Regenerator Patents (Class 60/39.511)
  • Patent number: 7185498
    Abstract: Method and arrangement for providing a gas turbine (1) having a duct (11) for carrying gas from a gas turbine inlet (9) to a gas turbine outlet (10) and an outer housing (19, 20, 21) arranged radially outside a wall structure (12, 13, 14), which defines the radially outer limits of the gas duct (11). The gas turbine (1), between the inlet (9) and outlet (10), is constructed from a plurality of modules (6, 7, 8), each of which constitutes a part of the outer housing (19, 20, 21) and a part of the wall structure (12, 13, 14) of the gas duct. At least two adjacent parts of the wall structure (12, 13, 14) of the gas duct are arranged at a distance from one another.
    Type: Grant
    Filed: December 20, 2003
    Date of Patent: March 6, 2007
    Assignee: Volvo Aero Corporation
    Inventor: Bertil Jonsson
  • Publication number: 20070039331
    Abstract: Method and arrangement for providing a gas turbine (1) having a duct (11) for carrying gas from a gas turbine inlet (9) to a gas turbine outlet (10) and an outer housing (19, 20, 21) arranged radially outside a wall structure (12, 13, 14), which defines the radially outer limits of the gas duct (11). The gas turbine (1), between the inlet (9) and outlet (10), is constructed from a plurality of modules (6, 7, 8), each of which constitutes a part of the outer housing (19, 20, 21) and a part of the wall structure (12, 13, 14) of the gas duct. At least two adjacent parts of the wall structure (12, 13, 14) of the gas duct are arranged at a distance from one another.
    Type: Application
    Filed: December 20, 2003
    Publication date: February 22, 2007
    Applicant: VOLVO AERO CORPORATION
    Inventor: Bertil JONSSON
  • Publication number: 20070039307
    Abstract: Disclosed is a gas turbine power generating system capable of achieving a high output power and a high power generating efficiency under conditions with a small amount of supplied water and less change in design of a gas turbine. A fine water droplet spraying apparatus (11) is disposed in a suction air chamber (22) on the upstream side of an air compressor (2), and a moisture adding apparatus (7) for adding moisture to high pressure air supplied from the compressor (2) is disposed. A regenerator (5) for heating the air to which moisture has been added by using gas turbine exhaust gas as a heat source is also provided. With this configuration, there can be obtain an effect of reducing a power for the compressor (2) and an effect of increasing the output power due to addition of moisture to air (20) for combustion. Further, since the used amount of fuel is reduced by adopting a regenerating cycle, the power generating efficiency is improved.
    Type: Application
    Filed: August 15, 2006
    Publication date: February 22, 2007
    Inventors: Shigeo Hatamiya, Masahiko Yamagishi, Osamu Yokomizo, Yoshiki Noguchi, Moriaki Tsukamoto
  • Patent number: 7168235
    Abstract: The present invention comprises a highly supercharged, regenerative gas-turbine system. The gas turbine comprises a compressor, a regenerator, a combustor, and an expander. A pre-compressor pressurizes air going into the compressor section of the gas turbine. A cooler lowers the temperature of the air going into the compressor. The compressor pressurizes air, which then flows through the regenerator, which heats the air before it enters the combustor. The combustor further heats the air which then flows through the expander and then the regenerator. A post-expander is preferably located downstream of the regenerator. The post-expander is a second expander that receives high-pressure gas exiting the regenerator. The post-expander preferably drives the pre-compressor. The preferred pre-compressor and post-expander are toroidal intersecting vane machines (TIVMs), which are positive-displacement rotary devices. Numerous alternated embodiments of this basic system are described.
    Type: Grant
    Filed: April 5, 2005
    Date of Patent: January 30, 2007
    Assignee: Mechanology, Inc.
    Inventor: William L. Kopko
  • Publication number: 20070017208
    Abstract: Efficiency and/or power are increased in a turbine engine by using a self-contained, passive heat transfer device, such as a heat pipe, to transfer heat from working fluid in one section of the engine to working fluid in another section of the engine.
    Type: Application
    Filed: January 20, 2006
    Publication date: January 25, 2007
    Inventor: Stephen Ralls
  • Patent number: 7147050
    Abstract: A counter-flow recuperator formed from annular arrays of recuperator core segments. The recuperator core segments are formed from two opposing sheets of fin fold material coined to form a primary surface zone disposed between two flattened manifold zones. Each primary surface zone has undulating corrugations including a uniform, full height central portion and a transition zone disposed between the central portion and one of the manifold zones. Corrugations of the transition zone rise from zero adjacent to the manifold zone and increase along a transition length to full crest height at the central portion. The transition lengths increase in a direction away from an inner edge containing the air inlet so as to equalize air flow to the distal regions of the primary surface zone.
    Type: Grant
    Filed: August 12, 2004
    Date of Patent: December 12, 2006
    Assignee: Capstone Turbine Corporation
    Inventors: Yungmo Kang, Robert D. McKeirnan, Jr.
  • Patent number: 7146794
    Abstract: Disclosed is a gas turbine power generating system capable of achieving a high output power and a high power generating efficiency under conditions with a small amount of supplied water and less change in design of a gas turbine. A fine water droplet spraying apparatus (11) is disposed in a suction air chamber (22) on the upstream side of an air compressor (2), and a moisture adding apparatus (7) for adding moisture to high pressure air supplied from the compressor (2) is disposed. A regenerator (5) for heating the air to which moisture has been added by using gas turbine exhaust gas a heat source is also provided. With this configuration, there can be obtain an effect of reducing a power for the compressor (2) and an effect of increasing the output power due to addition of moisture to air (20) for combustion. Further, since the used amount of fuel is reduced by adopting a regenerating cycle, the power generating efficiency is improved.
    Type: Grant
    Filed: October 20, 2005
    Date of Patent: December 12, 2006
    Assignee: Hitachi, Ltd.
    Inventors: Shigeo Hatamiya, Masahiko Yamagishi, Osamu Yokomizo, Yoshiki Noguchi, Moriaki Tsukamoto
  • Publication number: 20060260292
    Abstract: A gas turbine exhaust diffuser, comprising: a flow liner for guiding a hot gas; a flow guide portion extending downstream of the flow liner; an exhaust casing cylindrical portion in a form of a thick plate disposed outwardly of the flow liner at a distance from the flow liner; and an exhaust hood outer tube portion in a form of a thin plate having an outward end portion connected to a downstream side of the exhaust casing cylindrical portion, and having an inward end portion connected to the flow guide portion, and wherein a heat insulating material is applied to outer surfaces of the exhaust casing cylindrical portion and the flow guide portion and to an inner surface of the exhaust hood outer tube portion.
    Type: Application
    Filed: February 14, 2006
    Publication date: November 23, 2006
    Applicant: MITSUBISHI HEAVY INDUSTRIES, LTD.
    Inventor: Tadateru Tanioka
  • Patent number: 7134269
    Abstract: A gas turbine engine (10) comprises a second compressor (14), a first compressor (16), a heat exchanger (18), a combustor (20), a first turbine (22), a second turbine (24) and a third turbine (26) arranged in flow series. The first turbine (22) is arranged to drive the first compressor (16). The second turbine (24) is arranged to drive the second compressor (14). There are means to inject liquid into the gas turbine engine (10). The means to inject liquid is arranged to inject liquid upstream (46) of the second compressor (14), within (48) the second compressor (14), between (50) the second compressor (14) and the first compressor (16), within (52) the first compressor (16), between (54) the first compressor (16) and the heat exchanger (18) or within (56) the combustor (20) to boost the power of the gas turbine engine (10).
    Type: Grant
    Filed: May 6, 2005
    Date of Patent: November 14, 2006
    Assignee: Rolls-Royce plc
    Inventors: Philip P. Walsh, Paul Fletcher
  • Patent number: 7124572
    Abstract: A recuperator and turbine support adapter for securing a recuperator to a combustor case is provided. The recuperator and turbine support adapter comprises an outer strutted body, an inner strutted body and a thermal spring. The thermal spring allows for thermal expansion of the recuperator and turbine support adapter while alleviating any stress or fatigue damage to the adapter. Each of the outer strutted bodies further comprises an outer ring and an inner ring connected by a plurality of struts. The recuperator and turbine support adapter also provides a means of directing the flow of cold compressed air to the recuperator and the return of the recuperator heated air to the combustor/turbine module.
    Type: Grant
    Filed: September 14, 2004
    Date of Patent: October 24, 2006
    Assignee: Honeywell International, Inc.
    Inventors: Larry W. Aycock, Brian D. Koch, Howard M. Becker, Michael J. Durden, John R. Barrett, Robert A. Kime
  • Patent number: 7100359
    Abstract: A gas turbine installation which includes a compressor which compresses supplied air and discharges the same, a combustor which combusts the compressed air obtained from the compressor and fuel and produces combustion gas, a turbine which is driven by combustion gas provided from the combustor, a regenerative heat exchanger which heats all or a part of the compressed air being supplied from the compressor to the combustor by making use of the heat of the exhaust gas exhausted from the turbine and a plurality of water spraying devices which are provided at positions from an intake air chamber of the compressor to the outlet of low temperature side gas flow passage in the regenerative heat exchanger and is characterized in that the regenerative heat exchanger is constituted by connecting in series a plurality of heat exchangers having different heat transfer surface configurations.
    Type: Grant
    Filed: February 28, 2006
    Date of Patent: September 5, 2006
    Assignee: Hitachi, Ltd.
    Inventors: Takanori Shibata, Shigeo Hatamiya, Nobuhiro Seiki, Tomomi Koganezawa, Katsuhiko Sagae
  • Patent number: 7100356
    Abstract: A sound attenuating duct unit suitable for connection to an outlet of a gas turbine and an improved heat recovery apparatus for use with such a turbine are disclosed. The former unit includes a duct housing having exterior sides, an air inlet at one end and first and second air outlets. Interior walls define a main airflow passageway extending from the air inlet to both of the outlets. Sound absorbing and heat insulation material is arranged between these walls and the exterior sides. Sound attenuating members are mounted in the passageway and a diverter damper is mounted in the housing and is able to direct air flow to either one of the air outlets. The sound attenuating members are mounted between the diverter damper and the air inlet. The heat recovery apparatus includes a series of aerodynamic diffusers mounted in a housing adjacent an air flow inlet connectable to the gas turbine.
    Type: Grant
    Filed: January 20, 2005
    Date of Patent: September 5, 2006
    Assignee: M & I Heat Transfer Products, Ltd.
    Inventors: Ming Hui Han, Muammer Yazici
  • Patent number: 7093419
    Abstract: A method facilitates assembling a gas turbine engine. The method comprises coupling a combustor including a dome assembly and a combustor liner that extends downstream from the dome assembly to a combustor casing that is positioned radially outwardly from the combustor, coupling a ring support that includes a first radial flange, a second radial flange, and a plurality of beams that extend therebetween to the combustor casing, and coupling a primer nozzle including an injection tip to the combustor such that the primer nozzle extends axially through the dome assembly such that fuel may be discharged from the primer nozzle into the combustor during engine start-up operating conditions.
    Type: Grant
    Filed: July 2, 2003
    Date of Patent: August 22, 2006
    Assignee: General Electric Company
    Inventors: Timothy P. McCaffrey, Stephen John Howell, John Carl Jacobson, Barry Francis Barnes
  • Patent number: 7089727
    Abstract: A gas turbine installation includes at least one gas turbine. A transition piece may receive an exhaust gas from the gas turbine. The transition piece is an exhaust gas inlet part of a steam recovery part for a steam generator. The transition piece includes a chimney orifice for discharging the exhaust gas of the gas turbine.
    Type: Grant
    Filed: July 8, 2003
    Date of Patent: August 15, 2006
    Assignee: Siemens Aktiengesellschaft
    Inventor: Herbert Schütz
  • Patent number: 7089728
    Abstract: A power transfer assembly comprises a power turbine constructed of a nickel alloy; a gear shaft constructed of a low-carbon carburized gear material; and a transition portion between and welded to each of the power turbine and gear shaft. The nickel alloy may be welded to the transition portion by inertia welding, and the low-carbon carburized gear material may be welded to the transition portion by electron beam welding, for example. The power transfer assembly may be used in a microturbine engine, for example, to transfer rotation of a power turbine to an electric generator.
    Type: Grant
    Filed: December 17, 2003
    Date of Patent: August 15, 2006
    Assignee: Ingersoll-Rand Energy Systems Corporation
    Inventor: Michael Carney
  • Patent number: 7082748
    Abstract: A gas turbine installation which includes a compressor which compresses supplied air and discharges the same, a combustor which combusts the compressed air obtained from the compressor and fuel and produces combustion gas, a turbine which is driven by combustion gas provided from the combustor, a regenerative heat exchanger which heats all or a part of the compressed air being supplied from the compressor to the combustor by making use of the heat of the exhaust gas exhausted from the turbine and a plurality of water spraying devices which are provided at positions from an intake air chamber of the compressor to the outlet of low temperature side gas flow passage in the regenerative heat exchanger and is characterized in that the regenerative heat exchanger is constituted by connecting in series a plurality of heat exchangers having different heat transfer surface configurations.
    Type: Grant
    Filed: July 23, 2004
    Date of Patent: August 1, 2006
    Assignee: Hitachi, Ltd.
    Inventors: Takanori Shibata, Shigeo Hatamiya, Nobuhiro Seiki, Tomomi Koganezawa, Katsuhiko Sagae
  • Publication number: 20060162316
    Abstract: Techniques suitable for recovering energy from a high-temperature gas of an ordinary pressure are provided. A turbomachine has a turbine 16 and compressors 20 and 24. A combustor 12 is disposed at a stage above the turbine 16. A power generating system generates power by passing a working fluid for the turbomachine through the combustor 12, the turbine 16 and the compressors 20 and 24 in that order.
    Type: Application
    Filed: October 3, 2003
    Publication date: July 27, 2006
    Applicants: Kawasaki Jokogyo Kabushiki Kaisha, National Institute of advanced Industrial Science and Technology
    Inventors: Kazuo Tanaka, Seiji Yamashita, Eiichi Harada, Norihiko Iki, Sanyo Takahashi, Hirohide Furutani
  • Patent number: 7080517
    Abstract: A method comprising providing a combustion apparatus, introducing a fuel into the combustion apparatus, and introducing feed air into the combustion apparatus. The method further comprises using the combustion apparatus to cause at least some of the fuel and at least some of the feed air to swirl within the combustion region and about a longitudinal axis of the combustion apparatus, and causing an initial combustion reaction of some of the swirling fuel and feed air in the combustion region to form combustion reaction products. Some of the swirling fuel at least temporarily remains unburned. The swirling is sufficient to cause the unburned fuel to move radially away from the longitudinal axis and to cause the combustion reaction products to move radially toward the longitudinal axis.
    Type: Grant
    Filed: September 26, 2002
    Date of Patent: July 25, 2006
    Assignee: Innovative Energy, Inc.
    Inventor: Andrew Schlote
  • Publication number: 20060144034
    Abstract: A gas turbine installation which includes a compressor which compresses supplied air and discharges the same, a combustor which combusts the compressed air obtained from the compressor and fuel and produces combustion gas, a turbine which is driven by combustion gas provided from the combustor, a regenerative heat exchanger which heats all or a part of the compressed air being supplied from the compressor to the combustor by making use of the heat of the exhaust gas exhausted from the turbine and a plurality of water spraying devices which are provided at positions from an intake air chamber of the compressor to the outlet of low temperature side gas flow passage in the regenerative heat exchanger and is characterized in that the regenerative heat exchanger is constituted by connecting in series a plurality of heat exchangers having different heat transfer surface configurations.
    Type: Application
    Filed: February 28, 2006
    Publication date: July 6, 2006
    Inventors: Takanori Shibata, Shigeo Hatamiya, Nobuhiro Seiki, Tomomi Koganezawa, Katsuhiko Sagae
  • Patent number: 7069726
    Abstract: In a power generation unit, especially in a gasturbo group, a gaseous process fluid is guided in a closed cycle. The gaseous process fluid flows through a compression device (1), a heater (6) and an expansion device (2), especially a turbine. Downstream from the expansion device at least one heat sink (11, 13) is arranged in which the gaseous process fluid is cooled before it is returned to the compressor device (1). At least one heat sink includes a waste heat steam generator in which an overheated amount of steam (26) is generated that is added to the compressed gaseous process fluid. Together with the gaseous process fluid the steam flows through the heater (6) if necessary and is expanded together with it. The expanded steam condenses in the waste heat steam generator (11) and another heat sink (13); the condensate is processed in a filter (16) and is returned to the waste heat steam generator (11) under pressure via a feed pump (18).
    Type: Grant
    Filed: September 14, 2004
    Date of Patent: July 4, 2006
    Assignee: ALSTOM Technology Ltd.
    Inventor: Hans Ulrich Frutschi
  • Patent number: 7062915
    Abstract: High-efficiency combustion engines, including Otto cycle engines, use a steam-diluted fuel charge at elevated pressure. Air is compressed, and water is evaporated into the compressed air via the partial pressure effect using waste heat from the engine. The resultant pressurized air-steam mixture then burned in the engine with fuel, preferably containing hydrogen to maintain flame front propagation. The high-pressure, steam-laden engine exhaust is used to drive an expander to provide additional mechanical power. The exhaust can also be used to reform fuel to provide hydrogen for the engine combustion. The engine advantageously uses the partial pressure effect to convert low-grade waste heat from engine into useful mechanical power. The engine is capable of high efficiencies (e.g. >50%), with minimal emissions.
    Type: Grant
    Filed: November 15, 2004
    Date of Patent: June 20, 2006
    Inventor: Lawrence G. Clawson
  • Publication number: 20060123796
    Abstract: A secondary flow, turbine cooling air system for the uniform cooling of high pressure turbine module components such as the turbine shroud, turbine blade tips, turbine nozzle, transion liner, and turbine bearing support housing in a recuperated gas turbine engine is provided. The secondary flow turbine cooling system provides uniform cooling air having a similar pressure and temperature in a recuperated gas turbine engine as the compressor discharge air of a non-recuperated gas turbine engine. A method for uniform cooling of high pressure turbine module components using the secondary flow turbine cooling air system is also provided.
    Type: Application
    Filed: December 13, 2004
    Publication date: June 15, 2006
    Applicant: Honeywell International Inc.
    Inventors: Larry Aycock, John Barrett, Howard Becker, Michael Durden, Robert Kime, Brian Koch, Robert Sandoval
  • Publication number: 20060053799
    Abstract: A recuperator and turbine support adapter for securing a recuperator to a combustor case is provided. The recuperator and turbine support adapter comprises an outer strutted body, an inner strutted body and a thermal spring. The thermal spring allows for thermal expansion of the recuperator and turbine support adapter while alleviating any stress or fatigue damage to the adapter. Each of the outer strutted bodies further comprises an outer ring and an inner ring connected by a plurality of struts. The recuperator and turbine support adapter also provides a means of directing the flow of cold compressed air to the recuperator and the return of the recuperator heated air to the combustor/turbine module.
    Type: Application
    Filed: September 14, 2004
    Publication date: March 16, 2006
    Applicant: Honeywell International Inc.
    Inventors: Larry Aycock, Brian Koch, Howard Becker, Michael Durden, John Barrett, Robert Kime
  • Patent number: 7007453
    Abstract: A power system includes a device for extracting energy from a hot gas stream to power a driveshaft. An evaporative duplex counterheat exchanger is disposed in flow communication with the energy extracting device. The duplex exchanger includes a first heat exchanger having a first main flow channel, and a counterheat channel joined in flow communication therewith. A second heat exchanger includes a second main flow channel adjacent the counterheat channel. And, an evaporative fluid is injected into the counterheat channel to evaporatively cool the flow through both main flow channels.
    Type: Grant
    Filed: July 17, 2003
    Date of Patent: March 7, 2006
    Assignee: IDALEX Technologies, Inc.
    Inventors: Valeriy Stepanovich Maisotsenko, Leland Earl Gillan, Timothy Lawrence Heaton, Alan Dale Gillan
  • Patent number: 7007487
    Abstract: A recuperated gas turbine engine system and associated method employing catalytic combustion, wherein the combustor inlet temperature can be controlled to remain above the minimum required catalyst operating temperature at a wide range of operating conditions from full-load to part-load and from hot-day to cold-day conditions. The fuel is passed through the compressor along with the air and a portion of the exhaust gases from the turbine. The recirculated exhaust gas flow rate is controlled to control combustor inlet temperature.
    Type: Grant
    Filed: July 31, 2003
    Date of Patent: March 7, 2006
    Assignee: MES International, Inc.
    Inventors: Alexander A. Belokon, George L. Touchton
  • Publication number: 20060032211
    Abstract: Disclosed is a gas turbine power generating system capable of achieving a high output power and a high power generating efficiency under conditions with a small amount of supplied water and less change in design of a gas turbine. A fine water droplet spraying apparatus (11) is disposed in a suction air chamber (22) on the upstream side of an air compressor (2), and a moisture adding apparatus (7) for adding moisture to high pressure air supplied from the compressor (2) is disposed. A regenerator (5) for heating the air to which moisture has been added by using gas turbine exhaust gas a heat source is also provided. With this configuration, there can be obtain an effect of reducing a power for the compressor (2) and an effect of increasing the output power due to addition of moisture to air (20) for combustion. Further, since the used amount of fuel is reduced by adopting a regenerating cycle, the power generating efficiency is improved.
    Type: Application
    Filed: October 20, 2005
    Publication date: February 16, 2006
    Inventors: Shigeo Hatamiya, Masahiko Yamagishi, Osamu Yokomizo, Yoshiki Noguchi, Moriaki Tsukamoto
  • Patent number: 6991026
    Abstract: A heat exchange cell for use in a recuperator includes top and bottom plates spaced apart to define therebetween an internal space. Within the internal space are inlet and outlet header tubes communicating with a plurality of internal matrix fins. The header tubes are rigidly affixed to at least one adjacent header tube and to the top and bottom plates. The header tubes may have a rectangular cross-section and may, for example, be metallurgically bonded to the top and bottom plates and to each other through brazing. Rigidly affixing the header tubes to each other reduces the stress on the fillets that bond the tubes to the top and bottom plates. This in turn permits less structural material to be used in the header portions of the cell and reduces pressure drop across the headers.
    Type: Grant
    Filed: June 21, 2004
    Date of Patent: January 31, 2006
    Assignee: Ingersoll-Rand Energy Systems
    Inventors: Michael K. Costen, Cezar I. Moisiade
  • Publication number: 20060005527
    Abstract: The present invention comprises a highly supercharged, regenerative gas-turbine system. The gas turbine comprises a compressor, a regenerator, a combustor, and an expander. A pre-compressor pressurizes air going into the compressor section of the gas turbine. A cooler lowers the temperature of the air going into the compressor. The compressor pressurizes air, which then flows through the regenerator, which heats the air before it enters the combustor. The combustor further heats the air which then flows through the expander and then the regenerator. A post-expander is preferably located downstream of the regenerator. The post-expander is a second expander that receives high-pressure gas exiting the regenerator. The post-expander preferably drives the pre-compressor. The preferred pre-compressor and post-expander are toroidal intersecting vane machines (TIVMs), which are positive-displacement rotary devices. Numerous alternated embodiments of this basic system are described.
    Type: Application
    Filed: April 5, 2005
    Publication date: January 12, 2006
    Inventor: William Kopko
  • Patent number: 6983787
    Abstract: A recuperative exhaust-gas heat exchanger for a gas turbine engine is provided which has a crossflow/counterflow matrix around which the hot turbine exhaust gas flows, a distributing tube for directing the air delivered by a compressor into the crossflow/counterflow matrix and a collecting tube which is arranged parallel to the distributing tube and is intended for discharging the compressor air, heated via the crossflow/counterflow matrix, to a consumer. End faces of the distributing and collecting tubes which are remote from the compressor and consumer are closed. The closed end face of the collecting tube is firmly connected axially and radially to the turbine casing.
    Type: Grant
    Filed: August 8, 2003
    Date of Patent: January 10, 2006
    Assignee: MTU Aero Engines GmbH
    Inventor: Harald Schoenenborn
  • Patent number: 6981360
    Abstract: An object of the present invention is to provide a gas turbine power generator capable of increasing the power generation efficiency in partial load operation and decreasing a variation in the number of rotations caused by a variation in power generation load. The gas turbine power generator comprises a compressor (2) for compressing air, a combustor (5) for burning the compressed air and fuel, a turbine (6) driven by combustion gas produced in the combustor and driving the compressor (2) and a generator (7), a regenerative heat exchanger (4) for exchanging heat between exhaust gas from the turbine and the compressed air led into the combustor, an intake air sprayer (1), and a humidifier (3). Intake air flown into the regenerative heat exchanger (4) is humidified and cooled by the intake air sprayer (1) and the humidifier (3).
    Type: Grant
    Filed: April 9, 2001
    Date of Patent: January 3, 2006
    Assignee: Hitachi, Ltd.
    Inventors: Manabu Yagi, Satoshi Dodo, Kuniyoshi Tsubouchi, Yasuaki Akatsu, Hiroshi Arita, Norio Yasugahira
  • Publication number: 20050279080
    Abstract: A heat exchange cell for use in a recuperator includes top and bottom plates spaced apart to define therebetween an internal space. Within the internal space are inlet and outlet header tubes communicating with a plurality of internal matrix fins. The header tubes are rigidly affixed to at least one adjacent header tube and to the top and bottom plates. The header tubes may have a rectangular cross-section and may, for example, be metallurgically bonded to the top and bottom plates and to each other through brazing. Rigidly affixing the header tubes to each other reduces the stress on the fillets that bond the tubes to the top and bottom plates. This in turn permits less structural material to be used in the header portions of the cell and reduces pressure drop across the headers.
    Type: Application
    Filed: June 21, 2004
    Publication date: December 22, 2005
    Applicant: Ingersoll-Rand Energy Systems
    Inventors: Michael Costen, Cezar Moisiade
  • Patent number: 6973772
    Abstract: Disclosed is a gas turbine power generating system capable of achieving a high output power and a high power generating efficiency under conditions with a small amount of supplied water and less change in design of a gas turbine. A fine water droplet spraying apparatus (11) is disposed in a suction air chamber (22) on the upstream side of an air compressor (2), and a moisture adding apparatus (7) for adding moisture to high pressure air supplied from the compressor (2) is disposed. A regenerator (5) for heating the air to which moisture has been added by using gas turbine exhaust gas as a heat source is also provided. With this configuration, there can be obtain an effect of reducing a power for the compressor (2) and an effect of increasing the output power due to addition of moisture to air (20) for combustion. Further, since the used amount of fuel is reduced by adopting a regenerating cycle, the power generating efficiency is improved.
    Type: Grant
    Filed: August 13, 2004
    Date of Patent: December 13, 2005
    Assignee: Hitachi, Ltd.
    Inventors: Shigeo Hatamiya, Masahiko Yamagishi, Osamu Yokomizo, Yoshiki Noguchi, Moriaki Tsukamoto
  • Patent number: 6971227
    Abstract: A combustion air delivery system comprising a compressor operable to provide a stream of compressed air and a bypass duct positioned to divide the stream of compressed air into a bypass flow stream and a primary flow stream. A recuperator is operable to preheat the primary flow to produce a flow of preheated compressed air. A premix chamber receives the bypass flow stream and mixes the bypass flow stream with a flow of fuel to produce a fuel-air flow. A can member at least partially defines a primary zone that receives the fuel-air flow and includes an aperture sized to admit a predetermined portion of the flow of preheated compressed air. The fuel-air flow and predetermined portion of the flow of preheated compressed air mix in the primary zone to produce a combustible flow. An igniter is operable to ignite the combustible flow.
    Type: Grant
    Filed: April 16, 2003
    Date of Patent: December 6, 2005
    Assignee: Ingersoll Rand Energy Systems, Inc.
    Inventors: Eric Dolak, Jeffrey Armstrong
  • Patent number: 6966173
    Abstract: The annular recuperator for use with a microturbine includes an involuted shaped inner member with a portion thereof being corrugated and an involuted shaped outer member also with a portion thereof being corrugated and spaced therefrom to define a cell. The end portions of both the inner and outer members is planar and define a header for admitting and discharging the fluid flowing in the cell. The edges of the inner and outer members are sealed and an inlet and outlet are fluidly connected to the respective headers. The cells are circumferentially mounted side by side and abut each other but leaving sufficient space for another medium to flow through the space and be place in indirect heat exchange with the fluid flowing in the cell.
    Type: Grant
    Filed: November 6, 2002
    Date of Patent: November 22, 2005
    Assignee: Elliott Energy Systems, Inc.
    Inventor: David W. Dewis
  • Publication number: 20050235626
    Abstract: A method for assembling a gas turbine engine including a compressor and a combustor includes providing a heat exchanger assembly that includes at least one heat exchanger, and coupling the heat exchanger assembly to the gas turbine engine such that the heat exchanger is positioned substantially concentrically with respect to a gas turbine engine axis of rotation, and such that the heat exchanger is configured to channel compressor discharge air from the compressor discharge air to the combustor.
    Type: Application
    Filed: April 21, 2004
    Publication date: October 27, 2005
    Inventors: Peter Hull, Robert Vandermolen
  • Publication number: 20050235627
    Abstract: A method for assembling a gas turbine engine includes fabricating a heat exchanger that includes a first manifold including an inlet and an outlet, a first quantity of heat exchanger elements coupled in flow communication with the manifold inlet, a second quantity of heat exchanger elements coupled in flow communication with the manifold outlet, and a plurality of channels coupled in flow communication with the first and second quantity of heat exchanger elements to facilitate channeling compressor discharge air from the first quantity of heat exchanger elements to the second quantity of heat exchanger elements, and coupling the heat exchanger assembly to the gas turbine engine such that the heat exchanger is positioned substantially concentrically with respect to a gas turbine engine axis of rotation, and such that the heat exchanger is configured to receive compressor discharge air and channel the compressor discharge air to the combustor.
    Type: Application
    Filed: July 29, 2004
    Publication date: October 27, 2005
    Inventor: Robert Vandermolen
  • Patent number: 6955052
    Abstract: A power generation method and apparatus includes a plurality of gas reactors that combust fuel and an oxygen-containing gas under substantially adiabatic conditions such that hot high pressure combustion gases flow alternately and substantially continuously from each reactor to a work-producing device wherein the combustion gases are expanded to provide work. A portion of the expanded gases, or ambient air can be mixed with the combustion gases to form a mixture of gases fed to the work-producing device.
    Type: Grant
    Filed: December 11, 2003
    Date of Patent: October 18, 2005
    Inventor: Indru J. Primlani
  • Patent number: 6951110
    Abstract: An annular heat recuperator is formed with alternating hot and cold cells to separate counter-flowing hot and cold fluid streams. Each cold cell has a fluid inlet formed in the inner diameter of the recuperator near one axial end, and a fluid outlet formed in the outer diameter of the recuperator near the other axial end to evenly distribute fluid mass flow throughout the cell. Cold cells may be joined with the outlet of one cell fluidly connected to the inlet of an adjacent downstream cell to form multi-stage cells.
    Type: Grant
    Filed: September 27, 2001
    Date of Patent: October 4, 2005
    Assignee: Capstone Turbine Corporation
    Inventor: Yungmo Kang
  • Patent number: 6931856
    Abstract: An electrical power generating system is driven by a multi-spool gas turbine engine including at least first and second spools. The first spool comprises a turbine and a compressor mounted on a first shaft; the second spool has at least a turbine mounted on a second shaft that is not mechanically coupled to the first shaft. A main generator is coupled with one of the spools, and an auxiliary generator/motor is also coupled with one of the spools. Speed control of each of the generators is employed for controlling operation of the engine. The auxiliary generator/motor can operate in either a generation mode to extract power from its spool or a motor mode to inject power into its spool.
    Type: Grant
    Filed: September 12, 2003
    Date of Patent: August 23, 2005
    Assignee: MES International, Inc.
    Inventors: Alexander A. Belokon, Mikhail V. Senkevich, George L. Touchton
  • Publication number: 20050172635
    Abstract: A gas turbine system (100) includes a compressor (110) for receiving air and producing compressor discharge air, a combustor (120) for combusting an oxygen comprising gas flow including the discharge air and a fuel into a hot gas flow, and a turbine expander (130) generating output power from the hot gas flow and providing a hot exhaust gas flow. An extractor (135) is provided for splitting the discharge air into a direct flow portion (121) which directly reaches the combustor (120) and an indirect flow portion (122). A mixing device (140) receives the indirect flow portion (122) and mixes it with a water flow (145), either in the form of water or steam, to produce a water enhanced indirect flow portion (150). A recuperative heat exchanger (155) heats the water enhanced indirect flow portion (150) using heat from at least a portion of the hot exhaust gas flow. The heated water enhanced indirect flow portion (158) is then reintroduced into the oxygen comprising gas flow.
    Type: Application
    Filed: August 27, 2004
    Publication date: August 11, 2005
    Inventors: Charles Carlson, Francisco Dovali-Solis, Adam Plant
  • Publication number: 20050144931
    Abstract: A heat exchange device suited for use with a microturbine engine that includes a recuperator that discharges a flow of exhaust gas during operation. The device includes a heat exchanger housing having a first aperture, a second aperture, and a third aperture. A heat exchanger is coupled to the heat exchanger housing adjacent the third aperture. A control member is coupled to the heat exchanger housing and is movable between a first position and a second position. The control member is operable to direct the flow of waste gas from the first aperture, through the heat exchanger, and to the third aperture when in the first position, and from the first aperture to the third aperture when in the second position.
    Type: Application
    Filed: November 13, 2003
    Publication date: July 7, 2005
    Inventors: Stephen Floyd, Andrew Olsen
  • Publication number: 20050144960
    Abstract: A method of operating a combustion turbine engine that includes separating a flow of compressed air into a first flow stream and a second flow stream. The method also includes preheating the first flow stream to produce a preheated flow stream and premixing the second flow stream with a flow of fuel to produce a premixture. The method further includes mixing the premixture with a portion of the preheated first flow stream to produce a combustible mixture and combusting the combustible mixture to produce a flow of hot products of combustion.
    Type: Application
    Filed: March 8, 2005
    Publication date: July 7, 2005
    Applicant: Ingersoll-Rand Energy Systems, Inc.
    Inventors: Eric Dolak, Jeffrey Armstrong
  • Publication number: 20050132695
    Abstract: A power transfer assembly comprises a power turbine constructed of a nickel alloy; a gear shaft constructed of a low-carbon carburized gear material; and a transition portion between and welded to each of the power turbine and gear shaft. The nickel alloy may be welded to the transition portion by inertia welding, and the low-carbon carburized gear material may be welded to the transition portion by electron beam welding, for example. The power transfer assembly may be used in a microturbine engine, for example, to transfer rotation of a power turbine to an electric generator.
    Type: Application
    Filed: December 17, 2003
    Publication date: June 23, 2005
    Applicant: Ingersoll-Rand Energy Systems Corporation
    Inventor: Michael Carney
  • Patent number: 6904747
    Abstract: A heat exchanger for a turbine is provided wherein the heat exchanger comprises a heat transfer cell comprising a sheet of material having two opposed ends and two opposed sides. In addition, a plurality of concavities are disposed on a surface portion of the sheet of material so as to cause hydrodynamic interactions and affect a heat transfer rate of the turbine between a fluid and the concavities when the fluid is disposed over the concavities.
    Type: Grant
    Filed: August 30, 2002
    Date of Patent: June 14, 2005
    Assignee: General Electric Company
    Inventors: Nirm Velumylm Nirmalan, Michael John Bowman
  • Publication number: 20050120701
    Abstract: A radial flow turbine including a rotor having a plurality of vanes defining an inlet, an outlet, and a flow path therebetween. A shroud is positioned to cover at least a portion of the flow path and a housing is positioned to at least partially support the rotor for rotation about a rotational axis. The housing at least partially defines a chamber for the receipt of a flow of products of combustion. A plurality of nozzle guide vane assemblies are positioned to provide fluid communication between the chamber and the inlet. Each of the plurality of nozzle guide vane assemblies is positioned adjacent another nozzle guide vane assembly to at least partially define one of a plurality of converging flow paths. Each nozzle guide vane assembly includes a guide vane positioned between the shroud and the housing and including an aperture therethrough. A bolt engages with the shroud and extends through the aperture to sandwich the guide vane between the shroud and the housing.
    Type: Application
    Filed: December 8, 2003
    Publication date: June 9, 2005
    Inventors: Malcolm Child, Andrew Olsen
  • Patent number: 6901759
    Abstract: A gas turbine system includes a gas turbine (1, 2, 3) having a compressor (1) and a turbine (2), which via a common shaft (3) drive a generator (4), and a combustion chamber (6), the exit of which is connected to the entry to the turbine (2) of the gas turbine (1, 2, 3), has a fuel feed (8) and receives combustion air from the exit of the compressor (1) of the gas turbine (1, 2, 3) via the high-pressure side of a recuperator (5), the exit of the turbine (2) and the entry to the compressor (1) of the gas turbine (1, 2, 3) being connected via the low-pressure side of the recuperator (5), and a first exhaust-gas turbocharger (ATL2) which sucks in air being connected to different locations (9, 10) of the low-pressure side of the recuperator (4) via the exit of its compressor (13) and the entry to its turbine (14).
    Type: Grant
    Filed: February 19, 2004
    Date of Patent: June 7, 2005
    Assignee: ALSTOM Technology Ltd.
    Inventor: Hans Ulrich Frutschi
  • Publication number: 20050115246
    Abstract: An outdoor microturbine engine assembly includes a microturbine engine supported by a base and enclosed by an enclosure. The base defines a reservoir for the collection of rain water and any oil that may leak from the engine into the reservoir. The oil will naturally float on the water in the reservoir. A drain pipe communicates with the bottom of the reservoir and drains water from the bottom of reservoir while maintaining the oil in the reservoir.
    Type: Application
    Filed: December 1, 2003
    Publication date: June 2, 2005
    Applicant: Ingersoll-Rand Energy Systems Corporation
    Inventor: Kim Bellingrath
  • Publication number: 20050097881
    Abstract: A plate-fin type regenerative heat exchanger is provided which can prevent clogging of a flow passage caused by a drift of liquid phase water even when compressed air contains a large amount of moisture and liquid droplets. The plate-fin type regenerative heat exchanger comprises a corrugated fin channel for heating compressed air containing liquid droplets and a corrugated fin channel to which the compressed air containing no liquid droplets is supplied. A pitch of fin members of the former corrugated fin channel is set to the Laplace length, whereby bridging of the liquid droplets between the fin members can be prevented.
    Type: Application
    Filed: June 24, 2004
    Publication date: May 12, 2005
    Inventors: Takanori Shibata, Shigeo Hatamiya, Nobuhiro Seiki, Tomomi Koganezawa, Katsuhiko Sagae, Hidefumi Araki
  • Patent number: 6887609
    Abstract: A fuel cell system and method of operation in which the fuel cell system has a fuel cell unit with anode and cathode, a media flow path for supplying substantially pure hydrogen to the anode, a media flow path for the cathode, an anode exhaust-gas flow path and a cathode exhaust-gas flow path. A fan for supplying air to the cathode is provided in the flow path of the cathode, and a catalytic burner is arranged in the cathode exhaust-gas flow path. The anode exhaust-gas flow path opens into the catalytic burner and/or into the cathode exhaust-gas flow path upstream of the catalytic burner. The combined, catalytically converted fuel cell exhaust-gas flow is passed into an expansion machine.
    Type: Grant
    Filed: May 21, 2001
    Date of Patent: May 3, 2005
    Assignee: Ballard Power Systems AG
    Inventor: Lars Kaufmann
  • Patent number: 6877323
    Abstract: The microturbine engine that is typically utilized to power an electrical generating system and/or boiler, chiller and the like includes a second boiler and a by-pass system for providing heated water at two different levels or where one of the boilers provides steam. The turbine exhaust is utilized as the heat transport medium and is directly connected to one of the boilers while the other is connected to the recuperator. The system can optionally provide cooling to the electrical and electronic components of the system by providing a water circuit for leading water into the electric and electronic components prior to feeding the boilers. The system is designed to assure that the delta heat difference between the medium being heated and the waste heat of the turbine is sufficient so that the heat exchange will be done efficiently.
    Type: Grant
    Filed: November 27, 2002
    Date of Patent: April 12, 2005
    Assignee: Elliott Energy Systems, Inc.
    Inventor: David W. Dewis