can include carrying out a power production cycle, providing a heated stream comprising carbon monoxide and hydrogen, cooling the heated stream comprising carbon monoxide and hydrogen against at least one stream in the power production cycle so as to provide heating to the power production cycle, and carrying out at least one purification step so as to provide a purified stream comprising predominately hydrogen.
    Type: Grant
    Filed: June 12, 2020
    Date of Patent: January 2, 2024
    Assignee: 8 Rivers Capital, LLC
    Inventors: Xijia Lu, Brock Alan Forrest, Navid Rafati
  • Patent number: 11807591
    Abstract: Processes and apparatuses for converting carbon dioxide into hydrocarbons. Carbon dioxide and coke are reacted in a reaction zone to produce carbon monoxide. The Carbon monoxide and a hydrogen stream are reacted to produce methanol. The methanol is reacted in reaction zone to produce ethylene and propylene. The hydrogen and the oxygen can be produced in an electrolysis zone that separates water into hydrogen and oxygen.
    Type: Grant
    Filed: August 4, 2022
    Date of Patent: November 7, 2023
    Assignee: UOP LLC
    Inventors: Anil Nivrutti Pachpande, Jan De Ren, Yogesh Kumar Gupta
  • Patent number: 11802496
    Abstract: Direct-fired supercritical carbon dioxide (CO2) power cycle that generates hydrogen. More specifically, the discharge of a direct fired supercritical CO2 power cycle is converted to carbon dioxide and hydrogen where the hydrogen and/or carbon dioxide can be separated and stored/utilized in another application.
    Type: Grant
    Filed: March 31, 2022
    Date of Patent: October 31, 2023
    Assignee: SOUTHWEST RESEARCH INSTITUTE
    Inventors: Grant O. Musgrove, Brian Connolly
  • Patent number: 11754346
    Abstract: Systems and methods for energy storage and energy recovery are provided. An electrical-to-electrical energy storage system includes a thermochemical energy storage device, a blower, a compressor, a turbine, and an electrical generator. The TCES device includes a vessel, a porous bed, and a heater. The porous bed is disposed within an interior volume of the vessel. The porous bed comprises a reactive material. The reactive material is configured to release oxygen upon being heated to a reduction temperature, and generate heat when exposed to oxygen. The heater is in thermal contact with the reactive material. The blower is configured to remove oxygen from the interior volume. The compressor is configured to flow oxygen into the interior volume. The turbine is configured to receive a heated, oxygen-depleted gas from the interior volume. The generator is configured to be powered by the turbine to generate electricity.
    Type: Grant
    Filed: June 30, 2021
    Date of Patent: September 12, 2023
    Assignee: Board of Trustees of Michigan State University
    Inventors: James F. Klausner, Joerg Petrasch, Kelvin Randhir, Nima Rahmatian
  • Patent number: 11739697
    Abstract: A bleed air cooling system for a gas turbine engine includes one or more bleed ports located at one or more axial locations of the gas turbine engine to divert a bleed airflow from a gas turbine engine flowpath, a bleed outlet located at a cooling location of the gas turbine engine and a bleed duct in fluid communication with the bleed port and the configured to convey the bleed airflow from the bleed port to the bleed outlet. One or more safety sensors are configured to sense operational characteristics of the gas turbine engine, and a controller is operably connected to the one or more safety sensors and configured to evaluate the sensed operational characteristics for anomalies in operation of the bleed air cooling system.
    Type: Grant
    Filed: May 22, 2017
    Date of Patent: August 29, 2023
    Assignee: RAYTHEON TECHNOLOGIES CORPORATION
    Inventors: Jonathan Ortiz, Matthew P. Forcier, William K. Ackermann
  • Patent number: 11713696
    Abstract: Method for driving machines, in an ethylene plant steam generation circuit, the method including recovering heat as high pressure steam from a cracking furnace; providing said high pressure steam to at least one steam turbine, wherein the steam turbine is configured to drive a machine, such as a process compressor; condensing at least part of the high pressure steam in a condenser; pumping condensed steam as boiler feed water back to the cracking furnace.
    Type: Grant
    Filed: June 5, 2020
    Date of Patent: August 1, 2023
    Assignee: TECHNIP ENERGIES FRANCE
    Inventor: Peter Oud
  • Patent number: 11697780
    Abstract: Endothermic fuel compositions comprising 50% or more by volume decahydronaphthalene, including cis-decahydronaphthalene, trans-decahydronaphthalene or a mixture thereof, for use as endothermic fuels in hypersonic vehicles and particularly for use in dual-mode ramjet or supersonic combustion ramjet air breathing engines. Methods for operating a ramjet or scram jet engine wherein the endothermic fuel is used for cooling the combustor and for combustion in the combustor.
    Type: Grant
    Filed: March 7, 2022
    Date of Patent: July 11, 2023
    Assignee: Reaction Systems, Inc.
    Inventors: Bradley Dean Hitch, David Thomas Wickham, Jeffrey Robert Engel, Jacquelyn Brett Lewis
  • Patent number: 11679977
    Abstract: The system includes a methane reformer, a combined cycle power generator, and a switch. The reformer is configured to react methane with steam. The combined cycle power generator includes a steam turbine, a gas turbine, a power generator, and a water boiler. The steam turbine is configured to rotate in response to receiving steam. The gas turbine is configured to rotate in response to receiving a mixture of fuel and air. The power generator is configured to convert rotational energy from the steam turbine and the gas turbine into electricity. In a first position, the switch is configured to direct exhaust from the gas turbine to the reformer, thereby providing heat to the reformer. In a second position, the switch is configured to direct exhaust from the gas turbine to the water boiler, thereby providing heat to the water boiler to generate steam.
    Type: Grant
    Filed: September 22, 2021
    Date of Patent: June 20, 2023
    Assignee: Saudi Arabian Oil Company
    Inventor: Mustafa A. Al-Huwaider
  • Patent number: 11674442
    Abstract: A gas turbine engine includes; a compressor, a combustor, and a turbine in serial flow relationship; a heat exchanger, the heat exchanger having an inlet, an outlet, and an internal surface coated with a catalyst, the heat exchanger being located upstream of the compressor; a source of hydrocarbon fuel in fluid communication with the inlet of the heat exchanger; a source of oxygen in fluid communication with the inlet of the heat exchanger; and a distribution system for receiving reformed hydrocarbon fuel from the heat exchanger.
    Type: Grant
    Filed: March 16, 2021
    Date of Patent: June 13, 2023
    Assignee: General Electric Company
    Inventors: Lawrence Bernard Kool, Brandon Flowers Powell, Narendra Digamber Joshi
  • Patent number: 11668209
    Abstract: Systems and generating power in an organic Rankine cycle (ORC) operation to supply electrical power. In embodiments, an inlet temperature of a flow of gas from a source to an ORC unit may be determined. The source may connect to a main pipeline. The main pipeline may connect to a supply pipeline. The supply pipeline may connect to the ORC unit thereby to allow gas to flow from the source to the ORC unit. Heat from the flow of gas may cause the ORC unit to generate electrical power. The outlet temperature of the flow of the gas from the ORC unit to a return pipe may be determined. A flow of working fluid may be adjusted to a percentage sufficient to maintain temperature of the flow of compressed gas within the selected operating temperature range.
    Type: Grant
    Filed: November 21, 2022
    Date of Patent: June 6, 2023
    Assignee: ICE Thermal Harvesting, LLC
    Inventors: Adrian Benjamin Bodishbaugh, Carrie Jeanne Murtland
  • Patent number: 11629665
    Abstract: An aircraft engine has a high pressure spool including a high pressure turbine drivingly connected to a high pressure compressor. A low pressure spool including a low pressure compressor is fluidly connected to the high pressure compressor. A low pressure turbine is drivingly connected to the low pressure compressor to drive the low pressure compressor. A load is drivingly connected to the low pressure turbine, the load consisting of one of a propeller and a helicopter rotor. A method of creating classes of an aircraft engine from an engine platform is disclosed.
    Type: Grant
    Filed: September 10, 2019
    Date of Patent: April 18, 2023
    Assignee: PRATT & WHITNEY CANADA CORP.
    Inventors: Ghislain Plante, Keith Morgan, Stephen Mah, Patrick Valois, Robert Peluso
  • Patent number: 11629858
    Abstract: A turbo-expanding cracking assembly includes a plurality of stages each including a rotating blade coupled to an output shaft and a fixed stator, at least one heat exchanger configured to transfer heat to an ammonia containing fuel flow, and a catalyst that is configured to decompose an ammonia containing fuel flow into a flow containing hydrogen (H2).
    Type: Grant
    Filed: February 4, 2022
    Date of Patent: April 18, 2023
    Assignee: Raytheon Technologies Corporation
    Inventors: Malcolm MacDonald, Sean C. Emerson, Brian M. Holley, Lance L. Smith, Peter Cocks
  • Patent number: 11624032
    Abstract: The present invention relates to the extraction of gasoline from a gas G, with (a) a step of extracting gasoline from the gas to be treated comprising methanol GM obtained from step (d), (b) a step of separating said fluid GL1 partially condensed in step (a), producing a first aqueous liquid phase A1, a first liquid phase H1 of hydrocarbon(s) a gaseous phase G1 obtained from the gas G; (c) a step of contacting a portion of the gas G to be treated with said first aqueous liquid phase A1, producing a second aqueous liquid phase A2, a gaseous phase of gas to be treated comprising methanol GM?; (d) a step of mixing said gaseous phase of gas to be treated comprising methanol GM? with the remainder of the gas G to be treated, producing a gas to be treated comprising methanol GM, (e) a step of stabilizing said first liquid phase H1 of hydrocarbon(s).
    Type: Grant
    Filed: January 13, 2021
    Date of Patent: April 11, 2023
    Assignee: AXENS
    Inventor: Pierre-Yves Lanfrey
  • Patent number: 11536199
    Abstract: A method of manufacturing a motoring system for a gas turbine having the steps of: assembling a pinned mechanical fuse, the pinned mechanical fuse including at least one shear pin; forming an outer housing; installing a reduction gear train into the outer housing, the reduction gear train having an input and an output; operably connecting a motor to the input; operably connecting a clutch to the output using the pinned mechanical fuse, the clutch in operation engages and disengages the reduction gear train; operably connecting a starter to the clutch, the starter having an output shaft; and operably connecting an accessory gearbox to the output shaft of the starter. The clutch is operably connected to the accessory gearbox through the starter and the output shaft. The at least one shear pin in operation shears when torque on the pinned mechanical fuse is greater than or equal to a selected value.
    Type: Grant
    Filed: June 28, 2019
    Date of Patent: December 27, 2022
    Assignee: HAMILTON SUNDSTRAND CORPORATION
    Inventors: Matthew Allen Slayter, Richard Alan Davis, Paul F. Fox, Jeffrey Todd Roberts, Jeff A. Brown, James Vandung Nguyen, Benjamin T. Harder, Dwayne Leon Wilson, Brian McMasters, Daniel Richard Walker
  • Patent number: 11506127
    Abstract: A fuel conditioning and control system provides dynamic control and steady state operations of a gas turbine provided fueled by supercritical liquefied petroleum gas (LPG). The fuel conditioning and control system comprises a storage for LPG fuel; a fuel delivery sub-system connecting the storage to turbomachinery; and a control system. The gas turbine includes a gas turbine core control that provides at least one operational data of the gas turbine to the control system. The fuel delivery sub-system includes at least one sensor for sensing at least one property of the LPG fuel in the fuel delivery sub-system, where the at least one sensor providing data on the at least one property of the LPG fuel to the control system. The control system analyzes the data on the at least one property of the LPG fuel and at least one operational data of the gas turbine for dynamic control of LPG fuel to the gas turbine under dynamic and steady state conditions.
    Type: Grant
    Filed: July 23, 2020
    Date of Patent: November 22, 2022
    Assignee: General Electric Company
    Inventors: Jesus Daniel Castillo Campos, Joe F. Schornick, Jose Carlos Sanchez Herrera, Horacio Solis Godinez
  • Patent number: 11492981
    Abstract: A fuel control device includes a combustion temperature estimation value calculation unit that calculates a temperature estimation value when a mixture of fuel and inflow air is burned using an atmospheric condition, an opening degree command value of a valve that controls the amount of air that is mixed with the fuel and burned, and an output prediction value calculated on the basis of a fuel control signal command value used for calculation of a total fuel flow rate flowing through a plurality of fuel supply systems, a fuel distribution command value calculation unit that calculates a fuel distribution command value indicating a distribution of fuel output from the fuel supply systems based on the temperature estimation value, and outputs the fuel distribution command value, and a valve opening degree calculation unit that calculates each valve opening degree of a fuel flow rate control valve of the fuel supply systems.
    Type: Grant
    Filed: February 16, 2015
    Date of Patent: November 8, 2022
    Assignee: MITSUBISHI HEAVY INDUSTRIES, LTD.
    Inventors: Keisuke Yamamoto, Takashi Sonoda, Akihiko Saito, Fuminori Fujii, Hisashi Nakahara, Ryoichi Haga, Ryuji Takenaka, Yoshifumi Iwasaki, Wataru Akizuki, Isamu Matsumi, Naohiro Sumimura, Shinichi Yoshioka
  • Patent number: 11391201
    Abstract: A plant includes a fuel supply line for supplying high-pressure fuel gas; and at least one expander disposed in the fuel supply line and configured to extract power from the high-pressure fuel gas by expanding the high-pressure fuel gas.
    Type: Grant
    Filed: January 29, 2018
    Date of Patent: July 19, 2022
    Assignee: MITSUBISHI HEAVY INDUSTRIES, LTD.
    Inventors: Hideyuki Uechi, Norihisa Matake, Kouji Horizoe, Shigenori Suemori, Yasutaka Aoki, Yuya Konno
  • Patent number: 11381083
    Abstract: Disclosed are systems and methods of generating electrical power utilizing a mining bank of individual blockchain miners. The blockchain miners operate as a revenue generating heat source that provides thermal energy into a power plant's Rankine or Brayton cycle turbines.
    Type: Grant
    Filed: December 4, 2020
    Date of Patent: July 5, 2022
    Assignee: Q Power LLC
    Inventors: Jeffrey Campbell, William Spence
  • Patent number: 11339687
    Abstract: The invention relates to a power plant (1) for generating electric energy (100) and process steam (200), comprising: —a gas turbine (2) for driving a first generator (3) in order to generate electric energy (100) by combusting a fuel into flue gas (300), —a steam turbine (4) for driving a second generator (5) in order to generate electric energy (100), comprising a first stage (4a) for converting fresh steam (400) into residual steam (201), which constitutes at least part of the process steam (200), and —a waste heat steam generator (6) for generating the fresh steam (400) from fresh water (500) using the exhaust heat of the flue gas (300), wherein —the residual steam (201) has a residual steam pressure which is lower than the pressure of the fresh steam (400), —the waste heat steam generator (6) comprises a pre-heater (7) for pre-heating the fresh water (500) in order to form feed water (600) and an evaporator (8) for evaporating the feed water (600) in order to form the fresh steam (400), and —the feed wate
    Type: Grant
    Filed: December 12, 2018
    Date of Patent: May 24, 2022
    Assignee: E.ON Energy Projects GmbH
    Inventors: Stephan Herrmann, Hartmut Spliethoff
  • Patent number: 11154814
    Abstract: A washing treatment system includes an odor and flue gas washing tower, a biological deodorization filtering tower, a multifunctional biomass combustion boiler, a liquid fermentation reactor, a solid fermentation reactor, circulating pumps, an exhaust fan and an induced draft fan. An exhaust port is formed in a top end cover of the odor and flue gas washing tower. A liquid inlet, an air inlet and a liquid drainage port are formed in a side wall of a tank body. A hanging basket is placed in the tank body. Organic fillers and/or inorganic fillers are placed in the hanging basket. An inner cavity of the washing tower is divided into a liquid inlet shunting cavity, a filler layer, an air cavity and a liquid accumulation cavity from top to bottom. An upper supernatant in the liquid fermentation reactor is connected with the liquid inlet for washing.
    Type: Grant
    Filed: January 11, 2019
    Date of Patent: October 26, 2021
    Inventors: Shen Wang, Wen Kuang, Juncan Wang
  • Patent number: 11125161
    Abstract: An air-oil cooler for a gas turbine engine includes an air cooling structure and a lubricant channel. The lubricant channel extends between a lubricant inlet and a lubricant inlet and is bounded by the air cooling structure. The air cooling structure has an arcuate shape for circumferentially spanning a portion of a gas turbine engine core.
    Type: Grant
    Filed: December 12, 2019
    Date of Patent: September 21, 2021
    Assignee: RAYTHEON TECHNOLOGIES CORPORATION
    Inventor: Richard A. Weiner
  • Patent number: 10927757
    Abstract: A method of reducing rotor bow in a high pressure rotor of a gas turbine engine that has in axial flow a low pressure rotor and a high pressure rotor. The method involves storing bleed air from the gas turbine engine when the engine is running to provide stored pneumatic energy; and using that stored pneumatic energy after the engine has been shut-down to rotate the high pressure rotor at a speed and for a duration that reduces rotor bow. A gas turbine engine wherein rotor bow in the high pressure rotor after engine shut-down has been reduced by carrying out the aforesaid method is also disclosed.
    Type: Grant
    Filed: November 29, 2018
    Date of Patent: February 23, 2021
    Assignee: ROLLS-ROYCE PLC
    Inventor: Andrew Stevenson
  • Patent number: 10900418
    Abstract: A combined cycle power plant that includes a gas turbine and HRSG engaged with a steam turbine via a water steam cycle having higher and lower pressure levels. The CCPP further includes a fuel line and fuel preheater. A higher pressure feedwater line delivers higher pressure feedwater to a higher pressure feedwater branch that extends through the fuel preheater, the high pressure feedwater branch including upstream and downstream segments defined to each side of the fuel preheater. A lower pressure feedwater line delivers lower pressure feedwater to a lower pressure feedwater branch. The downstream segment of the higher pressure feedwater branch is combined with the lower pressure feedwater branch at a junction point and a combined feedwater line extends therefrom. A first heat exchanger exchanges heat between the combined feedwater line and fuel line. A second heat exchanger exchanges heat between the higher pressure feedwater branch and fuel line.
    Type: Grant
    Filed: September 28, 2017
    Date of Patent: January 26, 2021
    Assignee: General Electric Company
    Inventors: Kenneth Eugene Selfridge, Douglas Frank Beadie, Alberto Jose Negroni
  • Patent number: 10859264
    Abstract: The present disclosure relates to apparatuses and methods that are useful for one or more aspects of a power production plant. More particularly, the disclosure relates to combustor apparatuses and methods for a combustor adapted to utilize different fuel mixtures derived from gasification of a solid fuel. Combustion of the different fuel mixtures within the combustor can be facilitated by arranging elements of the combustor controlled so that a defined set of combustion characteristics remains substantially constant across a range of different fuel mixtures.
    Type: Grant
    Filed: January 12, 2018
    Date of Patent: December 8, 2020
    Assignee: 8 Rivers Capital, LLC
    Inventors: Jeremy Eron Fetvedt, Xijia Lu, Brent Gregory, Chris Bonilha, James Lenertz, Stefan Tschirren, Hassan Abdulsater
  • Patent number: 10670334
    Abstract: A cryogenic technology for the cost-efficient capture of each known component of emissions, such as carbon dioxide, sulfur oxides, nitrogen oxides, carbon monoxide, any other acid vapor, mercury, steam, in a liquefied or frozen/solidified form, and unreacted nitrogen (gas) from industrial plants, such that each of the components is captured separately with minimum use of energy and is industrially useful.
    Type: Grant
    Filed: March 7, 2018
    Date of Patent: June 2, 2020
    Inventors: Dilip Kumar De, Idowu Ayodele Oduniyi
  • Patent number: 10634013
    Abstract: A proposed method provides a highly efficient fueled power output augmentation of the liquid air energy storage (LAES) through its integration with the semi-closed CO2 bottoming cycle. It combines the production of liquid air in air liquefier during LAES charge using excessive power from the grid and an effective recovery of stored air for production of on-demand power in the fueled supercharged reciprocating internal combustion engine (ICE) and associated expanders of the power block during LAES discharge. A cold thermal energy of liquid air being re-gasified is recovered for cryogenic capturing most of CO2 emissions from the facility exhaust with following use of the captured CO2 in the semi-closed bottoming cycle, resulting in enhancement of total LAES facility discharge power output and suppressing the thermal NOx formation in the ICE.
    Type: Grant
    Filed: September 5, 2018
    Date of Patent: April 28, 2020
    Inventor: Stanislav Sinatov
  • Patent number: 10577985
    Abstract: The purpose of the present invention is to maintain the intake pressure of a water supply pump at an operable pressure. A boiler is provided with: condensate pumps (a condensate pump and an auxiliary condensate pump); a branch line that causes water delivered by the condensate pumps to branch; a drum (a low-pressure drum) that is connected to one (a low-pressure branch line) of two lines into which the branch line branches; and a water supply pump that is connected to the other (a high-pressure branch line) of the two lines into which the branching line branches and that pumps water to an evaporator (a high-pressure evaporator). The boiler is additionally provided with pressure applying means that guides a portion of the water in the drum to the water supply pump side when the intake pressure on the inlet side of the water supply pump has become lower than a predetermined pressure.
    Type: Grant
    Filed: September 2, 2015
    Date of Patent: March 3, 2020
    Assignee: MITSUBISHI HITACHI POWER SYSTEMS, LTD.
    Inventor: Jun Taguchi
  • Patent number: 10578028
    Abstract: A gas turbine engine is provided having a compressor section, a combustion section, and a turbine section. The compressor section includes one or more compressors and the turbine section includes one or more turbines. The one or more compressors and the one or more turbines are each rotatable about a longitudinal centerline of the gas turbine engine. Additionally, a bleed air flowpath is provided extending between an inlet in airflow communication with the compressor section and an outlet. An auxiliary turbine is positioned in airflow communication with the bleed air flowpath for extracting energy from a flow of bleed air through the bleed air flowpath.
    Type: Grant
    Filed: August 18, 2015
    Date of Patent: March 3, 2020
    Assignee: General Electric Company
    Inventor: Thomas Lee Becker, Jr.
  • Patent number: 10533494
    Abstract: A solar chemically recuperated gas turbine system includes an exhaust-gas reformer, a solar reformer and a gas turbine unit with a combustion chamber. The reaction outlet of the exhaust-gas reformer is connected to the inlet of the solar reformer, the flue gas side inlet of the exhaust-gas reformer is connected to the exhaust-gas outlet of the gas turbine. The solar reformer outlet is connected to the combustion chamber inlet. Combustion gas drives the gas turbine after fuel burns in the combustion chamber, and the exhaust gas enters the exhaust-gas reformer. Fuel and steam are mixed and enter the reaction side of the exhaust-gas reformer through a fuel inlet. A reforming reaction between the fuel and steam under heating of the exhaust gas generates syngas. A further reforming reaction occurs by absorbing concentrated solar energy after the syngas enters the solar reformer, and the reactant is provided to combustion chamber.
    Type: Grant
    Filed: April 17, 2017
    Date of Patent: January 14, 2020
    Assignee: Zhejiang University
    Inventors: Gang Xiao, Tianfeng Yang, Mingjiang Ni, Zhongyang Luo, Xiang Gao, Kefa Cen, Mengxiang Fang, Jinsong Zhou, Zhenglun Shi, Leming Cheng, Qinhui Wang, Shurong Wang, Chunjiang Yu, Tao Wang, Chenghang Zheng
  • Patent number: 10487699
    Abstract: Certain aspects of natural gas liquid fractionation plant waste heat conversion to cooling capacity using Kalina Cycle can be implemented as a system, which includes a waste heat recovery heat exchanger to heat a buffer fluid stream by exchange with a heat source in a natural gas liquid fractionation plant. The system includes a Kalina cycle energy conversion system including one or more first energy conversion heat exchangers to heat a first portion of a working fluid by exchange with the heated buffer fluid stream, a separator to receive the heated working fluid and to output a vapor stream of the working fluid and the liquid stream of the working fluid, and a cooling subsystem including a first cooling element to condense the vapor stream of the working fluid and a second cooling element configured to cool a process fluid stream from the natural gas liquid fractionation plant by exchange with the condensed vapor stream of the working fluid.
    Type: Grant
    Filed: December 14, 2017
    Date of Patent: November 26, 2019
    Assignee: Saudi Arabian Oil Company
    Inventors: Mahmoud Bahy Mahmoud Noureldin, Akram Hamed Mohamed Kamel
  • Patent number: 10451359
    Abstract: Certain aspects of natural gas liquid fractionation plant waste heat conversion to power using Kalina Cycle can be implemented as a system. The system includes a waste heat recovery heat exchanger configured to heat a buffer fluid stream by exchange with a heat source in a natural gas liquid fractionation plant. The system includes a Kalina cycle energy conversion system, which includes one or more first energy conversion heat exchangers configured to heat a working fluid by exchange with the heated buffer fluid stream, a separator configured to receive the heated working fluid and to output a vapor stream of the working fluid and the liquid stream of the working fluid, and a turbine and a generator, wherein the turbine and generator are configured to generate power by expansion of the vapor stream of the working fluid.
    Type: Grant
    Filed: December 14, 2017
    Date of Patent: October 22, 2019
    Assignee: Saudi Arabian Oil Company
    Inventors: Mahmoud Bahy Mahmoud Noureldin, Akram Hamed Mohamed Kamel
  • Patent number: 10443137
    Abstract: A hydrogen gas generator system comprises a reactor stack adapted to perform electrolysis on water in an electrolyte solution, the reactor stack comprising a plurality of spaced apart electrode plates and electrolyte solution disposed between the plates, each plate having an upper outlet aperture and a lower inlet aperture to allow movement of electrolyte solution across the plates. A separator is configured to receive a mixture of gas and electrolyte solution from a top of the reactor stack and separate the gas from the electrolyte solution. A gas outlet configured to remove gas from the separator, and an electrolyte solution inlet configured to return electrolyte solution from the separator to a bottom of the reactor stack.
    Type: Grant
    Filed: April 15, 2014
    Date of Patent: October 15, 2019
    Inventor: Nigel Williamson
  • Patent number: 10415467
    Abstract: Provided is an integrated coal gasification combined cycle equipped with: a gasifier that generates combustible gas from pulverized coal; a gas cooler; gas turbine equipment; an auxiliary fuel supply unit that supplies an auxiliary fuel to the gas turbine equipment; a heat recovery steam generator; steam turbine equipment; generators; and a circulation line unit that circulates cooling water. The heat recovery steam generator has a first medium-pressure coal economizer and a second medium-pressure coal economizer. When the combustible gas generated from the pulverized coal is burned, a serial heat exchange line is formed wherein cooling water passes through the first medium-pressure coal economizer, the second medium-pressure coal economizer, and the gas cooler. When the auxiliary fuel is burned, separate heat exchange lines are formed, wherein the cooling water separately passes through the first medium-pressure coal economizer and the second medium-pressure coal economizer.
    Type: Grant
    Filed: June 26, 2015
    Date of Patent: September 17, 2019
    Assignee: MITSUBISHI HITACHI POWER SYSTEMS, LTD.
    Inventors: Naoshige Yoshida, Koichi Sakamoto, Kenichiro Kosaka, Tetsuya Kizu, Yoshinori Koyama, Takashi Fujii, Osamu Shinada
  • Patent number: 10358947
    Abstract: This combined cycle gas turbine plant has a gas turbine (104) and a steam turbine (106) mounted on the same shaft. A control system is configured for switching the plant from a rated mode of operation, in which the plant is operated on gas turbine output and steam turbine output, to a reduced load mode of operation, in which the plant is operated on gas turbine output alone. The switch from the rated mode of operation to the reduced load mode of operation occurs if plant demand decreases below a predetermined threshold. The steam turbine is run under full speed no load conditions in the reduced load mode of operation, and is heated using controlled steam admission, to maintain the steam turbine in a heated ‘stand-by’ state.
    Type: Grant
    Filed: March 27, 2015
    Date of Patent: July 23, 2019
    Assignees: MITSUBISHI HITACHI POWER SYSTEMS, LTD., MITSUBISHI HITACHI POWER SYSTEMS EUROPE, LTD.
    Inventors: Yoshiyuki Yokoyama, Jose Manuel Martinez, Elvio Rubio, Pablo Ratia
  • Patent number: 10280809
    Abstract: A method for operating a combined cycle power plant (CCPP) and improving a part load operation of the CCPP is provided. The CCPP may include at least a gas turbine, a heat recovery steam generator (HRSG) located downstream of the gas turbine, a main steam turbine, and a supercritical steam turbine. The HRSG may include a low pressure steam system, an intermediate pressure steam system, and a high pressure steam system. To improve the part load efficiency of the CCPP, a base load operation of the CCPP may be initiated with supercritical pressure, via the supercritical steam turbine, such that the efficiency impact resulting from the part load operation is reduced.
    Type: Grant
    Filed: February 2, 2016
    Date of Patent: May 7, 2019
    Assignee: SIEMENS ENERGY, INC.
    Inventors: Michael S. Briesch, Ankur Deshmukh
  • Patent number: 10215059
    Abstract: A system and method for active draft control through a combined cycle power plant (CCPP) can initiate a CCPP shutdown, activate the recirculated exhaust gas (REG) system for the turbomachine; measure a HRSG airflow through the HRSG; communicate the HRSG airflow to a controller configured to condition a control signal; and adjust a recirculated exhaust gas volume in accordance with the control signal.
    Type: Grant
    Filed: June 2, 2017
    Date of Patent: February 26, 2019
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: Wolfgang Franz Dietrich Mohr, Kurt Rechsteiner, David Martin Johnson, Kenneth Damon Black
  • Patent number: 10201800
    Abstract: The present disclosure relates, according to some embodiments, reactive self-indicating adsorbent materials, methods, and systems. A system may comprise, for example, a reactive self-indicating adsorbent material, wherein the reactive self-indicating adsorbent material comprises at least one super paramagnetic particle and a semi permeable support, wherein the at least one super paramagnetic particle is configured such that at least one magnetic property of the at least one super paramagnetic particle changes upon contact with an adsorbate; and/or at least one detector configured and arranged to detect the at least one magnetic property.
    Type: Grant
    Filed: May 16, 2016
    Date of Patent: February 12, 2019
    Assignee: Leidos, Inc.
    Inventor: Thomas Grant Glover
  • Patent number: 10113124
    Abstract: An IGCC plant includes a coal gasifier that gasifies coal by using an oxidizer, a gas turbine that is driven by combustion gas generated by combustion of fuel gas obtained by purifying gas generated by the coal gasifier in gas clean-up equipment, and an oxidizer supply path for supplying air extracted from an air compressor of the gas turbine or oxygen separated from the air as an oxidizer for the coal gasifier. A control unit (50) for the gasification power generation plant controls the amount of the oxidizer that is supplied to the coal gasifier to be less than or equal to a predetermined upper-limit value, while allowing deviation of an air ratio from a predetermined set value, the air ratio representing the ratio of the amount of air that is supplied to the coal gasifier relative to a theoretical amount of air for combustion of carbon, in accordance with variations in an operating-state quantity of the coal gasifier or variations in a load of the IGCC plant.
    Type: Grant
    Filed: April 24, 2014
    Date of Patent: October 30, 2018
    Assignee: MITSUBISHI HITACHI POWER SYSTEMS, LTD.
    Inventors: Ken Tamura, Takashi Fujii, Takanori Tsutsumi, Takashi Kijima
  • Patent number: 10059893
    Abstract: A method for producing syngas from preferably vegetal biomass is described. The method provides for the use of a fixed bed gasifier, equipped with two reactors. The biomass is fed to both reactors together with a primary flow rate of air. Advantageously, the method according to the present invention is different from the known art since a secondary flow rate of air is withdrawn from the first reactor at the area where the biomass dries, and fed to the second reactor at the area where the biomass dries, and vice versa, alternately during time. Alternatively, an oscillating air flow is created in each reactor. The achievable result is a greater syngas production, but not exclusively. The syngas quality is improved too, since the biomass has a longer time for completing the gasification reactions.
    Type: Grant
    Filed: January 13, 2015
    Date of Patent: August 28, 2018
    Assignee: TURBODEN S.R.L.
    Inventors: Mario Gaia, Roberto Bini
  • Patent number: 10047671
    Abstract: The present invention provides methods and system for power generation using a high efficiency combustor in combination with a CO2 circulating fluid. The methods and systems advantageously can make use of a low pressure ratio power turbine and an economizer heat exchanger in specific embodiments. Additional low grade heat from an external source can be used to provide part of an amount of heat needed for heating the recycle CO2 circulating fluid. Fuel derived CO2 can be captured and delivered at pipeline pressure. Other impurities can be captured.
    Type: Grant
    Filed: January 23, 2015
    Date of Patent: August 14, 2018
    Assignee: 8 Rivers Capital, LLC
    Inventors: Rodney John Allam, Glenn William Brown, Jr., Miles R. Palmer
  • Patent number: 10047638
    Abstract: Disclosed is a heat energy recovery system including: a heat energy recovery circuit that causes a working medium to circulate by means of a circulation pump to exchange heat with supercharged air from a supercharger via a first heater and exchange heat with steam from an exhaust-gas economizer via a second heater, in order to integrally drive a turbine and a generator; and a controller that performs stop control to stop the circulation pump based on the flow state of the steam in a first steam flow path that causes the steam to flow from the exhaust-gas economizer to a soot blower.
    Type: Grant
    Filed: April 1, 2016
    Date of Patent: August 14, 2018
    Assignees: Kobe Steel, Ltd., ASAHI SHIPPING CO., LTD., TSUNEISHI SHIPBUILDING Co., Ltd., MIURA Co., Ltd.
    Inventors: Shigeto Adachi, Yutaka Narukawa, Tetsuro Fujii, Kazuya Arahira, Masakazu Yamamoto, Yutaka Kobayashi, Toshio Sageshima
  • Patent number: 9988983
    Abstract: A power generation system including a gasifier for receiving and converting coal-water slurry to a fuel stream, and a quench device for cooling the fuel stream to generate a cooled down fuel stream. The quench device includes a water quench ring, which is able to spray water to cool the fuel stream passing therethrough. The system further includes a separating device, which includes a separator and a high temperature filter for removing rough and fine particles from the cooled down fuel stream respectively, an expander for receiving and utilizing energy in the fuel stream with solids removed to generate power, during which temperature and pressure of the fuel stream drop and an expanded fuel stream is generated, an acid gas removal unit for removing acid gases from the expanded fuel stream, and a gas turbine combine cycle for generating power from the fuel stream with acid gases removed.
    Type: Grant
    Filed: January 9, 2015
    Date of Patent: June 5, 2018
    Assignee: General Electric Company
    Inventors: Ping Yu, Lishun Hu
  • Patent number: 9938895
    Abstract: A method for operating a compressed air energy storage system is provided. The method can include compressing a process gas with a compressor train to produce a compressed process gas and storing the compressed process gas in a compressed gas storage unit. The method can also include extracting the compressed process gas from the compressed gas storage unit to an expansion assembly through a feed line. A valve assembly fluidly coupled to the feed line can be actuated to control a mass flow of the compressed process gas from the compressed gas storage unit to the expansion assembly. The method can further include heating the compressed process gas in a preheater fluidly coupled to the feed line upstream from the expansion assembly, and generating a power output with the expansion assembly.
    Type: Grant
    Filed: November 13, 2013
    Date of Patent: April 10, 2018
    Assignee: DRESSER-RAND COMPANY
    Inventors: Jason M. Kerth, George M. Lucas, Stephen S. Rashid
  • Patent number: 9863285
    Abstract: A power generation system may include a generator; a gas turbine system for powering the generator, the gas turbine system including a turbine component, an integral compressor and a combustor to which air from the integral compressor and fuel are supplied, the combustor arranged to supply hot combustion gases to the turbine component, and the integral compressor having a flow capacity greater than an intake capacity of at least one of the combustor and the turbine component, creating an excess air flow. A first control valve system controls flow of the excess air flow along an excess air flow path to a supplemental gas turbine system. The excess air flow may be combusted with a fuel and supplied to the supplemental gas turbine system. An eductor may be positioned in the excess air flow path for using the excess air flow as a motive force to augment the excess air flow with additional gas.
    Type: Grant
    Filed: March 19, 2015
    Date of Patent: January 9, 2018
    Assignee: General Electric Company
    Inventors: Sanji Ekanayake, Thomas John Freeman, John David Memmer, Timothy Joseph Rehg, Alston Ilford Scipio
  • Patent number: 9856197
    Abstract: Disclosed is a method that reforms flare gas or other raw natural gas source, using air without steam, to directly produce dimethyl ether (DME), a direct diesel substitute. The method first reforms an air-natural gas mixture at ambient atmospheric pressures, and then compresses the resulting CO-hydrogen-nitrogen gas mixture to 100-2,000 psi, and feeds it through a combined reactor which reacts the gas mixture directly into DME. The nitrogen is returned to the atmosphere. DME is an excellent diesel fuel, and can be used to displace significantly costlier and dirtier petroleum-based diesel fuel, while solving a critical problem with flaring or other wasted natural gas. For example, the roughly 120 billion cubic feet per year that was flared in North Dakota in 2014 could be converted into over 3 million tons of DME using the disclosed method.
    Type: Grant
    Filed: March 1, 2017
    Date of Patent: January 2, 2018
    Assignee: Pioneer Energy, Inc.
    Inventors: Robert M Zubrin, Boris Nizamov, Thomas L Henshaw, Adam M Kortan, James Siebarth, Colin Apke, Mark Berggren
  • Patent number: 9845667
    Abstract: The hybrid solar thermal enhanced oil recovery system with an oxy-fuel combustor is an enhanced oil recovery system utilizing solar thermal enhanced oil recovery during the daytime and utilizing an oxy-fuel combustor in the nighttime. A solar heater is used for the solar thermal enhanced oil recovery, generating steam injected into an oil field having an oil well for enhanced oil recovery. During the nighttime, when solar heating is not available, an oxy-fuel combustor produces carbon dioxide and nitrogen. The carbon dioxide is injected into the oil field for miscible enhanced oil recovery and the nitrogen is separately injected into the oil field for immiscible enhanced oil recovery.
    Type: Grant
    Filed: July 9, 2015
    Date of Patent: December 19, 2017
    Assignee: KING FAHD UNIVERSITY OF PETROLEUM AND MINERALS
    Inventors: Esmail Mohamed Ali Mokheimer, Mohamed Abdel-Aziz Mostafa Habib
  • Patent number: 9782718
    Abstract: Sweep-based gas separation processes for reducing carbon dioxide emissions from gas-fired power plants. The invention involves at least two compression steps, a combustion step, a carbon dioxide capture step, a power generate step, and a sweep-based membrane separation step. One of the compression steps is used to produce a low-pressure, low-temperature compressed stream that is sent for treatment in the carbon dioxide capture step, thereby avoiding the need to expend large amounts of energy to cool an otherwise hot compressed stream from a typical compressor that produces a high-pressure stream, usually at 20-30 bar or more.
    Type: Grant
    Filed: November 16, 2016
    Date of Patent: October 10, 2017
    Inventors: Richard W Baker, Timothy C Merkel