With Means To Change Temperature Of Supercharged Flow Patents (Class 60/599)
  • Publication number: 20140109569
    Abstract: Disclosed is an exhaust gas recirculation system for an engine (1), wherein at least a downstream sub-region of a region of an exhaust passage (33) upstream of a turbine wheel (52) is divided into two sub-passages (R1, R2) by a partition wall (20a, 30a) extending along an exhaust gas flow direction. A high-speed sub-passage (R2) in the two sub-passages (R1, R2) is equipped with an openable-closable exhaust variable valve (23). The exhaust variable valve (23) is configured to be controlled to open the high-speed sub-passage (R2) when an engine speed is equal to or greater than a reference speed, and close the high-speed sub-passage (R2) when the engine speed is less than the reference speed. An inlet (60a) of an EGR passage (60) on the side of the exhaust passage (33) is opened to the high-speed sub-passage (R2) at a position downstream of the exhaust variable valve (23).
    Type: Application
    Filed: October 11, 2013
    Publication date: April 24, 2014
    Applicant: MAZDA MOTOR CORPORATION
    Inventors: Shuhei TSUJITA, Einosuke SUEKUNI, Junji UMEMURA, Yuki NABETANI
  • Publication number: 20140109884
    Abstract: Engine coolant heating systems and methods that improve waste heat recovery. The systems and methods include a piped connection between the outlet of an exhaust gas recirculation cooler and the main exhaust pipe leading to the vehicle's tailpipe. The systems and methods also include at least one additional valve in the exhaust stream for directing the flow of exhaust appropriately given specific driving conditions.
    Type: Application
    Filed: October 23, 2012
    Publication date: April 24, 2014
    Inventors: Daniel E Hornback, Kevin J Laboe, Gregg T Black
  • Patent number: 8695340
    Abstract: An arrangement for a supercharged combustion engine includes a first compressor compressing air in the engine air inlet line as a first stage and a second compressor compressing the air in the inlet line as a second stage, a first coolant-cooled charge air cooler cooling the air after it has been compressed in the first stage and before it is compressed in the second stage, and an air-cooled charge air cooler cooling the compressed air when it has been compressed by the first stage, a second coolant-cooled charge air cooler cooling the compressed air after it has been compressed in the second stage and before it is compressed in the air-cooled charge air cooler. Exhaust gases in an exhaust line from the engine drive turbines which operate the compressors. A return line from the exhaust line and connected into the inlet line has a cooler for the exhaust gases before mixing the gases with the inlet air.
    Type: Grant
    Filed: November 6, 2008
    Date of Patent: April 15, 2014
    Assignee: Scania CV AB
    Inventors: Zoltan Kardos, Erik Söderberg, Hans Wikström
  • Patent number: 8689555
    Abstract: A vehicle includes an intercooler cooling fluid circuit coupled to and in fluid communication with a turbocharger of an internal combustion engine for circulating a flow of cooling fluid to the turbocharger to cool the turbocharger. A turbocharger cooling control valve controls fluid flow between the turbocharger and an intercooler. The turbocharger cooling control valve directs the flow of the cooling fluid to the intercooler when the engine is running, directs the flow of cooling fluid to the turbocharger when the engine is not running. The vehicle uses an intercooler pump for circulating the cooling fluid to both the intercooler when the vehicle is running and the turbocharger when the vehicle is not running.
    Type: Grant
    Filed: April 14, 2011
    Date of Patent: April 8, 2014
    Assignee: GM Global Technology Operations LLC
    Inventor: Kevin C. Wong
  • Patent number: 8677966
    Abstract: An intake flow device and system for coupling a turbocharger's compressor intake to an air intake is disclosed. The flow device may be cylindrically shaped, flexible, and configured to fit on an intake flange of the compressor. An intake conduit may be fitted around the flow device, such that the intake conduit may retain a large diameter for increased air flow, rather than necking down to mate with the intake flange. The flow device may incorporate compression ribs around its outer circumference for positively mating with the air intake conduit and may incorporate a recess within its interior for securely mating to a lip on the intake flange. The flow device may also be graduated to direct air from the intake conduit to a smaller diameter compressor intake. Guide vanes may also be provided within the flow device to control and direct air to the inlet of the turbocharger.
    Type: Grant
    Filed: January 20, 2011
    Date of Patent: March 25, 2014
    Assignee: Advanced Flow Engineering, Inc.
    Inventor: Shahriar Nick Niakan
  • Patent number: 8677982
    Abstract: An air intake tract arrangement for an internal combustion engine includes an exhaust gas inlet device arranged at the inlet side of a charge air cooler and configured to direct injected EGR exhaust gas substantially in a direction towards an inlet of said charge air cooler, thereby enabling the use of plastic intake tract components.
    Type: Grant
    Filed: February 12, 2010
    Date of Patent: March 25, 2014
    Assignee: Mann+Hummel GmbH
    Inventors: Thierry Marimbordes, Pascal Noiseau
  • Publication number: 20140075976
    Abstract: Embodiments for controlling condensate in a charge air cooler are provided. One example method for an engine comprises cooling intake air through a charge air cooler and adjusting a vibration device of the charge air cooler based on charge air cooler condensation conditions.
    Type: Application
    Filed: September 17, 2012
    Publication date: March 20, 2014
    Applicant: FORD GLOBAL TECHNOLOGIES, LLC
    Inventors: Chris Paul Glugla, Garlan J. Huberts, Michael Damian Czekala
  • Patent number: 8671919
    Abstract: An intake device of an engine comprises an intake manifold of a four-cylinder inline engine and a water-cooling type of intercooler. The intake manifold includes a downstream branch pipe portion connecting to cylinders, a chamber portion connecting to the downstream branch pipe portion, and an upstream intake pipe portion connecting to the chamber portion. A rectangular opening portion having a vertically-long shape is formed at the upstream intake pipe portion. The intercooler includes an intercooler body portion having a pair of faces which has the widest face-area and faces to each other in an engine width direction. The intercooler body portion is installed in the chamber portion, by being inserted through the rectangular opening portion, so as to divide an inside of the chamber portion into two parts in the engine width direction thereby.
    Type: Grant
    Filed: January 9, 2013
    Date of Patent: March 18, 2014
    Assignee: Mazda Motor Corporation
    Inventors: Tatsuro Nakasugi, Fusatoshi Tanaka, Takao Kadoishi, Nozomu Hachiya
  • Publication number: 20140060039
    Abstract: A compressor adapted to compress a working fluid includes a housing surrounding a compressor wheel and a backplate connected to the housing and enclosing the compressor wheel within an interior space of the housing. A cooling fluid conduit is fluidly connected between a cooled and compressed source of working fluid downstream of the compressor and the interior space of the housing of the compressor at a location between the compressor wheel and the back plate. A pressure differential created when the compressor is operating draws a flow of cooled, compressed charge into the interior space of the housing, which flow passes over and convectively cools said compressor wheel before mixing with a main compressor flow and being provided back through the compressor outlet.
    Type: Application
    Filed: August 29, 2013
    Publication date: March 6, 2014
    Applicant: Caterpillar Inc.
    Inventors: Gary Powers, Cody McKinley, Dan Vacek, Muhamad Baihaqi Haji Ismail, Kumar Nale, Jeffrey McCormack
  • Publication number: 20140053547
    Abstract: An engine receiving boost from a supercharger and/or a turbocharger compressor is provided, along with methods for its operation. The engine may include inline cylinders arranged on an engine block and an integrated exhaust manifold (IEM), where exhaust flow from inner cylinders is kept separate from exhaust flow from outer cylinders within the IEM and where exhaust flow from the inner cylinders but not the outer cylinders flows through a turbine of the turbocharger. The supercharger and turbocharger compressor may be arranged in parallel upstream of an intake manifold of the engine, and throttles upstream of each of the supercharger and compressor may be controlled to direct intake air through one or both of the supercharger and the compressor based on engine operating conditions.
    Type: Application
    Filed: August 21, 2012
    Publication date: February 27, 2014
    Applicant: FORD GLOBAL TECHNOLOGIES, LLC
    Inventors: Robert Andrew Wade, John Christopher Riegger
  • Publication number: 20140047832
    Abstract: A turbocharger system is provided herein. The turbocharger system includes a turbine positioned downstream of a combustion chamber, a turbine bypass conduit in fluidic communication with a turbine inlet and a turbine outlet, a wastegate positioned in the turbine bypass conduit, and an air-cooled wastegate actuator adjusting the position of the wastegate, the air-cooled wastegate actuator receiving cooling airflow from an intake conduit positioned upstream of a compressor mechanically coupled to the turbine.
    Type: Application
    Filed: August 17, 2012
    Publication date: February 20, 2014
    Applicant: FORD GLOBAL TECHNOLOGIES, LLC
    Inventor: Patrick Matthews
  • Publication number: 20140047833
    Abstract: Embodiments for a charge air cooler are provided. In one example, an engine method comprises during a first mode, decreasing a volume of a charge air cooler in response to a compressor operation upstream of the charge air cooler. In this way, compressor surge may be prevented.
    Type: Application
    Filed: August 20, 2012
    Publication date: February 20, 2014
    Applicant: FORD GLOBAL TECHNOLOGIES, LLC
    Inventors: Julia Helen Buckland, Chris Paul Glugla, Robert Andrew Wade, Jason Eugene Devries, Charles A. Cockerill, Gregory Patrick McConville
  • Patent number: 8640456
    Abstract: A charge air cooler assembly for an internal combustion engine is described. A housing of the charge air cooler assembly includes a dividing wall that separates flow after the charge air cooler into two separate flow paths.
    Type: Grant
    Filed: November 30, 2011
    Date of Patent: February 4, 2014
    Assignee: Cummins Intellectual Property, Inc.
    Inventor: Atsuhiko Watanabe
  • Patent number: 8621862
    Abstract: A remote cooling system (10) for cooling turbocharged compressed air from a charge-air cooled engine (12) which is placed within an enclosed environment. The cooling system (10) comprises a charge-air cooler (14) located a predetermined distance from the engine (12). The charge-air cooler (14) comprises a fluid receiver (16) which receives turbocharged air from the engine 12, an air-to-water heat exchanger (24) which cools the turbocharged air received from the fluid receiver (16), and a fluid return member (26) for returning cooled air to the engine (12). A secondary cooling device (34), located outside of the enclosed environment, provides heat transfer from the heat exchanger (24) within the charge-air cooler (14) to an external environment.
    Type: Grant
    Filed: December 6, 2006
    Date of Patent: January 7, 2014
    Assignee: Wabtec Holding Corp.
    Inventors: Michael W. Sprenger, Matthew L. Warnick
  • Publication number: 20140000255
    Abstract: An air supply device of a gas engine having a turbocharger includes a first intake passage configured to guide the mixture of outdoor air and unpurified gas into the turbocharger, a second intake passage configured to guide indoor air into the turbocharger, a filter configured to remove a solid impurity in the unpurified gas which is disposed in the first intake passage, a first damper capable of opening and closing the first intake passage disposed on the downstream side of the filter in the first intake passage, a heating unit for heating the indoor air disposed in the second intake passage, a second damper capable of opening and closing the second intake passage disposed on the downstream side of the heating unit in the second intake passage, and a damper control device configured to control the opening degree of each of the first and second dampers.
    Type: Application
    Filed: September 30, 2011
    Publication date: January 2, 2014
    Inventors: Hajime Suzuki, Yuuichi Shimizu, Hideki Nishio
  • Publication number: 20130327035
    Abstract: Provided is an intake air cooling system for a marine vessel having a turbocharger. The intake air cooling system for the marine vessel includes: a turbocharger which compresses the intake air introduced from the outside using a portion of the exhaust gas generated by the engine, wherein the turbocharger has a front end through which the intake air is introduced and a rear end through which the compressed intake air is supplied to the engine; a cooling part which cools at least one of the intake air compressed in the turbocharger and the exhaust gas passing through the turbocharger, wherein the cooling part includes one or more cooling units disposed along the flow of the intake air or the exhaust gas; and an absorption cooling device which receives heat from the working fluid circulated through the cooling unit.
    Type: Application
    Filed: September 19, 2011
    Publication date: December 12, 2013
    Applicant: Samsung Heavy Ind. Co., Ltd.
    Inventors: Eun Kyung Kim, Sung Jae Lee, Ki Jung Kim, Da Ra Heo, Gun Il Park, Jae Woong Choi
  • Patent number: 8590599
    Abstract: A cooler arrangement comprising a charge air cooler which comprises at least one first pipeline for guiding compressed air during cooling and a tank which receives the cooled compressed air via an outlet aperture from the first pipeline, and an EGR cooler which comprises at least one second pipeline for guiding exhaust gases during cooling and a tank which receives the cooled exhaust gases from an outlet aperture of the second pipeline. The cooler arrangement comprises a tubular element extending from the EGR cooler's tank to the charge air cooler's tank. The tubular element has an outlet aperture for exhaust gases which is situated downstream of the most downstream outlet aperture in the charge air cooler's tank with respect to the main direction of flow of the air in the tank.
    Type: Grant
    Filed: June 16, 2006
    Date of Patent: November 26, 2013
    Assignee: Scania CV AB (publ)
    Inventors: Zoltan Kardos, Henrik Nyren
  • Patent number: 8590306
    Abstract: There are provided first and second water supply passages to supply cooling water from an engine to first and second center housings of first and second turbochargers, and first and second return passages to return the cooling water from the first and second turbochargers to the engine. A cooling-water connection portion of the first water supply is located above the level of a cooling-water connection portion of the second water supply passage. A vapor releasing passage is provided between the second turbocharger and an upper tank provided on the outside of an engine body at a position located above the connection portion of the second return passage of the second turbocharger. Accordingly, the function of vapor releasing from the first and second turbochargers can be improved, thereby increasing the layout flexibility around the engine.
    Type: Grant
    Filed: June 24, 2011
    Date of Patent: November 26, 2013
    Assignee: Mazda Motor Corporation
    Inventors: Yasushi Niwa, Kazuaki Nishimura, Satoshi Nishizaka, Hiroaki Deguchi
  • Publication number: 20130305708
    Abstract: A thermal management system and method for split cooling and integrated exhaust manifold applications in an automotive engine is provided. The thermal management system includes a cooling circuit that directs coolant through a plurality of components to warm the engine and passenger compartment efficiently, as well as remove excess heat from the engine and promote a constant operating temperature during vehicle operation. The cooling circuit directs liquid coolant, propelled by a coolant pump, through at least one of an engine block cooling jacket, an engine head cooling jacket, and an integrated exhaust manifold (IEM) cooling jacket, along a variety of cooling paths. The cooling circuit also incorporates a plurality of flow control valves to selectively distribute flow of the liquid coolant between a radiator, an engine heater core, and a return path to the coolant pump.
    Type: Application
    Filed: August 20, 2012
    Publication date: November 21, 2013
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: AKRAM R. ZAHDEH, COLIN BLACKLOCK BOSMAN
  • Patent number: 8584457
    Abstract: A cooler arrangement for a vehicle which is powered by a supercharged combustion engine. The vehicle has at least one charge air cooler (10) for cooling of compressed air which is led to the combustion engine (2), and an energy recovery system. The vehicle also has a cooler arrangement of a first cooling circuit with a first cooler (20) for cooling a circulating coolant, a second cooling circuit with a second cooler (26) for cooling a circulating coolant to a lower temperature than the first cooler (20), and a third cooling circuit with a third cooler (29) for cooling a circulating coolant to a lower temperature than the second cooler (26). The coolant in the third cooling circuit cools the compressed air in the charge air cooler (10) and/or a medium in a condenser (45) in a cooling medium line (32).
    Type: Grant
    Filed: May 11, 2011
    Date of Patent: November 19, 2013
    Assignee: Scania CV AB
    Inventors: Zoltan Kardos, Kristoffer Klingberg
  • Publication number: 20130291536
    Abstract: An internal combustion with a fresh air supply system, and an exhaust gas system including an exhaust gas turbocharger, which has a turbine arranged in the exhaust gas system and a compressor arranged in the fresh air supply system and a high-pressure exhaust gas recirculation pipe extending from the exhaust gas system upstream of the turbine to a point of the fresh air supply system downstream of the charge air cooler, and a low pressure exhaust gas recirculation pipe extending from a point of the exhaust gas system downstream of the turbine to a point of the fresh air supply system upstream of the compressor and a condensate collection device arranged in the fresh air supply system at, or downstream of, the connecting point of the high pressure recirculation line to the fresh air supply system for the removal of condensate.
    Type: Application
    Filed: March 2, 2013
    Publication date: November 7, 2013
    Inventors: Thomas Koch, Johannes Ritzinger
  • Publication number: 20130291537
    Abstract: A low-pressure loop EGR device (47, 89) includes an electronic control unit (controller) (55). When an off signal is inputted from a key switch (57) as a stop warning signal to give notice that a supercharged engine (1) is about to stop, the electric control unit (55) controls an EGR valve (51) so as to close an EGR passage (49), and then controls a nozzle actuator (27) so as to turn multiple variable nozzles (25) in a narrowing direction.
    Type: Application
    Filed: November 8, 2011
    Publication date: November 7, 2013
    Applicant: IHI Corporation
    Inventor: Yuji Kobayashi
  • Publication number: 20130232969
    Abstract: An exhaust gas turbocharger module and internal combustion engine outfitted therewith are disclosed. The exhaust gas turbocharger modules have an individual turbocharging assembly with a low-pressure exhaust gas turbocharger with a low-pressure turbine and a low-pressure compressor which have a common first turbocharger axis. A high-pressure exhaust gas turbocharger is provided with a high-pressure turbine and a high-pressure compressor which have a common second turbocharger axis extending perpendicular to the first turbocharger axis. The low-pressure turbine is connected downstream of the high-pressure turbine via an exhaust gas connection line, and the high-pressure compressor is connected downstream of the low-pressure compressor via a charge air connection line. A housing receives the low-pressure turbine, the high-pressure turbine and the exhaust gas connection line. The low-pressure compressor, the high-pressure compressor, and the charge air connection line are arranged outside of the housing.
    Type: Application
    Filed: March 8, 2013
    Publication date: September 12, 2013
    Applicant: MAN Diesel & Turbo SE
    Inventors: Eva Lührmann, Max Eder, Ulrich Deisenhofer, Stefan Rehle, Florian Würr, Franz Koch, Marco Konle, Matthias Songen
  • Patent number: 8516816
    Abstract: A method for operating an engine system comprises charging a cylinder of the engine system with exhaust from upstream of an exhaust turbine at a first rate. The method further comprises charging the cylinder with exhaust from downstream of the turbine at a second rate. The exhaust from downstream of the turbine is routed to the cylinder via a low-pressure exhaust-gas recirculation path. The method further comprises increasing the second rate relative to the first rate in response to a coolant-overheating condition.
    Type: Grant
    Filed: June 2, 2010
    Date of Patent: August 27, 2013
    Assignee: Ford Global Technologies, LLC
    Inventors: Ross Dykstra Pursifull, Gopichandra Surnilla
  • Patent number: 8490392
    Abstract: An arrangement for a supercharged combustion engine including a first compressor subjecting air to a first compression step, a second compressor subjecting the air to a second compression step, a first cooling system with a circulating coolant, a second cooling system with a circulating coolant which is at a lower temperature than the coolant in the first cooling system, a first charge air cooler applied to an air inlet line to the engine for cooling compressed air, the first cooler is located between the first compressor and the second compressor and is cooled by coolant from the second cooling system, a second charge air cooler applied to the air inlet line at a location downstream of the second compressor and is cooled by coolant from the first cooling system, and a third charge air cooler applied at a location downstream of the second charge air cooler and cooled by coolant from the second cooling system.
    Type: Grant
    Filed: June 3, 2009
    Date of Patent: July 23, 2013
    Assignee: Scania CV AB
    Inventors: Zoltan Kardos, Erik Söderberg
  • Patent number: 8494698
    Abstract: A hybrid system control apparatus is provided in which an intercooler is disposed upstream of the motor cooling radiator in a flow path of the ambient air flowing in an engine compartment, and/or is disposed such that at least a portion of the intercooler and a portion of the motor cooling radiator contact each other. The hybrid system control apparatus includes a warm-up portion that increases temperature of the boost air by controlling a load of the engine in cold start of a hybrid system such that the boost pressure from the forced air induction device is equal to or higher than a target boost pressure.
    Type: Grant
    Filed: October 2, 2008
    Date of Patent: July 23, 2013
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Hiroki Murata, Isao Matsumoto, Naofumi Magarida, Akira Yamashita, Hiroyuki Haga, Takenori Saoda
  • Patent number: 8459961
    Abstract: A multistage compressor unit consisting of a low-pressure charging device having a low-pressure compressor housing, a high-pressure charging device having a high-pressure compressor housing and a cooling device, characterised in that the cooling device comprises a cooling device housing and the cooling device housing of the cooling device is indirectly connected to the low-pressure compressor housing of the low-pressure charging device and the high-pressure compressor housing of the high-pressure charging device.
    Type: Grant
    Filed: May 22, 2008
    Date of Patent: June 11, 2013
    Assignee: Behr GmbH & Co. KG
    Inventors: Jürgen Wegner, Joachim Huster
  • Publication number: 20130111898
    Abstract: A system includes an internal combustion engine, an EGR flow path having an EGR cooler path and an EGR cooler bypass path, a turbocharger, a compressed intake flow path, an EGR bypass valve that selectively divides the EGR flow between the EGR cooler path and the EGR cooler bypass path, a charge air cooler bypass valve that reduces an amount of cooling of compressed intake air out of the compression side of the turbocharger, and an aftertreatment component that receives the exhaust stream from the turbine side of the turbocharger. The aftertreatment component requires at least intermittent exhaust stream temperature elevation. The system includes a controller that determines that an exhaust stream temperature elevation request is present, and provides a charge air cooler bypass valve command and an EGR bypass valve command in response to the exhaust stream temperature elevation request.
    Type: Application
    Filed: October 4, 2012
    Publication date: May 9, 2013
    Applicant: CUMMINS INC.
    Inventor: CUMMINS INC.
  • Patent number: 8434433
    Abstract: The present invention provides a heat exchange system including, among other things, a radiator operable to remove heat from coolant, an air flow path extending through a first charge air cooler and a second charge air cooler, the first charge air cooler being operable to transfer heat from air to the coolant, the second charge air cooler being positioned downstream from the first charge air cooler along the air flow path to receive the air from the first charge air cooler and being operable to transfer heat from the air to the coolant, and a coolant circuit extending between a coolant pump, the radiator, and the first and second charge air coolers.
    Type: Grant
    Filed: February 20, 2008
    Date of Patent: May 7, 2013
    Assignee: Modine Manufacturing Company
    Inventors: Zachary Thomas Ouradnik, Martin John Riniker, Patrick Schoepel, Gregg D. Olson, Jason Braun
  • Patent number: 8429911
    Abstract: A system for controlling the temperature of a charge air stream flowing through an air-cooled intercooler of a turbocharged internal combustion engine, with a fan for producing a cooling air stream acting on the intercooler and with an actuation unit for controlling the flow of cooling air as a function of charge pressure present at the intercooler.
    Type: Grant
    Filed: May 20, 2010
    Date of Patent: April 30, 2013
    Assignee: Deere & Company
    Inventors: Peter Back, Waldemar Stark
  • Publication number: 20130098031
    Abstract: Embodiments for an internal combustion engine having at least one cylinder, at least one exhaust line for discharging combustion gases via an exhaust-gas discharge system, and at least one intake line for supplying charge air via an intake system are provided. In one example, an internal combustion engine comprises an exhaust-gas recirculation arrangement which comprises a recirculation line which branches off from the exhaust-gas discharge system and which opens into the intake system, an exhaust-gas turbocharger comprising a compressor arranged in the intake system and a turbine arranged in the exhaust-gas discharge system, a throttle element which is arranged in the intake line downstream of the compressor, a bypass line which branches off from the intake line upstream of the throttle element and which opens into the intake line again downstream of the throttle element, and an expansion machine for gaining additional energy arranged in the bypass line.
    Type: Application
    Filed: October 4, 2012
    Publication date: April 25, 2013
    Applicant: Ford Global Technologies, LLC
    Inventor: Ford Global Technologies, LLC
  • Publication number: 20130098030
    Abstract: A system for recovering heat from recirculating exhaust gases is provided. The system includes a first exhaust manifold in fluid communication with multiple combustion chambers of an engine. The system also includes a turbocharger having a turbine stage and a compressor stage, wherein the turbine stage comprises an inlet port in fluid communication with the first exhaust manifold and the compressor stage includes an inlet port for air intake and an outlet port for compressed air. The system includes an exhaust gas recirculation cooler having a first flow path and a second flow path, wherein the first flow path is configured to receive a portion of exhaust gas from the first exhaust manifold flowing through an exhaust gas recirculation loop. The second flow path includes an inlet for receiving a compressed air for drawing heat from the exhaust gas flowing through the first flow path.
    Type: Application
    Filed: October 19, 2011
    Publication date: April 25, 2013
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Sebastian Walter Freund, Jassin Marcel Fritz
  • Patent number: 8424303
    Abstract: An arrangement for a supercharged combustion engine (2) including a first cooling system with a circulating coolant, a second cooling system with a circulating coolant which is at a lower temperature than the coolant in the first cooling system, and a cooler (10, 15) in which a gaseous medium which contains water vapor is to be cooled by the coolant in the second cooling system. A first valve (32) which can be placed in a first position whereby it prevents coolant from the first cooling system from being led to the second cooling system via a first connecting line (30), and a second position whereby it allows warm coolant from the first cooling system to be led to the second cooling system via the first connecting line (30). The warm coolant from the first cooling system is intended to circulate at least a certain distance (26b, c) in the second cooling system so that it passes through the cooler (10, 15).
    Type: Grant
    Filed: February 25, 2009
    Date of Patent: April 23, 2013
    Assignee: Scania CV AB
    Inventors: Zoltan Kardos, Erik Söderberg
  • Publication number: 20130067912
    Abstract: A heat exchanger for cooling of charge air for an internal combustion engine of a motor vehicle is provided. The heat exchanger has a preliminary stage, a main stage, and a compensating component. The preliminary stage has at least one preliminary stage fixed bearing base and a preliminary stage floating bearing base. The main stage has at least one main stage fixed bearing base and a main stage floating bearing base. In a heat transfer region of the main stage, at least one main stage channel for a main stage coolant is disposed. The compensating component is configured to compensate a position difference between corresponding components of the preliminary stage and the main stage, whereby the position difference is based on a thermally induced elongation difference between the at least one preliminary stage channel and the at least one main stage channel.
    Type: Application
    Filed: September 17, 2012
    Publication date: March 21, 2013
    Applicant: Behr GmbH & Co., KG
    Inventor: Behr GmbH & Co., KG
  • Publication number: 20130067913
    Abstract: In a gas engine 1 that uses a gas having a lower specific gravity than air and has a pre-mixing device before a turbocharger, a pre-mixed gas mixture compressed by a turbocharger 3 is cooled by an intercooler 4 located downstream of the turbocharger 3 in the intake system. Condensed water produced as the gas is cooled and the pre-mixed gas mixture discharged with the condensed water are separated into condensed water, air, and fuel gas in a vapor-liquid separator 7. The fuel gas is returned to the intake system upstream of the turbocharger 3, while the condensed water is discharged to atmosphere.
    Type: Application
    Filed: June 27, 2011
    Publication date: March 21, 2013
    Applicant: MITSUBISHI HEAVY INDUSTRIES, LTD.
    Inventors: Hideki Nishio, Hajime Suzuki, Yuuichi Shimizu
  • Patent number: 8371119
    Abstract: A machine includes an internal combustion engine mounted on a chassis and having an intake manifold. An air intake system extends from an air inlet to the intake manifold and includes a condensate collection location. The machine also includes a liquid system having a pump that is mechanically coupled to the internal combustion engine. A drain valve is positioned in the air intake system at the condensate collection location and includes a valve member having a closed position and an open position. In the closed position of the valve member, a closing surface of the valve member is exposed to pressurized liquid within the liquid system and the condensate collection location is fluidly blocked from a discharge opening in the air intake system. In the open position of the valve member, the condensate collection location is fluidly connected to the discharge opening.
    Type: Grant
    Filed: September 8, 2010
    Date of Patent: February 12, 2013
    Assignee: Caterpillar Inc.
    Inventors: James Carl Durand, Joseph E. Tabor
  • Publication number: 20130031901
    Abstract: Embodiments for a supercharged engine are presented. In one example, a supercharged engine includes a cylinder head having at least two cylinders, each cylinder having at least one outlet opening for discharging exhaust gases and each outlet opening being adjoined by an exhaust line, with exhaust lines of at least two cylinders merging to form an overall exhaust line within the cylinder head so as to form an integrated exhaust manifold, at least two turbines arranged in series, the two turbines being of different size and arranged downstream of the exhaust manifold in the overall exhaust line, a distributor housing in which the overall exhaust line downstream of the manifold enters into and leads through to a small turbine of the two turbines, and a first turbine housing which accommodates the small turbine including at least one coolant jacket in order to form a liquid cooling arrangement.
    Type: Application
    Filed: August 2, 2012
    Publication date: February 7, 2013
    Applicant: FORD GLOBAL TECHNOLOGIES, LLC
    Inventors: Kai Sebastian Kuhlbach, Norbert Andreas Schorn, Carsten Weber
  • Patent number: 8365526
    Abstract: A vehicle or stationary power plant having an internal combustion engine as a drive source and having components adapted to be supplied with heat from a medium accommodated in a closed loop The turbine of the exhaust gas turbocharger provided for turbocharging the internal combustion engine acts as a heat source. A heat exchanger is disposed externally on the turbine housing and can be incorporated or switchable into the medium loop The medium can be conveyed directly or channeled through the interior of the heat exchanger, and the medium is adapted to be heated up in such interior utilizing at least thermal radiation energy from the hot turbine housing.
    Type: Grant
    Filed: October 12, 2009
    Date of Patent: February 5, 2013
    Assignee: MAN Truck & Bus AG
    Inventor: Erwin Stiermann
  • Patent number: 8365527
    Abstract: A cooling circuit and an independent heat recovery circuit are associated with an internal combustion engine. A coolant is circulated a pump in a first and a second cooling sub-circuit. An increase in pressure in a work medium is achieved within the heat recovery circuit by a pump. This work medium is changed from liquid aggregate state to vaporous aggregate state and back to the liquid aggregate state in heat exchangers. This work medium is divided after the pump into two parallel partial flows and is changed into vaporous state in a first parallel branch in an EGR heat exchanger through which recycle exhaust gas flows and in a second parallel branch in an exhaust gas heat exchanger through flow exhaust gas downstream of the low-pressure turbine flows. This vaporous work medium is then fed to an expander and is then conducted through a cooled condenser and, liquefied again.
    Type: Grant
    Filed: December 8, 2009
    Date of Patent: February 5, 2013
    Assignee: MAN Nutzfahrzeuge Oesterreich AG
    Inventors: Gottfried Raab, Markus Raup, Josef Klammer
  • Patent number: 8353275
    Abstract: A method for providing intake air to an engine in a vehicle includes forming a mixture of fresh air and treated exhaust, and compressing the mixture upstream of a first throttle valve coupled to an intake manifold of the engine. The method further includes, during a higher engine-load condition, admitting the mixture to the intake manifold via the first throttle valve, and, during a lower engine-load condition, admitting fresh air to the intake manifold via a second throttle valve.
    Type: Grant
    Filed: January 8, 2010
    Date of Patent: January 15, 2013
    Assignee: Ford Global Technologies, LLC
    Inventors: Brad Alan VanDerWege, Ralph Wayne Cunningham, Ross Dykstra Pursifull, Gopichandra Surnilla, John David Russell
  • Patent number: 8336528
    Abstract: An EGR device includes a first cooling passage that introduces a flowing medium discharged from an engine into a main radiator so that the flowing medium is cooled therein, and then returns the flowing medium to the engine, and a second cooling passage that introduces a part of the flowing medium cooled in the first cooling passage to a sub-radiator so that the flowing medium is further cooled therein. The second cooling passage introduces the flowing medium to an EGR cooler to return the flowing medium, which is discharged from the EGR cooler, to the engine.
    Type: Grant
    Filed: June 28, 2007
    Date of Patent: December 25, 2012
    Assignee: Calsonic Kansei Corporation
    Inventors: Ryoichi Hori, Satoshi Kimura, Satoshi Tamagawa
  • Patent number: 8333071
    Abstract: A method and system to control an engine to maintain turbine inlet temperature utilizes two temperature thresholds: a control initiation temperature and a maximum hardware temperature. An engine parameter is adjusted in a closed-loop manner based on an error, which is a difference between a setpoint temperature and the turbine inlet temperature. The setpoint temperature is initially the control initiation temperature. However, after control over turbine inlet temperature is established, the setpoint temperature ramps gradually to maximum hardware temperature. In one embodiment, the engine parameter is engine torque. Other engine parameters affecting turbine inlet temperature include timing and duration of fuel injection pulses, EGR rate, gear selection, and intake throttle position, any of which can be used in place of, or in combination with, torque for controlling turbine inlet temperature.
    Type: Grant
    Filed: July 31, 2009
    Date of Patent: December 18, 2012
    Assignee: Ford Global Technologies, LLC
    Inventors: Aaron John Oakley, Paul Martin Niessen, Jason Ronald Smith
  • Publication number: 20120297765
    Abstract: Embodiments for a cooling arrangement are provided. In one example, a cooling arrangement comprises a low-temperature circuit for charge-air cooling of a turbocharger of an internal combustion engine, an engine cooling circuit for cooling the internal combustion engine, and a charge-air cooler arranged in the low-temperature circuit and connected in a fluid-conducting manner on a coolant inlet side, via a first valve device, to the low-temperature circuit and to the engine cooling circuit, and on a coolant outlet side, via a second valve device, to the low-temperature circuit and to the engine cooling circuit. In this way, coolant from the engine may heat the charge-air cooler under certain conditions.
    Type: Application
    Filed: May 10, 2012
    Publication date: November 29, 2012
    Applicant: FORD GLOBAL TECHNOLOGIES, LLC
    Inventors: Christian Winge Vigild, Hans Guenter Quix
  • Publication number: 20120285162
    Abstract: The present invention relates to a fuel cell-engine hybrid system formed to effectively utilize an exhaust gas discharged from a process for generating electricity. A fuel cell-engine hybrid system according to the present invention includes: an electricity generating unit including a cathode and an anode interposing an electrolyte membrane therebetween; and an engine unit connected to a rear end of the electricity generating unit and generating power by receiving the exhaust gas discharged from the anode.
    Type: Application
    Filed: May 11, 2012
    Publication date: November 15, 2012
    Applicant: KOREA INSTITUTE OF MACHINERY & MATERIALS
    Inventors: Kook Young AHN, Young Duk Lee, Sang Gyu Kang, Sang Min Lee, Han Seok Kim, Ju Hyeong Cho, Min Kuk Kim, Sung Ho Park, Seung Jin Song, Han Ho Song
  • Patent number: 8307643
    Abstract: An engine air intake system for a vehicle having an internal combustion engine may include a turbocharger; a CAC heat exchanger having an inlet end for receiving compressed intake air from the turbocharger and an outlet end; a remote condensate reservoir spaced from the CAC heat exchanger, for storing condensate therein; a condensate drain tube extending from the outlet end to the remote condensate reservoir to allow condensate produced in the CAC heat exchanger to flow into the remote condensate reservoir; an air duct connecting the outlet end to the engine to direct air flow from the outlet end to the engine; and a reservoir outlet hose connected to the remote condensate reservoir at a first end and connected to the air duct at a second end to allow condensate evaporating from the remote condensate reservoir to flow through the reservoir outlet hose into the air duct.
    Type: Grant
    Filed: November 12, 2009
    Date of Patent: November 13, 2012
    Assignee: GM Global Technology Operations LLC
    Inventors: Richard D. Quinn, Brandon S. Helton, Kenneth J. Murphy, Tuan A Tran, Lawrence E. Walla
  • Publication number: 20120279215
    Abstract: One illustrative embodiment includes a turbocharger (16, 18) with a turbine (94) and a compressor (96). The turbine (94) has an inlet passage (114) which may directly communicate with a blowdown exhaust port (34, 36, 38) of a cylinder head (12) of an internal combustion engine (14). The inlet passage (114) may directly receive exhaust gas from the blowdown exhaust port (34, 36, 38).
    Type: Application
    Filed: January 20, 2011
    Publication date: November 8, 2012
    Applicant: BORGWARNER INC.
    Inventors: David B. Roth, Joern Timm Kiener
  • Publication number: 20120266592
    Abstract: A supplementary intercooler cools engine air after it has passed through the turbocharger of a vehicle's turbocharged internal combustion engine, but before it enters the engine. The unit has an inlet for capturing the turbo's air charge and an outlet for routing the air charge to the engine after passing through the intercooler. A container stores water until it is needed and a water pump transfers water from the container to the unit. This loosened bond of water is then sprayed on capacitor plates under turbo pressure to be converted into hydrogen and injected into the air intake stream making it a totally “hydrogen-on-demand” intercooler.
    Type: Application
    Filed: April 20, 2012
    Publication date: October 25, 2012
    Inventors: NICHOLAS FREDERICK FOY, URSULA META FOY
  • Publication number: 20120260649
    Abstract: A vehicle includes an intercooler cooling fluid circuit coupled to and in fluid communication with a turbocharger of an internal combustion engine for circulating a flow of cooling fluid to the turbocharger to cool the turbocharger. A turbocharger cooling control valve controls fluid flow between the turbocharger and an intercooler. The turbocharger cooling control valve directs the flow of the cooling fluid to the intercooler when the engine is running, directs the flow of cooling fluid to the turbocharger when the engine is not running. The vehicle uses an intercooler pump for circulating the cooling fluid to both the intercooler when the vehicle is running and the turbocharger when the vehicle is not running.
    Type: Application
    Filed: April 14, 2011
    Publication date: October 18, 2012
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventor: Kevin C. Wong
  • Publication number: 20120260650
    Abstract: An internal combustion engine includes a plurality of combustion cylinders, at least one turbocharger, an exhaust gas line and an exhaust gas recirculation system. A compressor bypass may fluidly connect a compressed air line to the exhaust gas line. If the internal combustion engine has dual cylinder banks, an exhaust gas balance tube may extend between exhaust gas lines of the cylinder banks. A wastegate may fluidly connect the exhaust gas balance tube to an exhaust gas outlet. A compressor bypass may fluidly connect the compressed air line to the exhaust gas balance tube.
    Type: Application
    Filed: April 14, 2011
    Publication date: October 18, 2012
    Applicant: Caterpillar Inc.
    Inventors: Aaron Luft, Daniel Streutker, Catalin Citea, Lucian Stanciu, Catalin Tiru, Jeremy Byrd
  • Publication number: 20120234001
    Abstract: The present disclosure refers to a method and apparatus for recirculating an exhaust gas flow of a large internal combustion engine having an air inlet and an exhaust gas outlet. The method may comprise the steps of diverting a first partial exhaust gas flow at the exhaust gas outlet of the large internal combustion engine; cooling the exhaust gas of the first partial exhaust gas flow; compressing the cooled first partial exhaust gas flow; cooling the compressed exhaust gas of the first partial exhaust gas flow; and supplying the cooled and compressed first partial exhaust gas flow to the air inlet of the large internal combustion engine.
    Type: Application
    Filed: June 22, 2010
    Publication date: September 20, 2012
    Inventors: Anke Neumann, Udo Schlemmer-Kelling