Oxidizer And Fuel Patents (Class 60/39.27)
  • Patent number: 9297531
    Abstract: A gas turbine engine is provided. The gas turbine engine includes an air inlet, a combustor, an exhaust and first and second measurement devices. A plurality of fuel supply lines is provided to the at least one combustor. The first measurement device measures an amount of a gas in the air inlet. The second measurement device measures an amount of the gas in the exhaust. A control unit varies the fuel supply in the plurality of fuel supply lines so as to control the amount of the gas in the exhaust. The variation is made in dependence upon both the measured amount of the gas in the air inlet and the measured amount of the gas in the exhaust.
    Type: Grant
    Filed: August 13, 2009
    Date of Patent: March 29, 2016
    Assignee: SIEMENS AKTIENGESELLSCHAFT
    Inventor: Robert Pearce
  • Patent number: 9158302
    Abstract: An overheating detection processing system monitors in real time and stores data samples from the different types of power plant overheating detectors. The system determines a likelihood of whether a stored detector output sample reading, alone or in combination with other readings, is indicative of monitored power plant equipment overheating. The system references previously stored information in an information storage device that associates respective types of detector sample reading levels with equipment overheating. The system also compares a combination of stored sample readings and establishes overheating determination confidence levels. The confidence levels information is combined to derive an overall confidence level of whether the power plant equipment is overheated. An overheating alarm response is initiated if an overheating condition is determined at any confidence level. Additional responses are made based on a combination of calculated confidence levels.
    Type: Grant
    Filed: May 4, 2012
    Date of Patent: October 13, 2015
    Assignee: Siemens Energy, Inc.
    Inventor: Edward D. Thompson
  • Patent number: 9099882
    Abstract: A method for controlling a hybrid machine is disclosed. The hybrid machine may be equipped with a turbine engine, a generator connected in series with the turbine engine, an electrical energy storage device, and a motor drivingly connected to a power output component for the hybrid machine. A controller may receive a power demand signal, determine a power level in the electrical energy storage device, determine available inertial energy stored at least in rotating components of the turbine engine and the generator, and provide one or more control signals to selectively control powering the turbine engine to full power, selectively turn off all fuel to the turbine engine, selectively store excess energy as electrical energy by directing excess electrical energy from the generator to the electrical energy storage device, and selectively store excess energy as inertial energy.
    Type: Grant
    Filed: January 18, 2013
    Date of Patent: August 4, 2015
    Assignee: Caterpillar Inc.
    Inventors: Bryan Gerard Lammers, Daniel Edward Henderson, James Allen Roal, Jackson Wai
  • Publication number: 20150113996
    Abstract: A control system for a gas turbine engine is disclosed. The control system may include a computer processor. The control system may also include an outer loop control module programmed into the computer processor to determine a torque request based at least in part on a real-time collective lever angle command. The control system may also include an inner loop control module programmed into the computer processor to receive the torque request from the outer loop control module, to determine fuel flow and inlet guide vane schedules based at least in part on the received torque request, and to send signals to a gas generator of the gas turbine engine in order to control the gas generator according to the determined fuel flow and inlet guide vane schedules.
    Type: Application
    Filed: May 20, 2014
    Publication date: April 30, 2015
    Applicant: United Technologies Corporation
    Inventors: Chaohong Cai, Timothy J. Crowley, Richard P. Meisner
  • Patent number: 9010082
    Abstract: According to one aspect of the invention, a gas turbine engine includes a combustor, a fuel nozzle placed in an end of the combustor, and a passage configured to receive an air flow from a compressor discharge casing, wherein the passage directs the air flow into a chamber downstream of the nozzle, wherein a chamber pressure is lower than a compressor discharge casing pressure. The gas turbine engine also includes a flow control device configured to control the air flow from the compressor discharge casing into the passage.
    Type: Grant
    Filed: January 3, 2012
    Date of Patent: April 21, 2015
    Assignee: General Electric Company
    Inventors: Lucas John Stoia, Patrick Benedict Melton, Predrag Peja Popovic
  • Patent number: 9014945
    Abstract: A system is provided that includes a memory storing a turbomachinery degradation model configured to model degradation of a turbomachinery over time. The system also includes a controller communicatively coupled to the memory and configured to control the turbomachinery based on a feedback signal and the turbomachinery degradation model. Moreover, the turbomachinery degradation model is configured to use a target power to derive a control parameter by estimating a modeled power of the turbomachinery, and the controller is configured to use the control parameter to control the turbomachinery.
    Type: Grant
    Filed: March 8, 2013
    Date of Patent: April 21, 2015
    Assignee: General Electric Company
    Inventors: Sidharth Abrol, David Spencer Ewens, Alan Meier Truesdale
  • Patent number: 8959925
    Abstract: A method is disclosed for controlling gas turbine operation in response to lean blowout of a combustion can. The gas turbine comprises a pair of combustion cans. The method includes sensing that a first combustion can is extinguished during a full load operation of the gas turbine, adjusting a fuel ratio between the fuel nozzles in each can, delivering a richer fuel mixture to the fuel nozzles nearest to the cross-fire tubes, generating a cross-fire from the second combustion can to the first combustion can, detecting a recovery of the turbine load, and adjusting the fuel ratio to the normal balanced fuel distribution between the fuel nozzles in each can.
    Type: Grant
    Filed: January 18, 2012
    Date of Patent: February 24, 2015
    Assignee: General Electric Company
    Inventors: Bryan Wesley Romig, Derrick Walter Simons, Venkat Narra
  • Publication number: 20150033749
    Abstract: In one embodiment, a system includes a turbine combustor having a combustor liner disposed about a combustion chamber, a head end upstream of the combustion chamber relative to a downstream direction of a flow of combustion gases through the combustion chamber, a flow sleeve disposed at an offset about the combustor liner to define a passage, and a barrier within the passage. The head end is configured to direct an oxidant flow and a first fuel flow toward the combustion chamber. The passage is configured to direct a gas flow toward the head end and to direct a portion of the oxidant flow toward a turbine end of the turbine combustor. The gas flow includes a substantially inert gas. The barrier is configured to block the portion of the oxidant flow toward the turbine end and to block the gas flow toward the head end within the passage.
    Type: Application
    Filed: July 28, 2014
    Publication date: February 5, 2015
    Inventors: Ilya Aleksandrovich Slobodyanskiy, Lewis Berkley Davis, JR., Karl Dean Minto
  • Patent number: 8931283
    Abstract: A reformer for use in a gas turbine engine specially configured to treat a supplemental fuel feed to the combustor that includes a reformer core containing a catalyst composition and an inlet flow channel for transporting the reformer fuel mixture, air and steam (either saturated or superheated) into a reformer core. An outlet flow channel transports the resulting reformate stream containing reformed and thermally cracked hydrocarbons and substantial amounts of hydrogen out of the reformer core for later combination with the main combustor feed. Because the catalytic partial oxidation reaction in the reformer is highly exothermic, the additional heat is transferred (and thermally integrated) using one or more heat exchange units for a first and/or second auxiliary gas turbine fuel stream that undergo thermal cracking and vaporization before combining with the reformate. The combined, hydrogen-enriched feed significantly improves combustor performance.
    Type: Grant
    Filed: January 21, 2011
    Date of Patent: January 13, 2015
    Assignee: General Electric Company
    Inventors: Abdul Rafey Khan, Hasan Karim, Jonathan Dwight Berry
  • Patent number: 8881529
    Abstract: A gas turbine, in particular a gas turbine aircraft engine, including a fuel supply device and a control device, wherein at least parts of the control device, in particular of an engine control device, are integrated into the fuel supply device.
    Type: Grant
    Filed: May 9, 2007
    Date of Patent: November 11, 2014
    Assignee: MTU Aero Engines GmbH
    Inventor: Peter Wittmann
  • Patent number: 8850790
    Abstract: Methods and apparatus are provided for selectively controlling the rotational speed of a gas turbine engine that drives a load compressor having movable inlet guide vanes and that is coupled to receive fuel at a fuel flow rate up to a maximum fuel flow rate. The rotational speed of the gas turbine engine, and the fuel flow rate to the gas turbine engine, are both sensed. If the sensed rotational speed of the gas turbine engine is less than a predetermined value and the sensed fuel flow rate to the gas turbine engine equals or exceeds the maximum fuel flow rate, the position of the inlet guide vanes is controlled to reduce load compressor mechanical load on the gas turbine engine.
    Type: Grant
    Filed: July 22, 2011
    Date of Patent: October 7, 2014
    Assignee: Honeywell International Inc.
    Inventors: Larry McLeister, Kevin Moeckly, Ammon Hancock
  • Patent number: 8826670
    Abstract: A method is provided for operating a gas turbine in a power station in which limits of the operating concept, which provide limits for optimization of the power station operation in respect of efficiency, service life consumption, emissions and power provision to the grid system, are adapted during operation. In particular, temperature limits and compressor inlet guide vane position limits are varied as a function of the optimization aims. A gas turbine power station is also provided for carrying out the method.
    Type: Grant
    Filed: September 3, 2010
    Date of Patent: September 9, 2014
    Assignee: Alstom Technology Ltd
    Inventors: Jürgen Hoffmann, Johann Josef Daxer, Bernhard Wippel, Klaus-Dieter Liedtke
  • Patent number: 8726671
    Abstract: A method of transitioning from a first operating mode to a second operating in a gas turbine engine. An amount of fuel provided to a primary fuel injection system of the combustor apparatus is reduced. An amount of fuel provided to a secondary fuel/air injection system of the combustor apparatus is reduced, wherein the secondary fuel/air injection system provides fuel to a secondary combustion zone downstream from a main combustion zone. A total amount of air provided to the combustor apparatus is reduced, wherein portions of the air are provided to each of the injection systems. Upon reaching operating parameters corresponding to the second operating mode, the amount of fuel provided to the primary fuel injection system is increased, the amount of fuel provided to the secondary fuel/air injection system is reduced, and the total amount of air provided to the combustor apparatus is increased.
    Type: Grant
    Filed: July 14, 2010
    Date of Patent: May 20, 2014
    Assignee: Siemens Energy, Inc.
    Inventors: Weidong Cai, Clifford E. Johnson
  • Publication number: 20140109586
    Abstract: The invention discloses a method for operating a gas turbine with sequential combustion, which gas turbine includes a compressor, a first combustor with a first combustion chamber and first burners, which receives compressed air from the compressor, a second combustor with a second combustion chamber and second burners, which receives hot gas from the first combustor with a predetermined second combustor inlet temperature, and a turbine, which receives hot gas from the second combustor. The CO emission for part-load operation is reduced by reducing the second combustor inlet temperature for base-load operation of the gas turbine, and increasing the second combustor inlet temperature when decreasing the gas turbine load (RLGT) from base-load to part-load.
    Type: Application
    Filed: October 22, 2013
    Publication date: April 24, 2014
    Applicant: ALSTOM Technology Ltd
    Inventors: Andrea CIANI, Adnan Eroglu, Douglas Anthony Pennell, Nicolas Tran, Ewald Freitag
  • Patent number: 8701420
    Abstract: A gas turbine control device having a gas turbine control unit for the gas turbine operation control that computes adjustment increments regarding at least one of the airflow rate into the combustor and the pilot ratio, and makes revisions to the actuating variables comprising the airflow rate and the pilot ratio so that the actuating variables are contrasted with the status signals and the variables are modified toward initial design conditions. The gas turbine control unit resets the revisions made to the actuating variables in a case where the level of the combustion vibration is restrained below the predetermined control criterion for a predetermined time span, and the gas turbine is operated under the control settings of the initial design stage.
    Type: Grant
    Filed: February 23, 2009
    Date of Patent: April 22, 2014
    Assignee: Mitsubishi Heavy Industries, Ltd.
    Inventors: Masumi Nomura, Kotaro Miyauchi
  • Patent number: 8694170
    Abstract: Provided is a gas turbine operation control device and operation control method that are capable of suppressing turbine inlet temperature and of satisfying the demand response for shaft output. An IGV emergency fully-open flag is activated when the output of a generator is in a high load band at or above a predetermined value, and the like. When the IGV emergency fully-open flag is activated, the degree of opening of an inlet guide vane is set to a predetermined degree of opening, a temperature adjustment setting is set by switching in accordance with the degree of opening of the inlet guide vane, and an exhaust gas temperature setting value or a blade path temperature setting value of a turbine, for controlling the fuel supply amount for a combustor, is generated based on the temperature adjustment setting.
    Type: Grant
    Filed: November 6, 2008
    Date of Patent: April 8, 2014
    Assignee: Mitsubishi Heavy Industries, Ltd.
    Inventors: Takashi Sonoda, Akihiko Saito, Shinsuke Nakamura
  • Publication number: 20140090392
    Abstract: A gas turbine engine comprises a compressor, a combustor, a turbine, and an electronic engine control system. The compressor, combustor, and turbine are arranged in flow series. The electronic engine control system is configured to estimate combustor fuel-air ratio based on a realtime model-based estimate of combustor airflow, and commands engine actuators to correct for a difference between the estimated combustor fuel-air ratio and a limit fuel-air ratio selected to avoid lean blowout.
    Type: Application
    Filed: September 28, 2012
    Publication date: April 3, 2014
    Applicant: UNITED TECHNOLOGIES CORPORATION
    Inventor: United Technologies Corporation
  • Patent number: 8678814
    Abstract: Control and regulation system of a combustion unit (10) of the type comprising a combustion chamber (11) and a catalyst (40), the control and regulation system comprising: -an acquisition device of signals proportional to functioning parameters characteristic of the functioning state of the combustion unit (10), an electronic data processing unit (30) connected to the signal acquisition device from which it receives signals, a control and regulation program associated with said electronic data processing unit (30), a first fuel distribution valve (20), a second air distribution valve (21), a data base associated with said electronic data processing unit (30), the electronic data processing unit (30) receives signals from the signal acquisition device, processes them and regulates the opening of the first valve (20) and second valve (21) to minimize the polluting emissions of CO and Nox of the combustion unit (10).
    Type: Grant
    Filed: October 28, 2004
    Date of Patent: March 25, 2014
    Assignee: General Electric Company
    Inventors: Benoit Fecamp, Ever Avriel Fadlun, Stefano Groppi
  • Patent number: 8624414
    Abstract: A method for controlling a steam power plant is provided. The method includes the steps of providing a first signal showing a reduction of the current power level of the generator, generating a second signal showing a short circuit interruption as a function of the first signal, resetting the second signal after a predetermined time period and blocking the second signal for a predetermined period of time, stopping and subsequently starting the turbine as a function of the second signal, generating a third signal showing a load rejection as a function of the first signal, and permanently stopping the turbine as a function of the third signal. A device for controlling a steam power plant is also provided.
    Type: Grant
    Filed: August 17, 2009
    Date of Patent: January 7, 2014
    Assignee: Siemens Aktiengesellschaft
    Inventors: Martin Bennauer, Heribert Werthes
  • Publication number: 20130269363
    Abstract: Simple, robust and systematic solutions are provided for controlling counter-rotating open-rotor (CROR) gas turbine engines. The solutions mathematically decouple the two counter rotating rotors of a CROR engine by model-based dynamic inversion, which allows application of single-input-single-output (SISO) control concepts. The current solutions allow fuel flow to be treated as a known disturbance and rejected from the rotor speeds control. Furthermore, the current control solutions allow a simple and well-coordinated speed phase synchronizing among the four rotors on a two-engine vehicle.
    Type: Application
    Filed: October 11, 2012
    Publication date: October 17, 2013
    Inventors: Manxue Lu, Sheldon Carpenter
  • Publication number: 20130219906
    Abstract: A system for tuning the operation of a gas turbine is provided based on measuring operational parameters of the turbine and directing adjustment of operational controls for various operational elements of the turbine. A controller is provided for communicating with sensors and controls within the system. The controller receiving operational data from the sensors and comparing the data to stored operational standards to determining if turbine operation conforms to the standards. The controller then communicates selected adjustment in an operational parameter of the turbine. The controller then receives additional operational data from the sensors to determine if an additional adjustment is desired or is adjustment is desired of a further selected operational parameter.
    Type: Application
    Filed: April 2, 2013
    Publication date: August 29, 2013
    Applicant: Gas Turbine Efficiency Sweden AB
    Inventor: Gas Turbine Efficiency Sweden AB
  • Patent number: 8499541
    Abstract: A two-shaft gas turbine is capable of starting premixed combustion without extinguishing a flame. The two-shaft gas turbine includes a combustor and a gas generator controller. The combustor has a premix burner that includes combustion regions in which premixed combustion is to be carried out individually. The gas generator controller controls the combustor. In a method for starting the premixed combustion in the combustor, the gas generator controller selects at least one of the combustion regions in which the premixed combustion is to be carried out, on the basis of a fuel-air ratio, and starts premix combustion in the selected combustion region or separately in each of the selected combustion regions. Further, as the fuel-air ratio is increased, the controller increases the number of the selected region in which the premixed combustion is carried out.
    Type: Grant
    Filed: March 22, 2011
    Date of Patent: August 6, 2013
    Assignee: Hitachi, Ltd.
    Inventors: Ryo Kawai, Hidetaro Murata, Takeo Saito, Nobuaki Kizuka, Kenji Nanataki
  • Patent number: 8484981
    Abstract: A gas turbine engine that includes a compressor, a combustion stage, a turbine assembly, a fuel gas feed system for supplying fuel gas to a combustion stage of the gas turbine, an integrated fuel gas characterization system, and a buffer tank is disclosed. The integrated fuel gas characterization system may determine the heating value of the fuel and adjust either the airflow to the compressor or the fuel gas flow to the combustor to maintain a design fuel-to-air ratio.
    Type: Grant
    Filed: August 26, 2008
    Date of Patent: July 16, 2013
    Assignee: Siemens Energy, Inc.
    Inventor: Pratyush Nag
  • Publication number: 20130139519
    Abstract: A method and apparatus are disclosed for a multi-spool gas turbine engine with a variable area turbine nozzle and a motor/alternator device on the highest pressure turbo-compressor spool for starting the gas turbine and power extraction during engine operation. During power down of the engine, the variable area turbine nozzle may be used in conjunction with power extraction to maintain a near constant combustor outlet temperature while controlling turbine inlet temperatures on the turbines downstream of the highest pressure turbine and controlling spool speed on the highest pressure turbine.
    Type: Application
    Filed: June 28, 2012
    Publication date: June 6, 2013
    Applicant: ICR TURBINE ENGINE CORPORATION
    Inventors: James Kesseli, James S. Nash, John D. Watson, Thomas Wolf
  • Publication number: 20130125555
    Abstract: Provided are more efficient techniques for operating gas turbine systems. In one embodiment a gas turbine system comprises an oxidant system, a fuel system, a control system, and a number of combustors adapted to receive and combust an oxidant from the oxidant system and a fuel from the fuel system to produce an exhaust gas. The gas turbine system also includes a number of oxidant-flow adjustment devices, each of which are operatively associated with one of the combustors, wherein an oxidant-flow adjustment device is configured to independently regulate an oxidant flow rate into the associated combustor. An exhaust sensor is in communication with the control system. The exhaust sensor is adapted to measure at least one parameter of the exhaust gas, and the control system is configured to independently adjust each of the oxidant-flow adjustment devices based, at least in part, on the parameter measured by the exhaust sensor.
    Type: Application
    Filed: June 27, 2011
    Publication date: May 23, 2013
    Inventors: Franklin F. Mittricker, Richard A. Huntington
  • Patent number: 8429918
    Abstract: A method for generating electrical energy, wherein a carbonaceous fuel is gasified to a combustible gas, the combustible gas being combusted to drive an apparatus chosen from a gas turbine and a gas engine. Relatively hot exhaust gas from the apparatus is passed along a heat exchanger for removing heat from the relatively hot exhaust gas results in relatively cold exhaust gas after passing the heat exchanger. A kaolin or metakaolin-containing sorbent and a source of active free silica are introduced after the apparatus to remove mercury from the relatively hot exhaust gas, the relatively hot exhaust gas having a temperature of at least 800° C.
    Type: Grant
    Filed: April 27, 2012
    Date of Patent: April 30, 2013
    Assignee: Voith Patent GmbH
    Inventor: Joseph J. P. Biermann
  • Publication number: 20130086917
    Abstract: A method for reducing the amount of carbon monoxide and oxygen emissions in a hydrocarbon combustor in a gas turbine engine by feeding hydrocarbon fuel and an oxidizer component into the head end of the combustor while also injecting substantially inert gas into the combustor with the fuel and oxidizer; forming a combustor exhaust stream that mixes with the recycle; cooling the combustor exhaust; detecting the amount of carbon monoxide and oxygen in the exhaust and adjusting the amount of fuel, oxidizer and inert gas feeds based on the detected amounts.
    Type: Application
    Filed: October 6, 2011
    Publication date: April 11, 2013
    Inventors: Ilya Aleksandrovich Slobodyanskiy, Gilbert Otto Kraemer, Leonid Yul'evich Ginesin, Dmitry Vladlenovich Tretyakov, Andrey Pavlovich Subbota
  • Publication number: 20130067929
    Abstract: This invention discloses systems and methods for control of a gas turbine or a gas turbine generator, where the gas turbine is connected to a dryer vessel in which gas turbine exhaust gases are used to heat treat a material in the dryer vessel. The control system comprises one or more sensors for temperature, moisture and/or flow rate in the dryer vessel and/or of the material inside, entering and/or exiting the dryer vessel and a controller responsive to the sensor for controlling the fuel and/or air flow into the gas turbine. This control system and method enables providing the appropriate heat output from the gas turbine to meet the process heat required for the desired material treatment. Optionally, the gas turbine can be a liquid fuel turbine engine, or a reciprocating engine can be substituted for the turbine engine.
    Type: Application
    Filed: September 10, 2012
    Publication date: March 21, 2013
    Applicant: EarthRenew, Inc.
    Inventors: Christianne Carin, Alvin W. Fedkenheuer, John S. Jonasson, Alexander Starosud
  • Patent number: 8370044
    Abstract: A gas turbine comprises a plurality of target exhaust temperature determination modules, the plurality of target exhaust temperature modules comprising a nitrogen oxide (NOx) compliance module configured to determine an exhaust temperature at which an exhaust of the gas turbine complies with a maximum permitted level of NOx; at least one bias module, the at least one bias module configured to apply a bias to an output of at least one of the plurality of target exhaust temperature determination modules; and a controller configured to operate the gas turbine to produce the exhaust temperature determined by the NOx compliance module.
    Type: Grant
    Filed: June 26, 2009
    Date of Patent: February 5, 2013
    Assignee: General Electric Company
    Inventors: Douglas Edward Dean, Derrick Walter Simons, Abhijit Prabhakar Kulkarni
  • Patent number: 8276363
    Abstract: Compensation is provided for a fuel demand signal of a gas turbine controller during transition between operating modes. The compensation adjusts fuel demand to account for combustion efficiency differences between the starting and ending operating mode that otherwise can lead to severe swings in combustion reference temperature and lean blowout.
    Type: Grant
    Filed: August 10, 2010
    Date of Patent: October 2, 2012
    Assignee: General Electric Company
    Inventors: William Forrester Seely, Michael John Hughes
  • Patent number: 8272223
    Abstract: A twin-shaft gas turbine 1, which has a gas generator 2 including a compressor 7, a combustor 8, and a high-pressure turbine 9, is configured to make a first control mode and a second control mode selectively useable for control of the gas generator. In addition, in the first control mode, an IGV angle in the compressor is controlled in accordance with a corrected shaft rotation speed of the gas generator, and in the second control mode, the IGV angle is controlled to maintain a constant gas generator shaft rotation speed. Furthermore, the first control mode is used to start, to stop, and to operate the turbine under fixed or lower load conditions, and that the second control mode is used under operational states other than those to which the first control mode is applied.
    Type: Grant
    Filed: December 28, 2010
    Date of Patent: September 25, 2012
    Assignee: Hitachi, Ltd.
    Inventors: Kenji Nanataki, Nozomi Saito, Hidetaro Murata
  • Patent number: 8215095
    Abstract: A fuel controller, and associated method, provides a fuel control output signal to a fuel control actuator to control operations. The fuel controller determines the fuel control output signal based on rotational speed error. A combustion air controller provides a combustion air control output signal to a combustion air control actuator to control operations. A cross channel controller is in communication with the fuel controller and the combustion air controller. The cross channel controller provides a combustion air control modification signal to the combustion air controller. The combustion air control modification signal is determined from the fuel control output signal using an air versus fuel model. The combustion air controller determines a preliminary combustion air control signal based on an exhaust temperature error, and further determines the combustion air control output signal based on both of the preliminary combustion air control signal and the combustion air control modification signal.
    Type: Grant
    Filed: October 26, 2009
    Date of Patent: July 10, 2012
    Assignee: General Electric Company
    Inventor: Matthew John Mosley
  • Patent number: 8196414
    Abstract: A twin-shaft gas turbine 1, which has a gas generator 2 including a compressor 7, a combustor 8, and a high-pressure turbine 9, is configured to make a first control mode and a second control mode selectively usable for control of the gas generator. In addition, in the first control mode, an IGV angle in the compressor is controlled in accordance with a corrected shaft rotation speed of the gas generator, and in the second control mode, the IGV angle is controlled to maintain a constant gas generator shaft rotation speed. Furthermore, the first control mode is used to start, to stop, and to operate the turbine under fixed or lower load conditions, and that the second control mode is used under operational states other than those to which the first control mode is applied.
    Type: Grant
    Filed: June 29, 2009
    Date of Patent: June 12, 2012
    Assignee: Hitachi, Ltd.
    Inventors: Kenji Nanataki, Nozomi Saito, Hidetaro Murata
  • Patent number: 8171716
    Abstract: A gas turbine system including a source of gas coupled to a source of fuel wherein the gas and the fuel are combined to form a mixture of gas and fuel prior to the mixture being introduced to a fuel nozzle of the gas turbine system.
    Type: Grant
    Filed: August 28, 2007
    Date of Patent: May 8, 2012
    Assignee: General Electric Company
    Inventors: James Anthony West, Samuel David Draper, Hasan Ul Karim, Christopher John Mordaunt
  • Patent number: 8171717
    Abstract: A coordinated air-fuel controller and associated method provide a fuel controller, a combustion air controller and a steady-state air versus fuel model. The fuel controller generates a fuel control output signal and the combustion air controller generates a combustion air control output signal. The fuel controller determines a preliminary fuel control signal based on at least one of first and second loop control signals, and determines the fuel control output signal based on the preliminary fuel control signal. The steady-state air versus fuel model processes the preliminary fuel control signal to determine an expected steady-state combustion air control signal. The combustion air controller determines a preliminary combustion air control signal based on at least one of a third loop control signal and a fourth loop control signal, and determines the combustion air control output signal based on the preliminary combustion air control signal and the expected steady-state combustion air control signal.
    Type: Grant
    Filed: May 14, 2010
    Date of Patent: May 8, 2012
    Assignee: General Electric Company
    Inventors: Matthew John Mosley, Christopher Eugene Long, David Spencer Ewens
  • Patent number: 8151553
    Abstract: An internal-combustion engine receives no air from outside atmosphere and it discharges no gas into outside atmosphere. The engine receives fuel, oxygen and recycled combustion gas and its exhaust consists mostly of carbon dioxide and water vapor. Most of the gas exhausted from the engine is recycled back into the engine intake, and the remaining gas is cooled and condensed into liquid carbon dioxide and water. Discharge of greenhouse gas into environment and emission of other harmful air pollutants are eliminated.
    Type: Grant
    Filed: July 26, 2010
    Date of Patent: April 10, 2012
    Inventor: Michael Moses Schechter
  • Publication number: 20120031103
    Abstract: A fuel control device and method of a gas turbine combustor, for advanced humid air turbines, in which plural combustion units comprising plural fuel nozzles for supplying fuel and plural air nozzles for supplying air for combustion are provided. A part of the plural combustion units are more excellent in flame stabilizing performance than the other combustion units. A fuel ratio, at which fuel is fed to the part of the combustion units is set on the basis of internal temperature of the humidification tower and internal pressure of the humidification tower to control a flow ratio of the fuel fed to the plural combustion units.
    Type: Application
    Filed: August 4, 2011
    Publication date: February 9, 2012
    Applicant: Hitachi, Ltd.
    Inventors: Kazuki ABE, Tomomi Koganezawa
  • Publication number: 20120017600
    Abstract: Provided are a combustor control method and a combustor controller capable of calculating the combustion air flow and the fuel flow in multi-shafts gas turbine with high precision and without the need of performing complicated calculations and thereby calculating a fuel-air ratio necessary for stable combustion control. The multi-shaft gas turbine is made up of a gas generator turbine and a power turbine. Combustors includes a diffusive combustion units and a plurality of premixed combustion units.
    Type: Application
    Filed: July 20, 2011
    Publication date: January 26, 2012
    Applicant: Hitachi, Ltd.
    Inventors: Nozomi SAITO, Takeo Saito, Kenji Nanataki
  • Patent number: 8099941
    Abstract: Methods and systems for controlling a combustor for a gas turbine engine are provided. According to one example embodiment, a system includes an air control assembly associated with at least one air path of a combustor for a gas turbine engine. Additionally, the system also includes at least one sensor for sensing at least one operating parameter of the gas turbine engine. Further, the system also includes a controller operable to receive at least one operating parameter sensed by the at least one sensor, and further operable to selectively control an air control assembly based at least in part on the at least one operating parameter sensed by the at least one sensor.
    Type: Grant
    Filed: December 31, 2008
    Date of Patent: January 24, 2012
    Assignee: General Electric Company
    Inventors: Geoffrey David Myers, Lewis Berkley Davis, Jr., Timothy Andrew Healy, Jospeh Citeno
  • Patent number: 8046984
    Abstract: A gas-turbine engine receives no air from outside atmosphere. Instead, combustion gas expelled from the engine is cooled and recycled back into the engine. That gas contains no nitrogen and consists mostly of carbon dioxide and water vapor. Oxygen and fuel are added to the recycled gas, and the resulting mixture is used to perform an internal-combustion process. A small amount of the expelled combustion gas is discharged into outside environment, and the rest is recycled. Since no nitrogen is present, no nitrogen oxides are produced. The amount of other harmful exhaust emissions, including particulate matter, is greatly reduced too, since most of them are recycled back into the engine. The engine is inherently supercharged with controllable combustion-gas pressure and, in some cases, can operate without a compressor. Since the combustion gas is heavier than air, the engine can be substantially smaller than a conventional engine of equal power.
    Type: Grant
    Filed: April 15, 2011
    Date of Patent: November 1, 2011
    Inventor: Michael Moses Schechter
  • Publication number: 20110126511
    Abstract: A method and apparatus for modulating the thrust during a flight envelope of a multiple combustor chamber detonation engine using cross-combustor chamber detonation initiation are provided. The detonation combustor chambers are filled with a combustible mixture of fuel and oxidizer. The combustible mixture in one of the detonation combustor chambers is ignited by an ignition source, and the remaining detonation combustor chambers are ignited by detonation cross-firing via connectors. A controller controls the ignition source and the supply of oxidizer and fuel to the detonation combustor chambers to modulate the thrust of the engine during the flight envelope.
    Type: Application
    Filed: November 30, 2009
    Publication date: June 2, 2011
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Aaron Jerome Glaser, Adam Rasheed, Douglas Carl Hofer, Narendra Digamber Joshi
  • Patent number: 7950240
    Abstract: In a method for operating a gas turbine plant (10) with a compressor (11) for the compression of combustion air sucked in from the surroundings, with a combustion chamber (15) for generating hot gas by the combustion of a fuel with compressed combustion air, and with a turbine (12), in which the hot gas from the combustion chamber (15) is expanded so as to perform work, temperatures and pressures are measured at various points in the gas turbine plant (10), and a combustion chamber exit temperature is derived from the measured temperatures and pressures and used for controlling the gas turbine plant (10). Improved temperature determination is achieved in that the composition of the gas, in particular the water content in the exhaust gas of the turbine (12), is determined, and in that the specific water content in the exhaust gas of the turbine (12) is taken into account in deriving the combustion chamber exit temperature.
    Type: Grant
    Filed: March 21, 2007
    Date of Patent: May 31, 2011
    Assignee: ALSTOM Technology Ltd.
    Inventors: Anton Nemet, Jürgen Hoffmann
  • Publication number: 20110056181
    Abstract: Control systems and a method for controlling a load point of a gas turbine engine are provided. A control system includes a controller that receives a temperature signal and a pressure signal associated with exhaust gases from the gas turbine engine. The controller is further configured to generate the fuel control signal. The controller is further configured to generate an actuator control signal such that flow restriction member is moved from the first operational position to the second operational position to restrict the flow path such that the exhaust gases have a temperature level within a desired turndown temperature range, the pressure level in the exhaust gases is less than a threshold pressure level, and the load point of the gas turbine engine is adjusted to toward a target load point.
    Type: Application
    Filed: April 7, 2008
    Publication date: March 10, 2011
    Applicant: GENERAL ELECTRIC COMPANY
    Inventor: Constantin Dinu
  • Patent number: 7827803
    Abstract: A method for using an aerodynamic stability management system is disclosed. The method includes placing at least one pressure sensor in a compressor, the at least one pressure sensor communicating with an aerodynamic stability management system controller and monitoring gas turbine engine performance using the aerodynamic stability management system controller. The controller includes a memory, an input/output interface and a processor. The method also includes defining a correlation threshold value and calculating a correlation measure using a plurality of pressure signals generated by the at least one pressure sensor and comparing the correlation measure with the correlation threshold value. When the correlation measure is less than the correlation threshold value a corrective action is implemented.
    Type: Grant
    Filed: September 27, 2006
    Date of Patent: November 9, 2010
    Assignee: General Electric Company
    Inventors: Aspi Rustom Wadia, David K. Christensen, Andrew Breeze-Stringfellow, Kiyoung Chung, Matthew William Wiseman, Peter Nicholas Szucs
  • Publication number: 20100199680
    Abstract: A gas turbine control method for preventing then operation from deviating from the operating state at the ideal fuel and air flow-rates expected when the gas turbine is designed and maintaining an efficient operating state.
    Type: Application
    Filed: February 23, 2009
    Publication date: August 12, 2010
    Applicant: MITSUBISHI HEAVY INDUSTRIES, LTD.
    Inventors: Masumi Nomura, Kotaro Miyauchi
  • Publication number: 20100198419
    Abstract: Provided is a gas turbine operation control device and operation control method that are capable of suppressing turbine inlet temperature and of satisfying the demand response for shaft output. An IGV emergency fully-open flag is activated when the output of a generator is in a high load band at or above a predetermined value, and the like. When the IGV emergency fully-open flag is activated, the degree of opening of an inlet guide vane is set to a predetermined degree of opening, a temperature adjustment setting is set by switching in accordance with the degree of opening of the inlet guide vane, and an exhaust gas temperature setting value or a blade path temperature setting value of a turbine, for controlling the fuel supply amount for a combustor, is generated based on the temperature adjustment setting.
    Type: Application
    Filed: November 6, 2008
    Publication date: August 5, 2010
    Applicant: MITSUBISHI HEAVY INDUSTRIES, LTD.
    Inventors: Takashi Sonoda, Akihiko Saito, Shinsuke Nakamura
  • Patent number: 7752850
    Abstract: A combustor (22) for a gas turbine (10) includes a main burner oxidizer flow path (34) delivering a first portion (32) of an oxidizer flow (e.g., 16) to a main burner (28) of the combustor and a pilot oxidizer flow path (38) delivering a second portion (36) of the oxidizer flow to a pilot (30) of the combustor. The combustor also includes a flow controller (42) disposed in the pilot oxidizer flow path for controlling an amount of the second portion delivered to the pilot.
    Type: Grant
    Filed: July 1, 2005
    Date of Patent: July 13, 2010
    Assignee: Siemens Energy, Inc.
    Inventors: Walter R. Laster, Ramarao V. Bandaru
  • Publication number: 20100154380
    Abstract: A pulse detonation combustor (PDC)-based hybrid engine control system includes a programmable controller directed by algorithmic software to control a rotational shaft speed of the PDC-based hybrid engine, an air inlet valve rotational speed for the PDC, and a fuel fill time period for the PDC in response to a corresponding low pressure turbine (LPT) shaft speed signal or a power difference signal based on a difference between desired power and actual power produced by the PDC-based hybrid engine and further in response to a fuel fill time signal for the PDC, such that a desired fuel fill fraction and stoichiometric ratio are maintained and further such that a mass air flowrate from an air compressor matches a mass air flowrate ingested via the PDC while the PDC-based hybrid engine is operating in an acceleration mode or a deceleration mode.
    Type: Application
    Filed: December 22, 2008
    Publication date: June 24, 2010
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Venkat Eswarlu Tangirala, Narendra Digamber Joshi, Adam Rasheed, Kevin Michael Hinckley
  • Publication number: 20100139286
    Abstract: A burner including a pressure measurement device for pressure measurement in a combustion medium inside a gas turbine is provided. The burner supplies the combustion medium in an uncombusted state to a combustion chamber of the gas turbine. The pressure measurement device includes a measuring point defining the location of the pressure measurement, wherein the measuring point is located inside the burner of the gas turbine. In addition, a gas turbine including a burner and a method for controlling a fuel supply to a burner are provided.
    Type: Application
    Filed: April 20, 2007
    Publication date: June 10, 2010
    Inventors: Christer Gerward, Ingrid Gerward, Nils-Erik Andersson
  • Publication number: 20100107591
    Abstract: Methods and apparatus are provided for detecting a flameout of an operating turbomachine that is configured to receive a controlled flow of bleed air from a bleed air source and a controlled flow of fuel from a fuel source. A value of an operational parameter within the turbomachine is detected and a determination is made as to whether it has varied by a predetermined amount. If the operational parameter has varied by the predetermined amount, a flameout confirmation test is triggered. The flameout confirmation test includes holding the controlled flow of bleed air constant, commanding an increase in turbomachine speed, and confirming that a flameout has occurred by detecting that the controlled fuel flow to the turbomachine is at a maximum fuel flow limit and that actual turbomachine speed differs from the commanded turbomachine speed by a predetermined speed error.
    Type: Application
    Filed: November 6, 2008
    Publication date: May 6, 2010
    Applicant: HONEYWELL INTERNATIONAL INC.
    Inventors: Matthew Christopher, Hanif Vhora