Catalytic Type Patents (Class 60/39.822)
  • Patent number: 11906164
    Abstract: A combustor of an embodiment includes: a combustor casing; a combustor liner which is provided in the combustor casing and combusts a fuel and an oxidant to produce a combustion gas; a pipe-shaped member provided to penetrate the combustor casing and the combustor liner; a heat-resistant glass which is provided on the combustor casing side in the pipe-shaped member and closes the pipe-shaped member; a laser light supply mechanism which irradiates an interior of the combustor liner through the heat-resistant glass and an interior of the pipe-shaped member with a laser light; and a contact prevention mechanism which prevents a combustion gas in the combustor liner from coming into contact with the heat-resistant glass.
    Type: Grant
    Filed: January 20, 2023
    Date of Patent: February 20, 2024
    Assignee: TOSHIBA ENERGY SYSTEMS & SOLUTIONS CORPORATION
    Inventors: Yasunori Iwai, Masao Itoh, Yuichi Morisawa, Yoshihisa Kobayashi, Shinju Suzuki
  • Patent number: 11022311
    Abstract: A fuel nozzle with turning guide is included in a gas turbine. The turning guide is disposed in an air inlet of the fuel nozzle to distribute a flow of compressed air and includes at least one of a turning separator, an inner separator, and an outer separator. The fuel nozzle includes a central body having an outer wall; a shroud concentrically disposed with respect to the central body and configured to surround the central body while maintaining a space for an air passage between an inner wall of the shroud and the outer wall of the central body; a rim formed on one end of the shroud and forming an air inlet communicating with the air passage; and a turning guide including a turning separator disposed in the air inlet, to make the air flow uniform, thereby suppressing the creation of an air pocket.
    Type: Grant
    Filed: June 14, 2018
    Date of Patent: June 1, 2021
    Inventors: Jongho Uhm, Jeongmin Kim
  • Patent number: 10247413
    Abstract: Safety devices prevent packaged catalytic converters from being expelled from stacks, or at least reduce the velocity with which such a package may be expelled, in case of an explosion in a bio-fueled appliance, such as a wood-burning stove.
    Type: Grant
    Filed: May 22, 2018
    Date of Patent: April 2, 2019
    Assignee: Biomass Controls, LLC
    Inventor: Jeffrey R. Hallowell
  • Patent number: 9035226
    Abstract: An exoatmospheric vehicle uses a control system that includes a thrust system to provide thrust to control flight of the vehicle. A regenerative heat system is used to preheat portions of the thrust system, prior to their use in control of the vehicle. The heat for preheating may be generated by consumption of a fuel of the vehicle, such as a monopropellant fuel. The fuel may be used to power a pump (among other possibilities), to pressurize the fuel for use by thrusters of the thrust system. The preheated portions of the thrust system may include one or more catalytic beds of the thrust system, which may be preheated using exhaust gasses from the pump. The preheating may reduce the response time of the thrusters that have their catalytic beds preheated. Other thrusters of the thrust system may not be preheated at all before operation.
    Type: Grant
    Filed: January 20, 2014
    Date of Patent: May 19, 2015
    Assignee: Raytheon Company
    Inventors: Wayne C Jouse, Mark S Muktoyuk
  • Patent number: 8683804
    Abstract: In one embodiment, a system includes a fuel nozzle that includes a fuel injector that includes a fuel port and a premixer tube. The premixer tube includes a wall disposed about a central passage, multiple air ports extending through the wall into the central passage, and a catalytic region. The catalytic region includes a catalyst, disposed inside the wall along the central passage, configured to increase a reaction of fuel and air.
    Type: Grant
    Filed: November 13, 2009
    Date of Patent: April 1, 2014
    Assignee: General Electric Company
    Inventors: Gregory Allen Boardman, David Martin Johnson, Ronald James Chila, Nishant Govindbhai Parsania, Hasan Karim, Joseph Citeno
  • Patent number: 8316647
    Abstract: Methods and apparatuses are provided for protecting a catalyst within a combustor. In one embodiment, a catalytic reactor includes a protective coating that may be chemically removed or mechanically removed while the catalytic reactor is disposed in a combustor.
    Type: Grant
    Filed: January 19, 2009
    Date of Patent: November 27, 2012
    Assignee: General Electric Company
    Inventors: Gilbert Otto Kraemer, Cristina Colindres Kraemer
  • Patent number: 8307653
    Abstract: A catalytic oxidation module for a catalytic combustor of a gas turbine engine is provided. The catalytic oxidation module comprises a plurality of spaced apart catalytic elements for receiving a fuel-air mixture over a surface of the catalytic elements. The plurality of catalytic elements includes at least one primary catalytic element comprising a monometallic catalyst and secondary catalytic elements adjacent the primary catalytic element comprising a multi-component catalyst. Ignition of the monometallic catalyst of the primary catalytic element is effective to rapidly increase a temperature within the catalytic oxidation module to a degree sufficient to ignite the multi-component catalyst.
    Type: Grant
    Filed: February 2, 2009
    Date of Patent: November 13, 2012
    Assignee: Siemens Energy, Inc.
    Inventors: Elvira V. Anoshkina, Walter R. Laster
  • Patent number: 8256221
    Abstract: An assembly (45) includes a plurality of separate pie-shaped segments (72) forming a disk (70) around a central region (48) for retaining a plurality of tubes (46) in a concentrically spaced apart configuration. Each segment includes a support member (94) radially extending along an upstream face (96) of the segment and a plurality of annularly curved support arms (98) transversely attached to the support member and radially spaced apart from one another away from the central region for receiving respective upstream end portions of the tubes in arc-shaped spaces (100) between the arms. Each segment also includes a radial passageway (102) formed in the support member for receiving a fluid segment portion (106) and a plurality of annular passageways (104) formed in the support arms for receiving respective arm portions (108) of the fluid segment portion from the radial passageway and for conducting the respective arm portions into corresponding annular spaces (47) formed between the tubes retained by the disk.
    Type: Grant
    Filed: April 5, 2007
    Date of Patent: September 4, 2012
    Assignee: Siemens Energy, Inc.
    Inventors: Mark F. Rubio, John C. Glessner
  • Patent number: 8215117
    Abstract: A catalytic reactor for a gas turbine engine comprising an air inlet, a premixing zone, a reacting zone comprising a reactive portion and a nonreactive portion, a post reaction mixing zone, a first fuel injection system for introducing fuel into the reactive portion, and a second fuel injection system for introducing fuel into the nonreactive portion.
    Type: Grant
    Filed: October 15, 2007
    Date of Patent: July 10, 2012
    Assignee: United Technologies Corporation
    Inventors: Meredith B. Colket, Alexander Chen
  • Publication number: 20110023446
    Abstract: A gas turbine engine includes a first flow passage and a main combustion arrangement in the first flow passage. The engine further includes a second flow passage and a first catalytic combustion arrangement in the second flow passage, wherein the second flow passage can communicate with the first flow passage at at least one upstream passage junction upstream of the main combustion arrangement and upstream of the first catalytic combustion arrangement, and the second flow passage can communicate with the first flow passage at at least one downstream passage junction downstream of the main combustion arrangement and downstream of the first catalytic combustion arrangement.
    Type: Application
    Filed: December 20, 2007
    Publication date: February 3, 2011
    Inventors: Richard Avellan, Tomas Grönstedt
  • Patent number: 7841180
    Abstract: A method for assembling a gas turbine engine includes providing at least one combustor assembly defining a combustion chamber. At least one fuel nozzle is positioned at a forward end of the combustion chamber. The at least one fuel nozzle is configured to inject a premixed fuel/air mixture into the combustion chamber. A catalytic material is applied to at least a portion of the at least one fuel nozzle.
    Type: Grant
    Filed: December 19, 2006
    Date of Patent: November 30, 2010
    Assignee: General Electric Company
    Inventors: Gilbert O. Kraemer, John Joseph Lipinski, Jonathan Lloyd Male
  • Publication number: 20100192592
    Abstract: A catalytic oxidation module for a catalytic combustor of a gas turbine engine is provided. The catalytic oxidation module comprises a plurality of spaced apart catalytic elements for receiving a fuel-air mixture over a surface of the catalytic elements. The plurality of catalytic elements includes at least one primary catalytic element comprising a monometallic catalyst and secondary catalytic elements adjacent the primary catalytic element comprising a multi-component catalyst. Ignition of the monometallic catalyst of the primary catalytic element is effective to rapidly increase a temperature within the catalytic oxidation module to a degree sufficient to ignite the multi-component catalyst.
    Type: Application
    Filed: February 2, 2009
    Publication date: August 5, 2010
    Inventors: Elvira V. Anoshkina, Walter R. Laster
  • Patent number: 7509807
    Abstract: A catalytic combustor (28) includes a plurality of concentric tubular pressure boundary elements (46). The pressure boundary elements are arranged to form a first annular space (e.g., 50) conducting a first fluid flow (e.g., 60) and a second annular space (e.g. 49), separate from the first annular space, conducting a second fluid flow (e.g., 58). A catalytic material (32) is disposed on a surface (e.g., 64) of at least one of the pressure boundary elements and exposed to at least one of the fluid flows.
    Type: Grant
    Filed: August 13, 2004
    Date of Patent: March 31, 2009
    Assignee: Siemens Energy, Inc.
    Inventors: Gerald Joseph Bruck, Mary Anne Alvin
  • Patent number: 7121097
    Abstract: A control system for a catalytic combustion system on a gas turbine includes a flame preburner, a fuel injector positioned downstream of the preburner and a catalyst positioned downstream of the fuel injector. In such systems, a portion of the fuel combusts within the catalyst itself and the remainder of the fuel combusts in a homogeneous combustion process wave downstream of the catalyst. A sensor in communication with the control system monitors the homogeneous combustion process wave and adjusts the gas temperature at the catalyst inlet to a preferred value based on a predetermined schedule that relates the catalyst inlet gas temperature to operating fundamentals such as adiabatic combustion temperature or the gas turbine's exhaust gas temperature.
    Type: Grant
    Filed: August 29, 2001
    Date of Patent: October 17, 2006
    Assignee: Catalytica Energy Systems, Inc.
    Inventors: David K. Yee, Marco A. Velasco, Sarento G. Nickolas, Ralph A. Dalla Betta
  • Patent number: 7096671
    Abstract: Aspects according to the invention relate to a catalytic combustor system for a turbine engine and an associated method. Catalytic combustors are used in connection with turbine engines because they can minimize the formation of oxides of nitrogen during combustion. Despite this emissions advantage, catalytic combustion systems can increase the level of CO in the turbine exhaust. According to aspects of the invention, vortex formation devices includes vortex generators, swirlers and mixers can be placed downstream of each catalytic module surrounding the pilot nozzle so as to form one or more vortices in the otherwise substantially laminar flow exiting the modules. The vortices can create a suction so that a portion of the flow exiting the pilot nozzles is mixed with the flow exiting the catalyst modules. The introduction of the higher temperature pilot flow can accelerate the catalytic reaction time, promoting burnout of the CO formed during combustion.
    Type: Grant
    Filed: October 14, 2003
    Date of Patent: August 29, 2006
    Assignee: Siemens Westinghouse Power Corporation
    Inventors: Robert Bland, Ramarao V. Bandaru, John Battaglioli
  • Patent number: 7093438
    Abstract: A gas fuel injector includes a first header plate; a second header plate spaced downstream from the upstream header plate; and a plurality of venturi tubes arranged in rows and sealably secured to the first and second header plates. Each of the venturi tubes includes an inlet section, a throat section and an exit. The exit is shaped into a pattern that reduces space between each of the venturi tubes at the exit of each of the plurality of venturi tubes.
    Type: Grant
    Filed: January 17, 2005
    Date of Patent: August 22, 2006
    Assignee: General Electric Company
    Inventors: Constantin Dinu, Thomas Raymond Farrell, Kevin M. Gordon, James Michael Storey, Krishna Kumar Venkataraman
  • Patent number: 7086235
    Abstract: The present embodiment relates to a catalytic combustor for reducing the pollutant emissions of combustion. The catalytic combustor described herein employs a novel heat exchange system for rapidly and economically bringing the combustor to a temperature wherein catalytic combustion may occur with minimal production of toxic products.
    Type: Grant
    Filed: November 26, 2003
    Date of Patent: August 8, 2006
    Assignee: United Technologies Corporation
    Inventors: Alan V. Von Arx, Mark D. Horn
  • Patent number: 7007478
    Abstract: A combustor for a gas turbine includes a main fuel injector for receiving compressor discharge air and mixing the air with fuel for flow to a downstream catalytic section. The main fuel injector includes an array of venturis each having an inlet, a throat and a diffuser. A main fuel supply plenum between forward and aft plates supplies fuel to secondary annular plenums having openings for supplying fuel into the inlet of the venturis upstream of the throat. The diffusers transition from a circular cross-section at the throat to multiple discrete angularly related side walls at the diffuser exits without substantial gaps therebetween. With this arrangement, uniform flow distribution of the fuel/air, velocity and temperature is provided at the catalyst inlet.
    Type: Grant
    Filed: June 30, 2004
    Date of Patent: March 7, 2006
    Assignee: General Electric Company
    Inventor: Constantin Alexandru Dinu
  • Patent number: 7003958
    Abstract: A combustor for a gas turbine includes a main fuel injector for receiving compressor discharge air and mixing the air with fuel for flow to a downstream catalytic section. The main fuel injector includes an array of venturis each having an inlet, a throat and a diffuser. A main fuel supply plenum between forward and aft plates supplies fuel to secondary annular plenums having openings for supplying fuel into the inlets of the venturis upstream of the throats. Each diffuser transitions from a circular cross-section at the throat to multiple discrete angularly related side walls at the diffuser exit. Gaps between circumferentially and radially spaced diffusers at their exits are eliminated. With this arrangement, uniform flow distribution of the fuel/air, velocity and temperature is provided at the catalyst inlet.
    Type: Grant
    Filed: June 30, 2004
    Date of Patent: February 28, 2006
    Assignee: General Electric Company
    Inventors: Constantin Alexandru Dinu, Iris Ziqin Hu, James Michael Storey
  • Patent number: 6983600
    Abstract: A combustor for a gas turbine includes a main fuel injector for receiving compressor discharge air and mixing the air with fuel for flow to a downstream catalytic section. The main fuel injector includes an array of venturis each having an inlet, a throat and a diffuser. A main fuel supply plenum between forward and aft plates supplies fuel to secondary annular plenums having openings for supplying fuel into the inlets of the venturis upstream of the throats. The diffusers transition from a circular cross-section at the throat to multiple discrete angularly related side walls at the diffuser exits without substantial gaps therebetween. With this arrangement, uniform flow distribution of the fuel/air, velocity and temperature is provided at the catalyst inlet.
    Type: Grant
    Filed: June 30, 2004
    Date of Patent: January 10, 2006
    Assignee: General Electric Company
    Inventors: Constantin Alexandru Dinu, Iris Ziqin Hu, James Michael Storey, Thomas Raymond Farrell
  • Publication number: 20050072163
    Abstract: An assembly for mounting an igniter in a gas turbine engine combustor between an outer casing and an outer liner, wherein a longitudinal centerline axis extends through the gas turbine engine. The igniter mounting assembly includes a first spring member encircling a portion of said igniter and being positioned between a surface adjacent the outer casing and an outer surface of the outer liner, a first ring member connected to a first end of the first spring member adjacent the outer surface of the outer liner, and a second ring member connected to a second end of the first spring member adjacent the surface adjacent the outer casing. Accordingly, the igniter is able to maintain substantial alignment with respect to an opening in the outer liner while moving radially and/or axially with respect to the outer liner as the outer casing experiences thermal growth greater than the outer liner.
    Type: Application
    Filed: January 14, 2003
    Publication date: April 7, 2005
    Inventors: Thomas Wells, David Bulman, Mark Noe, Harold Hansel, Christopher Glynn
  • Patent number: 6446426
    Abstract: A miniature heat source capable of being used in a hand-held device for delivering a metered pulse of fuel to a combustion chamber where it is converted into a pulsed amount of heat. For example, the heat source apparatus can be used in a hand-held cigarette smoking system or within a portable device wherein a microturbine generates electricity, as well as any type of environment where a high energy pulse of heat is desired. The heat source includes a valve such as a sliding, rotatable or timed valve which delivers a metered volume of fuel to the combustion chamber. The valve can deliver the fuel, in an expanded gaseous form, to a venturi conduit which increases the velocity of the gas flow, and delivers the fuel to a combustion chamber where the gas is mixed with air. The combustible mixture is then combusted within the combustion chamber by ignition and/or by catalyzed oxidation.
    Type: Grant
    Filed: May 3, 2000
    Date of Patent: September 10, 2002
    Assignee: Philip Morris Incorporated
    Inventors: William R. Sweeney, A. Clifton Lilly, Jr.
  • Patent number: 6272846
    Abstract: A reduced toxicity fuel satellite propulsion system including a reduced toxicity propellant supply (10) for consumption in an axial class thruster (14) and an ACS class thruster (16). The system includes suitable valves and conduits (22) for supplying the reduced toxicity propellant to the ACS decomposing element (26) of an ACS thruster. The ACS decomposing element is operative to decompose the reduced toxicity propellant into hot propulsive gases. In addition the system includes suitable valves and conduits (18) for supplying the reduced toxicity propellant to an axial decomposing element (24) of the axial thruster. The axial decomposing element is operative to decompose the reduced toxicity propellant into hot gases. The system further includes suitable valves and conduits (20) for supplying a second propellant (12) to a combustion chamber (28) of the axial thruster, whereby the hot gases and the second propellant auto-ignite and begin the combustion process for producing thrust.
    Type: Grant
    Filed: April 14, 1999
    Date of Patent: August 14, 2001
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventor: Steven J. Schneider