With Treatment Between Stages Patents (Class 60/39.17)
  • Patent number: 11753965
    Abstract: Variable bleed valves with inner wall controlled-flow circuits are disclosed. An example apparatus disclosed herein includes a casing segment defining a first flow path, a variable bleed valve port defining a second flow path, and a channel formed in the casing segment, the channel including a first opening into the first flow path, and a second opening into the second flow path, the channel defining a third flow path between the first opening and the second opening.
    Type: Grant
    Filed: April 28, 2022
    Date of Patent: September 12, 2023
    Assignee: General Electric Company
    Inventors: Nageswar Rao Ganji, Ravindra Shankar Ganiger, Hiranya Kumar Nath, Trevor H. Wood, Srinivas Nuthi
  • Patent number: 11702981
    Abstract: A gas turbine engine assembly includes a core engine that includes a core flow path where a core airflow is compressed in a compressor section, communicated to a combustor section, mixed with fuel and ignited to generate a high energy combusted gas flow that is expanded through a turbine section, a first tap at a location up stream of the combustor section for communicating a portion of the core airflow as a bleed airflow downstream of the combustor section, a heat exchanger that places the bleed airflow that is communicated from the first tap in thermal communication with the high energy combusted gas flow downstream of the combustor section, and a power turbine that is configured to generate shaft power from expansion of the heated bleed airflow, the power turbine includes an inlet that is configured to receive the heated bleed airflow from the heat exchanger.
    Type: Grant
    Filed: April 20, 2022
    Date of Patent: July 18, 2023
    Assignee: Raytheon Technologies Corporation
    Inventors: Stephen H. Taylor, Alan Retersdorf
  • Patent number: 11519303
    Abstract: A gas turbine includes: a compressor configured to compress air; a combustor configured to combust fuel in the air compressed by the compressor so as to generate combustion gas; and a turbine configured to be driven using the combustion gas. Air coolers are configured to bleed the air from a plurality of places having different pressures in the compressor and cool the air bled from the respective places so as to generate cooling air. A waste heat recovery device is configured to recover waste heat from at least two of the air coolers.
    Type: Grant
    Filed: May 6, 2020
    Date of Patent: December 6, 2022
    Assignee: MITSUBISHI HEAVY INDUSTRIES, LTD.
    Inventors: Hideyuki Uechi, Hideaki Sugishita, Yukimasa Nakamoto, Yuichi Oka
  • Patent number: 11506068
    Abstract: Turbine engine assembly comprising: an external casing (28) of a low-pressure compressor (4), an annular wall (30) and an oil tank (46) with a circular chamber (48) around an axis (14) of the compressor. The wall (30) comprises an inner surface (38) delimiting an primary guide path for the flow of the compressor, and an external surface (40) radially opposite the inner surface and delimiting the internal chamber (48) of the tank (46).
    Type: Grant
    Filed: September 3, 2018
    Date of Patent: November 22, 2022
    Assignee: SAFRAN AERO BOOSTERS SA
    Inventor: Jean Felske
  • Patent number: 11371429
    Abstract: Disclosed is an improved method and system of operating the semi-closed cycle, which both reduces parasitic loads for oxygen generation and for gas clean up, while also reducing, capital cost of the gas clean up plant (reduced drying requirement) and of the oxygen plant (enabling membranes vs. mole sieves). The invention is applicable to piston or turbine engines, and results in a near fully non-emissive power system via the Semi-Closed Cycle (SCC), in a manner which both captures carbon in the form of carbon dioxide, CO2, and in a manner which improves the efficiency and cost effectiveness of prior disclosures. The captured carbon is of a purity and pressure directly suitable for Enhanced Oil Recovery (EOR), sequestration, or industrial use.
    Type: Grant
    Filed: December 16, 2019
    Date of Patent: June 28, 2022
    Assignee: Enhanced Energy Group LLC.
    Inventor: Paul M Dunn
  • Patent number: 11319873
    Abstract: A turbo cluster gas turbine system includes: at least one combustor configured to combust a fuel to generate a combustion gas; an output turbine configured to be driven with the combustion gas from the at least one combustor; and a plurality of supercharging systems configured to supply compressed air to be supplied to the at least one combustor, wherein each of the supercharging systems includes: a first turbocharger having a rotation shaft formed separately from a rotation shaft of the output turbine and configured to be driven with the combustion gas from the combustor; a first air line for supplying compressed air compressed by a compressor of the first turbocharger to the combustor; and a first combustion gas line for supplying the combustion gas from the combustor to a turbine of the first turbocharger.
    Type: Grant
    Filed: February 3, 2020
    Date of Patent: May 3, 2022
    Assignee: MITSUBISHI HEAVY INDUSTRIES, LTD.
    Inventors: Ryo Takata, Takao Yokoyama, Kenji Nakamichi, Shinsuke Sato
  • Patent number: 11168888
    Abstract: An engine heater system for heating a diesel engine of a vehicle. The engine heater system including a gas turbine. A heat exchanger communicatively coupled to an exhaust of the gas turbine. An electric generator including connection members to couple to a battery of the vehicle, and a shaft rotatably attached between the gas turbine and the electric generator. The heat exchanger utilizes the exhaust of the gas turbine to keep the diesel engine of the vehicle within a desired temperature range, and the electric generator charges the battery when the gas turbine rotates the shaft.
    Type: Grant
    Filed: July 31, 2019
    Date of Patent: November 9, 2021
    Assignee: HotStart, Inc.
    Inventors: Benjamin J. Boyce, Michael T. Abbott
  • Patent number: 11112118
    Abstract: A control system for a gas turbine includes a controller. The controller includes a processor configured to receive a plurality of signals comprising a temperature signal, a pressure signal, a speed signal, a mass flow signal, or a combination thereof, from sensors disposed in the gas turbine system. The processor is further configured to apply the plurality of signals as input to a heating value model. The processor is also configured to execute the heating value model to derive a heating value for a fuel combusted by the gas turbine system. The processor is additionally configured to control operations of the gas turbine system based on the heating value for the fuel.
    Type: Grant
    Filed: June 27, 2016
    Date of Patent: September 7, 2021
    Assignee: General Electric Company
    Inventor: Veronica Elizabeth Vela
  • Patent number: 11098615
    Abstract: Methods and systems of power generation that integrate SCO2 Brayton and Rankin steam power cycles with fossil fuel combustion, One such method involves combusting a fuel material with an oxidizer material in a combustor to produce heat and a combustion exhaust. At least a portion of the combustion exhaust and a first portion of heat produced by the combustion processing are fed to a SCO2 Brayton power cycle to produce power and a second exhaust. At least a portion of the second exhaust and a second portion of heat produced by the combustion processing are feed to a steam Rankine power cycle to produce additional power and a third exhaust.
    Type: Grant
    Filed: September 21, 2017
    Date of Patent: August 24, 2021
    Assignee: GAS TECHNOLOGY INSTITUTE
    Inventors: Megan Huang, Anthony Eastland
  • Patent number: 11073080
    Abstract: Apparatus, systems, and methods store energy by liquefying a gas such as air, for example, and then recover the energy by regasifying the liquid and combusting or otherwise reacting the gas with a fuel to drive a heat engine. The process of liquefying the gas may be powered with electric power from the grid, for example, and the heat engine may be used to generate electricity. Hence, in effect these apparatus, systems, and methods may provide for storing electric power from the grid and then subsequently delivering it back to the grid.
    Type: Grant
    Filed: April 13, 2018
    Date of Patent: July 27, 2021
    Inventor: William M. Conlon
  • Patent number: 10851659
    Abstract: Disclosed is a vortex generating device having a body, extending between a leading edge and a trailing edge. The body, in profile cross sections taken across the spanwise direction, exhibits an airfoil-shaped geometry. Each airfoil-shaped profile cross section has a camber line extending from the leading edge to the trailing edge, at least two of the camber lines exhibiting different camber angles, such that the body exhibits at least two different flow deflection angles along the spanwise extent. An imaginary trailing edge diagonal extends straight from a first spanwise end of the trailing edge to a second spanwise end of the trailing edge. When seen from the downstream viewpoint, the trailing edge crosses the imaginary trailing edge diagonal exactly once at one diagonal crossing point.
    Type: Grant
    Filed: November 29, 2017
    Date of Patent: December 1, 2020
    Assignee: ANSALDO ENERGIA SWITZERLAND AG
    Inventors: Yang Yang, Andre Theuer
  • Patent number: 10815921
    Abstract: A method of controlling speed of an internal combustion engine is disclosed. The method includes receiving a load parameter input. The method also includes determining a requested speed demand and detecting a change in load based on the load parameter input. The method also includes determining a modified speed demand based on the detected change in load, and modifying the requested speed demand to the modified speed demand.
    Type: Grant
    Filed: March 17, 2017
    Date of Patent: October 27, 2020
    Assignee: Cummins, Inc.
    Inventors: Roger S. Zhang, Pan Wang, Joey Wang
  • Patent number: 10739233
    Abstract: A system and method for testing a combustor or other component of a large industrial gas turbine engine. A test facility for testing a gas turbine engine component includes a storage reservoir, a heat exchanger (13) with a first fluid flow passage connected to the storage reservoir and a second fluid flow passage, a combustor (18) connected to the second fluid flow passage of the heat exchanger (13), a hot gas stream from the combustor flowing within the second fluid flow passage, and a test component of a gas turbine engine connected to the second fluid flow passage of the heat exchanger (13). The compressed air from the storage reservoir (11) passes through the heat exchanger (13) first fluid flow passage and is preheated from the hot gas stream passing through the second fluid flow passage, and the preheated compressed air from the heat exchanger (13) passes into the test component for testing.
    Type: Grant
    Filed: September 26, 2016
    Date of Patent: August 11, 2020
    Assignee: Florida Turbine Technologies, Inc.
    Inventors: Joseph D. Brostmeyer, Russell B. Jones, James P. Downs
  • Patent number: 10590856
    Abstract: A gas turbine engine including a compressor, a turbine having one or more stages and a combustor, the combustor being located between the compressor and turbine. The gas turbine engine further includes a bleed from a core defined by a core duct, the core duct surrounding and extending between the turbine and combustor at least. The bleed includes at least one inlet located downstream of the combustor and upstream of at least one of the turbine stages. The turbine is arranged in use to drive the compressor. The bleed is arranged to be controllable in use to selectively bleed air from the core through the inlet and to thereby control the power delivered by the turbine to the compressor.
    Type: Grant
    Filed: July 13, 2015
    Date of Patent: March 17, 2020
    Assignee: ROLLS-ROYCE PLC
    Inventor: Nicholas Howarth
  • Patent number: 10584615
    Abstract: A power plant includes an exhaust duct that receives an exhaust gas from an outlet of the turbine outlet and an ejector having a primary inlet fluidly coupled to a compressor extraction port. The ejector receives a stream of compressed air from the compressor via the compressor extraction port. The power plant further includes a static mixer having a primary inlet fluidly coupled to a turbine extraction port, a secondary inlet fluidly coupled to an outlet of the ejector and an outlet that is in fluid communication with the exhaust duct. A stream of combustion gas flows from a hot gas path of the turbine and into the inlet of the static mixer via the turbine extraction port. The static mixer receives a stream of cooled compressed air from the ejector to cool the stream of combustion gas upstream from the exhaust duct. The cooled combustion gas mixes with the exhaust gas within the exhaust duct to provide a heated exhaust gas mixture to a heat exchanger.
    Type: Grant
    Filed: December 15, 2015
    Date of Patent: March 10, 2020
    Assignee: General Electric Company
    Inventors: Alston Ilford Scipio, Sanji Ekanayake, Joseph Philip Klosinski, George Vargese Mathai
  • Patent number: 10577982
    Abstract: A power plant includes a gas turbine including a turbine extraction port that is in fluid communication with a hot gas path of the turbine and an exhaust duct that receives exhaust gas from the turbine outlet. The power plant further includes a first gas cooler having a primary inlet fluidly coupled to the turbine extraction port, a secondary inlet fluidly coupled to a coolant supply system and an outlet in fluid communication with the exhaust duct. The power plant further includes a gas distribution manifold that is disposed downstream from the outlet of the first gas cooler and which receives a portion of the combustion gas or a portion of the cooled combustion gas and distributes the portion of the combustion gas or a portion of the cooled combustion to one or more secondary operations of the power plant.
    Type: Grant
    Filed: December 15, 2015
    Date of Patent: March 3, 2020
    Assignee: General Electric Company
    Inventors: Alston Ilford Scipio, Sanji Ekanayake, Joseph Philip Klosinski
  • Patent number: 10480403
    Abstract: A combustor having an ion transport membrane therein and an adjustable swirler, which is mechanically connected at an inlet of a combustion zone of the combustor; a combustion system comprising the combustor, a feedback control system adapted to adjust swirler blades of the combustor based on a compositional variation of a fuel stream, and a plurality of feedback control systems to control operational variables within the combustor for an efficient oxy-combustion; and a process for combusting a fuel stream via the combustion system. Various embodiments of the combustor, the combustion system, and the process for combusting the fuel stream are disclosed.
    Type: Grant
    Filed: November 30, 2016
    Date of Patent: November 19, 2019
    Assignee: King Fahd University of Petroleum and Minerals
    Inventors: Esmail M. A. Mokheimer, Yinka S. Sanusi
  • Patent number: 10450074
    Abstract: An aircraft pneumatic system includes a main gas turbine engine including a main compressor, a recuperated auxiliary gas turbine engine including a core compressor having an inlet in fluid communication with a main compressor bleed of the main gas turbine engine and an environmental control system inlet in fluid communication with the main compressor bleed of the main gas turbine engine. The environmental control system includes a compressor driveable by power provided by the auxiliary gas turbine engine.
    Type: Grant
    Filed: July 8, 2016
    Date of Patent: October 22, 2019
    Assignee: ROLLS-ROYCE plc
    Inventors: Rory D. Stieger, Ivan Popovic
  • Patent number: 10422535
    Abstract: The invention relates to a can-combustor for a can-annular combustor arrangement in a gas turbine. The can combustor includes an essentially cylindrical casing with an axially upstream front panel and an axially downstream outlet end. The can combustor further includes a number of premixed burners, extending in an upstream direction from said front panel and having a burner exit, supported by this front panel, for supplying a fuel/air mixture into a combustion zone inside the casing. Up to four premixed burners are attached to the front panel in a substantially annular array. Each burner has a conical swirl generator and a mixing tube to induce a swirl flow of said fuel/air mixture.
    Type: Grant
    Filed: April 24, 2014
    Date of Patent: September 24, 2019
    Assignee: ANSALDO ENERGIA SWITZERLAND AG
    Inventors: Klaus Knapp, Naresh Aluri, Nicolas Tran, Ulrich Rathmann, Franklin Marie Genin
  • Patent number: 10415476
    Abstract: A power plant includes a first gas turbine and a second gas turbine. The first gas turbine includes a turbine extraction port that is in fluid communication with a hot gas path of the turbine and an exhaust duct that receives exhaust gas from the turbine outlet. The power plant further includes a first gas cooler having a primary inlet fluidly coupled to the turbine extraction port, a secondary inlet fluidly coupled to a coolant supply system and an outlet in fluid communication with the exhaust duct. The first gas cooler provides a cooled combustion gas to the exhaust duct which mixes with the exhaust gas to provide an exhaust gas mixture to a first heat exchanger downstream from the exhaust duct. At least one of a compressor and a turbine of the second gas turbine are in fluid communication with the outlet of the first gas cooler.
    Type: Grant
    Filed: December 15, 2015
    Date of Patent: September 17, 2019
    Assignee: General Electric Company
    Inventors: Joseph Philip Klosinski, Alston Ilford Scipio, Sanji Ekanayake, Paul Robert Fernandez
  • Patent number: 10415432
    Abstract: A power plant includes a gas turbine including a turbine extraction port that is in fluid communication with a hot gas path of the turbine and an exhaust duct that receives exhaust gas from the turbine outlet. The power plant further includes a first gas cooler having a primary inlet fluidly coupled to the turbine extraction port, a secondary inlet fluidly coupled to a coolant supply system and an outlet in fluid communication with the exhaust duct. The first gas cooler provides a cooled combustion gas to the exhaust duct which mixes with the exhaust gas to provide an exhaust gas mixture to a heat exchanger downstream from the exhaust duct. The power plant further includes a fuel heater in fluid communication with the outlet of the first gas cooler.
    Type: Grant
    Filed: December 15, 2015
    Date of Patent: September 17, 2019
    Assignee: General Electric Company
    Inventors: Alston Ilford Scipio, Sanji Ekanayake, Joseph Philip Klosinski, Paul Robert Fernandez, David Clayton Poole
  • Patent number: 10337403
    Abstract: A gas turbine combined cycle (GTCC) facility (10A) provided with a gas turbine unit (20), a heat recovery steam generator (30) for recovering heat and producing steam from exhaust gas produced by the gas turbine unit (20), and an exhaust duct (32) for guiding the exhaust gas of the gas turbine unit (20) to the heat recovery steam generator (30). At least a portion of the heat recovery steam generator (30) is disposed in the same plane as the gas turbine unit (20), and the heat recovery steam generator (30) is disposed side-by-side so that a direction in which exhaust gas flows in the heat recovery steam generator is parallel to a turbine axis direction of the gas turbine unit.
    Type: Grant
    Filed: May 30, 2014
    Date of Patent: July 2, 2019
    Assignee: MITSUBISHI HEAVY INDUSTRIES COMPRESSOR CORPORATION
    Inventors: Hideki Nagao, Masahiro Kobayashi
  • Patent number: 10316858
    Abstract: There is provided a compressing apparatus housing including: an inner housing unit configured to house at least a portion of an impeller unit; an outer housing unit including an inner housing receiving unit configured to receive at least a portion of the inner housing unit; and an intermediate housing unit provided between the inner housing unit and the outer housing unit and configured to form a flow path together with at least one of the inner housing unit and the outer housing unit.
    Type: Grant
    Filed: May 14, 2015
    Date of Patent: June 11, 2019
    Assignee: Hanwha Techwin Co., Ltd.
    Inventors: Jongjae Cho, Yeonhwa Cho, Bonggun Shin, Kangsoo Im
  • Patent number: 10222067
    Abstract: The invention provides a new path of combustion technology for gas turbine operation with multifuel capability, low emissions of NOx and CO and high thermal efficiency. Further to the present invention providing a method for operating a combustor for a gas turbine and a combustor for a gas turbine are disclosed. The combustor includes a first combustion chamber with a wide operating range, a subsequent deflection unit for deflecting the hot gas flow of the first combustion chamber at least in circumferential direction and components for injecting and mixing additional air and/or fuel, and a sequential combustion chamber with a short residence time, where the temperature of the hot gases reaches its maximum.
    Type: Grant
    Filed: December 18, 2014
    Date of Patent: March 5, 2019
    Assignee: ANSALDO ENERGIA SWITZERLAND AG
    Inventors: Klaus Doebbeling, Ewald Freitag
  • Patent number: 10138815
    Abstract: A system is provided with a turbine combustor having a first diffusion fuel nozzle, wherein the first diffusion fuel nozzle is configured to produce a diffusion flame. The system includes a turbine driven by combustion products from the diffusion flame in the turbine combustor. The system also includes an exhaust gas compressor, wherein the exhaust gas compressor is configured to compress and route an exhaust gas from the turbine to the turbine combustor along an exhaust recirculation path. In addition, the system includes a first catalyst unit disposed along the exhaust recirculation path.
    Type: Grant
    Filed: October 30, 2013
    Date of Patent: November 27, 2018
    Assignees: General Electric Company, ExxonMobil Upstream Research Company
    Inventors: Richard A. Huntington, Sulabh K. Dhanuka, Ilya Aleksandrovich Slobodyanskiy
  • Patent number: 10119460
    Abstract: A system includes an engine coupled with a primary shaft that drives a first electric generator for generating electrical power via a gear subsystem. The system also includes a turbocharger assembly having at least one gas turbine engine configured for driving the primary shaft and coupled in parallel with the engine. The turbocharger assembly includes multiple compressors configured to provide a flow of compressed fluid into both the engine and the at least one gas turbine engine and multiple turbines configured to utilize exhausts from both the engine and the one gas turbine for driving the primary shaft. Further, the system includes a controller configured to operate a plurality of valves for controlling optimal intake fluid pressure into the engine and the turbocharger assembly and fuel injections into the engine and the at least one gas turbine engine.
    Type: Grant
    Filed: September 18, 2014
    Date of Patent: November 6, 2018
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: Roy James Primus, Adam Edgar Klingbeil, Narendra Digamber Joshi, Omowoleola Chukwuemeka Akinyemi, Thomas Michael Lavertu
  • Patent number: 10101092
    Abstract: The present disclosure relates to a power generation system and related methods that use closed supercritical fluid cycles, and in particular, to a power generation system and related methods where multiple cores may be selectively operated to adjust power levels generated by the system.
    Type: Grant
    Filed: August 21, 2015
    Date of Patent: October 16, 2018
    Assignee: Peregrine Turbine Technologies, LLC
    Inventors: David S. Stapp, Robert Brooks
  • Patent number: 10094569
    Abstract: Embodiments of the present disclosure provide an apparatus comprising: a reaction chamber positioned between a first turbine stage of a power generation system and a turbine stage of the power generation system, wherein the turbine stage comprises a turbine nozzle and a turbine blade row; a plurality of injectors positioned on a wall of the reaction chamber; and a conduit in fluid communication with the plurality of injectors, wherein the conduit delivers at least one of fuel from a fuel supply line to the reaction chamber through the plurality of injectors.
    Type: Grant
    Filed: December 11, 2014
    Date of Patent: October 9, 2018
    Assignee: General Electric Company
    Inventors: Lewis Berkley Davis, Jr., Gregory Thomas Foster, Kaitlin Marie Graham, Krishnakumar Venkataraman, Stanley Kevin Widener
  • Patent number: 10060301
    Abstract: Gas turbine unit (GTV) provides compressed air and steam methane-hydrogen mixture to a combustion chamber to enrich combustion products and cooling by evaporation or superheating of water steam. The temperature of heat exchange processes of the gas turbine unit is increased by additional fuel combustion in the steam-methane-hydrogen mixture postcombustion flow extracted at the output from the additional free work gas turbine, and before supply of steam-methane-hydrogen mixture to the combustion chamber it is previously cooled to the temperature of 200+240° C. with simultaneous differential condensation of water steam. The condensate is processed for preparation of methane steam-gas mixture and low pressure water steam which is passed through the additional free work gas turbine.
    Type: Grant
    Filed: December 27, 2013
    Date of Patent: August 28, 2018
    Assignee: PUBLICHNOE AKTSIONERNOE OBSCHESTVO “GAZPROM”
    Inventors: Aksyutin Oleg Evgenyevich, Eliseev Yury Sergeevich, Ishkov Aleksandr Gavrilovich, Kazaryan Varazdat Amayakovich, Klychkov Mikhail Vladimirovich, Petrov Vitaly Silvestrovich, Stolyarevsky Anatoly Yakovlevich, Fedorchenko Dmitry Gennadyevich, Khloptsov Valery Gennadyevich
  • Patent number: 9890709
    Abstract: A method and system to extract gas from a gas turbine having at least one gas extraction mechanism placed at the turbine section that extracts exhaust gas directly from the turbine stages through the turbine casing, providing a first exhaust gas path that extends from the turbine section through the exhaust section to the exhaust gas outlet, and a second exhaust gas path for extracted exhaust gas extending directly from the turbine stages inside the turbine casing to a duct outside of the turbine casing. The gas extraction system and method can be applied to a cogeneration system.
    Type: Grant
    Filed: November 3, 2014
    Date of Patent: February 13, 2018
    Assignee: General Electric Company
    Inventors: Joseph Philip Klosinski, Michael Anthony Cocca, Alston Ilford Scipio, Patrick C. Bowling, Sanji Ekanayake
  • Patent number: 9857079
    Abstract: A combustion device (1) for a gas turbine includes portions (12) having an inner and an outer wall (13, 14) with an interposed noise absorption plate (15) having a plurality of holes (16). The combustion device (1) further has first passages (17) connecting zones between the inner wall (13) and the plate (15) to the inside of the combustion device (1) and second passages (21) for cooling the inner wall (13). The portions (12) also have an inner layer (22) between the inner wall (13) and the plate (15) defining inner chambers (23), each connected to at least a first passage (17), and an outer layer (24) between the outer wall (14) and the plate (15) defining outer chambers (25) connected to the inner chambers (23) via the holes (16) of the plate (15).
    Type: Grant
    Filed: February 17, 2015
    Date of Patent: January 2, 2018
    Assignee: ANSALDO ENERGIA IP UK LIMITED
    Inventors: Andreas Huber, Nicolas Noiray, Bruno Schuermans, Urs Benz
  • Patent number: 9782714
    Abstract: A system and method for storing nitrogen-enriched air (NEA) comprising an air separation device (ASM) and producing NEA in the ASM. One example implementation may include bleed air being supplied to a pressure intensifier. The pressure intensifier is powered by NEA compressed by a first compressor, and the pressure of the bleed air is increased by the pressure intensifier and supplied to an ASM. In another example implementation, a turbine may be drivingly connected to a second compressor and the bleed air supplied to the second compressor. The NEA compressed by the first compressor is supplied to and drives the turbine, which drives the second compressor, and the air compressed by the second compressor is supplied to the ASM. In another example implementation, a turbine may drive an electric generator, which in turn may power an electric motor that drives the second compressor.
    Type: Grant
    Filed: February 9, 2015
    Date of Patent: October 10, 2017
    Assignee: THE BOEING COMPANY
    Inventors: Donald Ray Snow, Jr., Anthony J. Banker
  • Patent number: 9695749
    Abstract: This invention relates to electrical power systems, including generating capacity of a gas turbine, and more specifically to augmentation of power output of gas turbine systems, that is useful for providing additional electrical power during periods of peak electrical power demand.
    Type: Grant
    Filed: March 31, 2013
    Date of Patent: July 4, 2017
    Assignee: POWERPHASE LLC
    Inventor: Robert J. Kraft
  • Patent number: 9689317
    Abstract: A system and method for operating a gas turbine include a controller that determines, for at least one combustion instability, a frequency; a quantification of the frequency or a quantification of the frequency through time; and, optionally, a phase and/or an amplitude. The logic also causes the controller to compare the frequency, the quantification of the frequency or the quantification of the frequency through time, the phase, and/or the amplitude of the at least one combustion instability to an associated predetermined limit. When the frequency is actionable relative to its predetermined limit and one of the quantification of the frequency or the quantification of the frequency through time is actionable relative to its respective predetermined limit, at least one parameter of the gas turbine is adjusted. The quantification of the frequency is one of the standard deviation, the coefficient of variation, the index of dispersion, and the variance.
    Type: Grant
    Filed: February 3, 2014
    Date of Patent: June 27, 2017
    Assignee: General Electric Company
    Inventors: Sarah Lori Crothers, Gregory Allen Boardman
  • Patent number: 9599021
    Abstract: Systems, methods, and apparatus are provided for controlling the oxidant feed in low emission turbine systems to maintain stoichiometric or substantially stoichiometric combustion conditions. In one or more embodiments, such control is achieved by diverting a portion of the recirculating exhaust gas and combining it with the oxidant feed to maintain a constant oxygen level in the combined oxidant-exhaust stream fed to the combustion chamber.
    Type: Grant
    Filed: March 5, 2012
    Date of Patent: March 21, 2017
    Assignee: ExxonMobil Upstream Research Company
    Inventors: Franklin F. Mittricker, Richard A. Huntington, Sulabh K. Dhanuka, Omar Angus Sites
  • Patent number: 9562473
    Abstract: The gas turbine facility 10 of the embodiment includes a combustor 20 combusting fuel and oxidant, a turbine 21 rotated by combustion gas, a heat exchanger 23 cooling the combustion gas, a heat exchanger 24 removing water vapor from the combustion gas which passed through the heat exchanger 23 to regenerate dry working gas, and a compressor 25 compressing the dry working gas until it becomes supercritical fluid. Further, the gas turbine facility 10 includes a pipe 42 guiding a part of the dry working gas from the compressor 25 to the combustor 20 via the heat exchanger 23, a pipe 44 exhausting a part of the dry working gas to the outside, and a pipe 45 introducing a remaining part of the dry working gas exhausted from the compressor 25 into a pipe 40 coupling an outlet of the turbine 21 and an inlet of the heat exchanger 23.
    Type: Grant
    Filed: August 11, 2014
    Date of Patent: February 7, 2017
    Assignee: 8 RIVERS CAPITAL, LLC
    Inventors: Masao Itoh, Nobuhiro Okizono, Hideyuki Maeda, Yasunori Iwai, Jeremy Eron Fetvedt, Rodney John Allam
  • Patent number: 9551292
    Abstract: Engine systems and associated methods, including systems with semi-isothermal compression devices are disclosed. An engine system in accordance with a particular embodiment includes a compressor having a compressor inlet and outlet, a combustor having a combustor inlet coupled to the compressor outlet and further having a combustor outlet, a positive displacement expander having an expander inlet coupled to the combustor outlet, and further having an expander outlet and a work output device. A valve is coupled between the combustor and the expander to regulate a flow of hot combustion products passing from the combustor to the expander, and an exhaust energy recovery device is coupled to the expander outlet to extract energy from the combustion products exiting the expander.
    Type: Grant
    Filed: December 19, 2013
    Date of Patent: January 24, 2017
    Assignee: Bright Energy Storage Technologies, LLP
    Inventors: Scott R. Frazier, Alex Lau, Brian Von Herzen
  • Patent number: 9534541
    Abstract: A gas turbine engine is presented. The gas turbine engine includes a control unit having a first bypass channel that is coupled between an outlet of a first turbine and an inlet of a second turbine. Further, the control unit includes a second bypass channel coupled between a first outlet of a compressor unit and the inlet of the second turbine. Additionally, the control unit includes a first control valve coupled to the first bypass channel and configured to direct at least a first portion of exhaust gas from the first turbine to the inlet of the second turbine via the first bypass channel. Furthermore, the control unit includes a second control valve coupled to the second bypass channel and configured to direct at least a first portion of compressed air from the compressor unit to the inlet of the second turbine via the second bypass channel.
    Type: Grant
    Filed: October 11, 2013
    Date of Patent: January 3, 2017
    Assignee: General Electric Company
    Inventors: Kapil Kumar Singh, Sherif Hatem Abdulla Mohamed
  • Patent number: 9512759
    Abstract: A system includes a turbine combustor, a turbine, an exhaust gas compressor, a flow path, and at least one catalytic converter. The turbine is driven by combustion products from the turbine combustor. The exhaust compressor is configured to compress and route an exhaust gas from the turbine to the turbine combustor. The flow path leads from the exhaust gas compressor, through turbine combustor, and into the turbine. The catalytic converter is disposed along the flow path.
    Type: Grant
    Filed: February 5, 2014
    Date of Patent: December 6, 2016
    Assignees: General Electric Company, ExxonMobil Upstream Research Company
    Inventors: Veerappan Muthaiah, Kamlesh Mundra
  • Patent number: 9482579
    Abstract: Various embodiments include systems and apparatuses adapted for detecting two-dimensional turbomachine exhaust temperature. In some embodiments, a system includes a two-dimensional grid sized to mount within an exhaust path of a gas turbomachine, a radiation detection device for detecting radiation emitted from the two-dimensional grid at a plurality of points on the two-dimensional grid, the radiation detection device being mountable proximate the exhaust path and the two-dimensional grid and at least one computing device connected with the radiation detection device, the at least one computing device configured to generate a planar map of the temperature of the exhaust from the gas turbomachine based upon the intensity of the radiation emitted from two-dimensional grid detected at the plurality of points on the two-dimensional grid.
    Type: Grant
    Filed: September 3, 2013
    Date of Patent: November 1, 2016
    Assignee: General Electric Company
    Inventors: Vivek Venugopal Badami, Daniel Francesco Driscoll, Scott Francis Johnson, Paul Joseph Martin, Nilesh Tralshawala, Guanghua Wang
  • Patent number: 9388737
    Abstract: The invention relates generally to electrical power systems, including generating capacity of a gas turbine, and more specifically to pressurized air injection that is useful for providing additional electrical power during periods of peak electrical power demand from a gas turbine system power plant, as well as to inlet heating to allow increased engine turn down during periods of reduced electrical demand.
    Type: Grant
    Filed: October 3, 2013
    Date of Patent: July 12, 2016
    Assignee: POWERPHASE LLC
    Inventor: Robert J. Kraft
  • Patent number: 9352843
    Abstract: A gas turbine engine has a core engine incorporating a core engine turbine. A fan rotor is driven by a fan rotor turbine. The fan rotor turbine is in the path of gases downstream from the core engine turbine. A bypass door is moveable from a closed position at which the gases from the core engine turbine pass over the fan rotor turbine, and moveable to a bypass position at which the gases are directed away from the fan rotor turbine. An aircraft is also disclosed.
    Type: Grant
    Filed: December 31, 2012
    Date of Patent: May 31, 2016
    Assignee: United Technologies Corporation
    Inventors: Gabriel L. Suciu, Jesse M. Chandler
  • Patent number: 9127598
    Abstract: Ambient air is compressed into a compressed ambient gas flow with a main air compressor. The compressed ambient gas flow having a compressed ambient gas flow rate is delivered to a turbine combustor and mixed with a fuel stream having a fuel stream flow rate and a portion of a recirculated low oxygen content gas flow to form a combustible mixture. The combustible mixture is burned and forms the recirculated low oxygen content gas flow that drives a turbine. A portion of the recirculated low oxygen content gas flow is recirculated from the turbine to the turbine compressor using a recirculation loop. The compressed ambient gas flow rate and the fuel stream flow rate are adjusted to achieve substantially stoichiometric combustion. An excess portion, if any, of the compressed ambient gas flow is vented. A portion of the recirculated low oxygen content gas flow is extracted using an extraction conduit.
    Type: Grant
    Filed: August 25, 2011
    Date of Patent: September 8, 2015
    Assignee: General Electric Company
    Inventors: Daniel David Snook, Lisa Anne Wichmann, Samuel David Draper, Noémie Dion Ouellet
  • Patent number: 9097184
    Abstract: In certain exemplary embodiments, a system includes an annular duct having an inner annular wall and an outer annular wall. The system also includes a plurality of injector vanes configured to mix air and fuel to produce an air-fuel mixture, and configured to inject the air-fuel mixture into a central chamber between the inner and outer annular walls.
    Type: Grant
    Filed: December 29, 2010
    Date of Patent: August 4, 2015
    Assignee: General Electric Company
    Inventors: Sergey Aleksandrovich Stryapunin, Kevin Weston McMahan, Geoffrey David Myers
  • Patent number: 9062608
    Abstract: The present invention provides methods and system for power generation using a high efficiency combustor in combination with a CO2 circulating fluid. The methods and systems advantageously can make use of a low pressure ratio power turbine and an economizer heat exchanger in specific embodiments. Additional low grade heat from an external source can be used to provide part of an amount of heat needed for heating the recycle CO2 circulating fluid. Fuel derived CO2 can be captured and delivered at pipeline pressure. Other impurities can be captured.
    Type: Grant
    Filed: March 14, 2013
    Date of Patent: June 23, 2015
    Assignees: Palmer Labs, LLC, 8 Rivers Capital, LLC
    Inventors: Rodney John Allam, Miles R. Palmer, Glenn William Brown, Jr.
  • Patent number: 9032737
    Abstract: A gas turbine engine having a ramburner is disclosed. The ramburner is disposed downstream of a gas turbine engine combustor and receives an engine exhaust flow from the gas turbine engine combustor. The ramburner also accepts a bypass air. Fuel is injected into the ramburner and a combustion reaction is auto-initiated based upon local gas temperatures. No mechanical flame holders need be used. A slidable valve may be used to vary the amount of bypass air into the ramburner. A movable cowl and a plug nozzle form an exit flow path of the gas turbine engine. The movable cowl can be positioned to vary a throat area and exit area of the gas turbine engine based upon the operation of the ramburner, which may be influenced by the amount of bypass air entering the ramburner.
    Type: Grant
    Filed: December 22, 2010
    Date of Patent: May 19, 2015
    Assignee: Rolls-Royce North American Technologies, Inc.
    Inventors: Robert A. Ress, Jr., Victor L. Oechsle, Randall E. Yount, Stephen A. Bergeron
  • Publication number: 20150101340
    Abstract: A gas turbine engine is presented. The gas turbine engine includes a control unit having a first bypass channel that is coupled between an outlet of a first turbine and an inlet of a second turbine. Further, the control unit includes a second bypass channel coupled between a first outlet of a compressor unit and the inlet of the second turbine. Additionally, the control unit includes a first control valve coupled to the first bypass channel and configured to direct at least a first portion of exhaust gas from the first turbine to the inlet of the second turbine via the first bypass channel. Furthermore, the control unit includes a second control valve coupled to the second bypass channel and configured to direct at least a first portion of compressed air from the compressor unit to the inlet of the second turbine via the second bypass channel.
    Type: Application
    Filed: October 11, 2013
    Publication date: April 16, 2015
    Applicant: General Electric Company
    Inventors: Kapil Kumar Singh, Sherif Hatem Abdulla Mohamed
  • Publication number: 20150040573
    Abstract: In a method for the low-CO emissions part load operation of a gas turbine with sequential combustion, the opening of the row of variable compressor inlet guide vanes is controlled depending on the temperatures of the operative burners of the second combustor and simultaneously the number of operative burners is kept at a minimum. This leads to low CO emissions at partial load of the gas turbine.
    Type: Application
    Filed: July 21, 2014
    Publication date: February 12, 2015
    Inventors: Theodoros FERREIRA-PROVIDAKIS, Ghislain Singla, Thiemo Meeuwissen, Sebastian Lipari
  • Publication number: 20150007547
    Abstract: The combustion device includes a burner, a combustion chamber downstream of the burner, a lance projecting into the burner for fuel and air injection, and a plenum that at least partly houses the burner. The plenum is connected to the inside of the lance to supply an oxidiser to it.
    Type: Application
    Filed: September 19, 2014
    Publication date: January 8, 2015
    Inventors: Michael DUESING, Andrea Ciani, Adnan Eroglu
  • Publication number: 20140366550
    Abstract: A gas turbine engine and method for operating a gas turbine engine includes compressing an air stream in a compressor and combusting the compressed air stream to generate a post combustion gas. The post combustion gas is expanded in a first turbine. The expanded combustion gas exiting the first turbine is split into a first stream, a second stream and a third stream in a splitting zone including one or more aerodynamically shaped flow diverters. The first stream of the expanded combustion gas is combusted in a reheat combustor. An outer liner and flame stabilizer of the reheat combustor are cooled using the second stream of the expanded combustion gas. An inner liner of the reheat combustor is cooled using the third stream of the expanded combustion gas and a portion of the second stream of the expanded combustion gas passing through the one or more flame stabilizers.
    Type: Application
    Filed: June 18, 2013
    Publication date: December 18, 2014
    Inventors: Ronald Scott Bunker, Andrei Tristan Evulet