Including Heat, Steam, Or Compressed Gas Storage Means Patents (Class 60/659)
  • Patent number: 8474261
    Abstract: A steam generation system comprises a main steam generator and a back-up steam generator (20) which are both in fluid communication with a super heater (3) for superheating the generated steam. The superheater comprises a main heat source (6) for heating up a flow of heating gas. A back-up evaporator (2) is provided as a back-up steam generator for evaporating supplied water into steam. The back-up evaporator is connected in parallel to the main steam generator. An auxiliary heat source is provided for heating up the back-up evaporator. By controlling the auxiliary heat source (9), it is possible to supply more or less heat energy to the back-up evaporator to compensate for fluctuations in steam production of the main steam generator. The back-up evaporator is positioned away from the flow of heating gasses departing from the main heat source.
    Type: Grant
    Filed: April 20, 2009
    Date of Patent: July 2, 2013
    Assignee: NEM Energy B.V.
    Inventor: Peter Simon Rop
  • Patent number: 8464535
    Abstract: Systems, methods, and apparatus relating to the use of phase change material to store, transfer and convert heat, such as from solar radiation, to mechanical work or electricity. Apparatus, systems, components, and methods relating to thermal energy transfer and energy conversion are described herein. In one aspect, the invention relates to a containment vessel having a heat receiving region and a heat transfer region such that a plurality of phase change materials are disposed therein and a sequence of solid, liquid and vapor phases are used to transfer heat from a source to a heat receiver of a power conversion unit.
    Type: Grant
    Filed: October 13, 2010
    Date of Patent: June 18, 2013
    Assignee: Infinia Corporation
    Inventors: Maurice White, Peter Brehm
  • Publication number: 20130147197
    Abstract: Combined cycle solar power generation is achieved using a primary cycle based on a solar receiver, such as a volumetric absorber, in which compressed air is heated by concentrated solar radiation, coupled with a secondary cycle based on a water/steam circuit driven by exhaust gas from the primary cycle. When the primary cycle is inactive, typically at night time, the secondary cycle can be driven by accessing a heat store of liquid or solid heat storage material, such as a molten salt or concrete blocks, which has been heated earlier during day time operation. The water/steam circuit is reconfigurable between first and second switching conditions, wherein in the first switching condition heat is transferred directly or indirectly from the primary cycle to heat the heat storage material, and in the second switching condition stored heat is transferred from the heat storage material to the water/steam circuit in order to generate steam.
    Type: Application
    Filed: February 11, 2013
    Publication date: June 13, 2013
    Applicant: Abu Dhabi Future Energy Company
    Inventors: Olaf Goebel, Yousif Al Ali
  • Patent number: 8453444
    Abstract: Apparatus (100) comprising a power plant or air motor utilizing compressed air or liquid air for energy storage. The apparatus includes an electrical plant (200), a mechanical plant (300), and a pneumatic plant (400). When operating as a compressor, the plant receives electrical and/or direct mechanical power as an input to drive the plant, compress air, and store its output in the form of compressed or liquefied air. When operating as an engine, the plant consumes the compressed or liquid air to drive a mechanism of the engine and deliver mechanical power and/or electrical power as an output.
    Type: Grant
    Filed: January 11, 2010
    Date of Patent: June 4, 2013
    Inventor: David Haynes
  • Publication number: 20130125525
    Abstract: A gas turbine power plant and a method for operating a gas turbine power plant are provided. The power plant includes a gas turbine installation which may supply a mains supply network with electric power and includes a compressor and an associated first gas turbine. Differing from previous gas turbine installations, the compressor of the gas turbine installation and the first gas turbine of the gas turbine installation are decoupled from each other. A second turbine is provided which drives compressor. As a result, the compressor of the gas turbine installation is operated independently of the first gas turbine. Influences on the mains supply network side, such as generating deficiencies in the main supply network, which act upon the first gas turbine as a result of speed reduction, are also not able to have an impact upon the compressor which is decoupled from the first gas turbine.
    Type: Application
    Filed: November 7, 2012
    Publication date: May 23, 2013
    Inventors: Olaf Hein, Hardy Kliemke, Andreas Waruschewski
  • Patent number: 8443605
    Abstract: An installation and methods for storing and returning electrical energy. First and second lagged enclosures containing porous refractory material are provided through which a gas is caused to flow by causing the gas to flow through first and second compression/expansion groups interposed in the pipe circuit between the top and bottom ends, respectively, of the first and second enclosures, each compression/expansion group having a piston moved in translation in a cylinder, each group operating in a different mode, either in compression mode or in expansion mode, one of the two compression/expansion groups receiving a gas at a temperature that is higher than the other group, such that in compression mode it is driven by an electric motor that consumes electrical energy for storage E1, and in a thermodynamic engine mode it drives an electricity generator enabling the electrical energy ER to be returned.
    Type: Grant
    Filed: October 3, 2008
    Date of Patent: May 21, 2013
    Assignee: Saipem S.A.
    Inventor: Jacques Ruer
  • Publication number: 20130118170
    Abstract: A variety of energy storage and retrieval systems are described. Generally “hot” and “cold thermal reservoirs are provided. The “hot” reservoir holds both liquid and saturated vapor phase working fluid. The “cold” reservoir holds working fluid at a lower temperature than the hot reservoir. A heat engine/heat pump unit: (a) extracts energy from vapor passing from the hot reservoir to the cold reservoir via expansion of the vapor in a manner that generates mechanical energy to facilitate retrieval of energy; and (b) compresses vapor passing from the cold reservoir to the hot reservoir to facilitate the storage of energy. In some embodiments, the heat engine/heat pump takes the form of a reversible positive displacement heat engine that can act as both an expander and a compressor. To facilitate the storage and retrieval of electrical energy, an electric motor/generator unit may be mechanically coupled to the heat engine/heat pump unit.
    Type: Application
    Filed: November 14, 2012
    Publication date: May 16, 2013
    Applicant: TERRAJOULE CORPORATION
    Inventor: Terrajoule Corporation
  • Publication number: 20130111904
    Abstract: A thermal energy storage and recovery device is disclosed which includes a heat exchanger arrangement configured for guiding a flow of a heat transfer medium between a first end and a second end, and a heat storage material surrounding the heat exchanger arrangement so that a thermal interaction region is formed for thermally coupling the heat transfer medium with the heat storage material. The heat exchanger arrangement is sealed against the heat storage material so that, when in a first operational mode, in which the heat storage material is supposed to receive thermal energy from the heat transfer medium, a compressed gas is usable as the heat transfer medium for transferring thermal energy from the heat transfer medium to the heat storage material.
    Type: Application
    Filed: April 20, 2011
    Publication date: May 9, 2013
    Inventor: Henrik Stiesdal
  • Publication number: 20130111903
    Abstract: A thermal energy storage device is provided. The device has a heat exchanger arrangement for guiding a flow of a heat transfer medium between a first end and a second end of the heat exchanger arrangement, and a heat storage material surrounding the heat exchanger arrangement. The heat exchanger arrangement transports the heat transfer medium from the first end to the second end if the thermal energy storage device is in a first operational mode, in which the heat storage material is supposed to receive thermal energy from the heat transfer medium, and transports the heat transfer medium from the second end to the first end if the thermal energy storage device is in a second operational mode, in which the heat storage material is supposed to release thermal energy to the heat transfer medium.
    Type: Application
    Filed: October 29, 2010
    Publication date: May 9, 2013
    Inventor: Henrik Stiesdal
  • Publication number: 20130104549
    Abstract: A thermal energy storage and recovery device includes a heat exchanger arrangement for guiding a flow of a heat transfer medium between first and second ends thereof, and a heat storage material surrounding it, forming thermal interaction region between the heat transfer medium and the heat storage material. The heat exchanger arrangement transports the heat transfer medium from the first end to the second end when the heat storage material receives thermal energy from the heat transfer medium, and transports the heat transfer medium from the second end to the first end when the heat storage material releases thermal energy to the heat transfer medium. A controller operates the device such that that when storing or recovering thermal energy to or from the heat transfer medium within the device there exists a region where the inlet and outlet temperature of the heat transfer medium of this region is kept constant.
    Type: Application
    Filed: May 25, 2011
    Publication date: May 2, 2013
    Inventor: Henrik Stiesdal
  • Publication number: 20130081395
    Abstract: A system includes a gas turbine system, a thermal energy storage device, and a heat recovery system. The gas turbine system is powered by solar energy to generate a first amount of electric power. The thermal energy storage device is coupled to the gas turbine system. The thermal energy storage device is configured to selectively receive expanded exhaust gas from the gas turbine system and store heat of the expanded exhaust gas. The heat recovery system is coupled to the gas turbine system and the thermal energy storage device. The heat recovery system is selectively powered by at least one of the gas turbine system and the thermal energy storage device to generate a second amount of electric power.
    Type: Application
    Filed: September 29, 2011
    Publication date: April 4, 2013
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Thomas Johannes Frey, Gabor Ast, Clarissa Sara Katharina Belloni, Matthias Finkenrath
  • Patent number: 8392105
    Abstract: Operating a vehicle includes receiving, by a central controller, positional data related to the vehicle and environmental data related to a current route of the vehicle. The central controller calculates a desired energy allocation based on the positional data and the environmental data, and transmits the desired energy allocation to the vehicle for use in controlling engine function.
    Type: Grant
    Filed: January 7, 2010
    Date of Patent: March 5, 2013
    Assignee: General Electric Company
    Inventor: Lane David Desborough
  • Patent number: 8347629
    Abstract: A method, system, and apparatus including a compressed air energy storage system that includes an ambient air intake configured to intake a quantity of ambient air for storage in a compressed air storage volume, a compression system having a compression path that is configured to convey air compressed by the compression system through the compression system, a first path configured to convey ambient air to the compression system, a second path proceeding from the compression system to the compressed air storage volume and configured to convey compressed air to the compressed air storage volume, and a dehumidifying system. The dehumidifying system is coupleable to at least one of the first path that proceeds from the ambient air intake to the compression system, the compression path, and the second path. The dehumidifying system includes a dehumidifying component configured to remove moisture from the ambient air and/or the compressed air.
    Type: Grant
    Filed: October 30, 2009
    Date of Patent: January 8, 2013
    Assignee: General Electric Company
    Inventors: Matthias Finkenrath, Cristina Botero, Sebastian Walter Freund, Clarissa Sara Katharina Belloni, Miguel Angel Gonzalez Salazar, Stephanie Marie-Noelle Hoffmann, Roland Marquardt, Kurt Peter Moser, Stefan Martin Zunft
  • Publication number: 20130001948
    Abstract: A power generation system includes a compression unit which compresses a gas, a storage which stores the compressed gas output from the compression unit, a first expansion unit which generates first power and outputs a first exhaust gas, a heating unit which heats at least the stored gas output from the storage, a second expansion unit which generates second power and outputs a second exhaust gas, a first regenerator which performs a first heat exchange between the second exhaust gas and the stored gas output from the storage, to generate a first heat exchange gas used to generate the first power and a first regenerator gas, and a second regenerator which performs a second heat exchange between the first exhaust gas and the first regenerator gas to generate a second heat exchange gas used to generate the second power after heated at the heating unit.
    Type: Application
    Filed: May 10, 2012
    Publication date: January 3, 2013
    Applicant: SAMSUNG TECHWIN CO., LTD.
    Inventors: Chan-Sun LIM, Myeong-Hyo KIM, Jong-Sub SHIN, Young-Chang SHON, Jeong-Hun LEE
  • Publication number: 20120312019
    Abstract: A feedwater heater (14) in a heat recovery steam generator (A,B) lies within a flow of hot exhaust gas. The feedwater heater (14) converts subcooled feedwater into saturated feedwater water, the temperature of which is only lightly above the acid dew point temperature of the exhaust gas so that corrosive acids do not condense on coils (18) of the feedwater heater (14). Yet the temperature of the saturated feedwater lies significantly below the temperature of the exhaust gas at the coils (18), so that the coils (18) operate efficiently and require minimal surface area. Pumps (26, 28, 30) elevate the pressure of the saturated feedwater and direct it into an economizer (64, 90) where, owing to the increase in pressure, the water is again subcooled. The economizer (64, 90) elevates the temperature still further and delivers the higher pressure feedwater to evaporators (34, 70, 78) that convert it into saturated steam that flows on to the superheaters (50, 78, 84).
    Type: Application
    Filed: January 31, 2011
    Publication date: December 13, 2012
    Applicant: NOOTER/ERIKSEN, INC.
    Inventor: Yuri M. Rechtman
  • Patent number: 8297056
    Abstract: Thermo-dynamic battery is an energy storage unit for converting compressed gas energy into consumable electrical power for application uses with any device that requires electrical power to function. A method for storing electrical energy in the form of compressed gas and converting the same energy to electric power includes compressing gas and storing the compressed gas for release to drive a generator. A system and method for storing, disseminating, and utilizing energy in the form of gas compression and expansion comprises a method for expanding compressed gas in at least two stages and further provides for storing energy in the form of compressed gas through compression in at least two stages. Apparatus is provided to operate in accordance with the described procedure to contribute at or about 90% efficiency.
    Type: Grant
    Filed: February 27, 2012
    Date of Patent: October 30, 2012
    Inventor: Daniel Ashikian
  • Patent number: 8281593
    Abstract: A waste heat recovery system and a method for operating a thermodynamic cycle using a working fluid in a working fluid circuit which has a high pressure side and a low pressure side. The system comprises a waste heat exchanger, a waste heat source, an expander, a recuperator, a cooler, a pump, and a mass management system connected to the working fluid circuit. The mass management system comprises a working fluid vessel connected to the low pressure side of the working fluid circuit and configured to passively control an amount of working fluid mass in the working fluid circuit.
    Type: Grant
    Filed: September 13, 2010
    Date of Patent: October 9, 2012
    Assignee: Echogen Power Systems, Inc.
    Inventors: Timothy J. Held, Jason D. Miller
  • Patent number: 8261552
    Abstract: An adiabatic Compressed Air Energy Storage (CAES) system includes a low pressure compressor structure (14) to provide compressed air; a first heat exchanger (26) to extract heat from the compressed air exiting the low pressure compressor structure; a thermal storage device (60) to store the extracted heat during off-peak load periods; a motor-driven high pressure compressor (30) to receive compressed air cooled by the first heat exchanger, an aftercooler (34) to extract heat from the further compressed air; an air storage (36) to receive and store the further compressed air cooled by the second heat exchanger; a second heat exchanger (64) to transfer heat stored in the first thermal storage device to compressed air released from the air storage during peak periods; and a turbine structure (40) to expand the heated compressed air released from the air storage to produce power.
    Type: Grant
    Filed: June 18, 2010
    Date of Patent: September 11, 2012
    Assignee: Dresser Rand Company
    Inventor: Michael Nakhamkin
  • Publication number: 20120222423
    Abstract: Exemplary embodiments are directed to a thermoelectric energy storage system (TEES) and method for converting electrical energy into thermal energy to be stored and converted back to electrical energy with an improved round-trip efficiency are disclosed. The TEES includes a working fluid circuit for circulating a working fluid through a first heat exchanger and a second heat exchanger, a thermal storage medium circuit for circulating a thermal storage medium, the thermal storage medium circuit having at least one hot storage tank coupled to a cold storage tank via the first heat exchanger. The arrangement maximizes the work performed by the cycle during charging and discharging for a given maximum pressure and maximum temperature of the working fluid.
    Type: Application
    Filed: April 11, 2012
    Publication date: September 6, 2012
    Applicant: ABB RESEARCH LTD
    Inventors: Mehmet MERCANGOEZ, Jaroslav Hemrle, Lilian Kaufmann
  • Publication number: 20120205918
    Abstract: A closed loop thermodynamic system acts as power generator. The system includes an air blower, an expansion coil, a compressor, a large heat storage tank, a gas turbine, and an electric generator. The expansion coil includes heat absorption tubes which extract heat from air circulated by the blower and add heat to a refrigerant within the exchanger tubes. The compressor condenses the refrigerant into a large heat storage tank. The compressed liquid is allowed to expand into a high pressure gas which drives the gas turbine to drive an electric generator. The generator electricity is converted into household electricity which is used to provide electric power.
    Type: Application
    Filed: April 25, 2012
    Publication date: August 16, 2012
    Inventor: Antonio Ancona
  • Patent number: 8240146
    Abstract: The invention relates to systems and methods for rapidly and isothermally expanding gas in a cylinder. The cylinder is used in a staged hydraulic-pneumatic energy conversion system and includes a gas chamber (pneumatic side) and a fluid chamber (hydraulic side) and a piston or other mechanism that separates the gas chamber and fluid chamber while allowing the transfer of force/pressure between each opposing chamber. The gas chamber of the cylinder includes ports that are coupled to a heat transfer subassembly that circulates gas from the pneumatic side and exchanges its heat with a counter flow of ambient temperature fluid from a reservoir or other source.
    Type: Grant
    Filed: August 27, 2010
    Date of Patent: August 14, 2012
    Assignee: SustainX, Inc.
    Inventor: Benjamin R. Bollinger
  • Publication number: 20120186219
    Abstract: The present invention generally relates to power generation methods and secondary processes yielding a supply of carbon dioxide. In one embodiment, the present invention relates to a supercritical carbon dioxide cycle power generator utilizing at least a portion of waste heat from the secondary process that also provides at least a portion of carbon dioxide within the supercritical carbon dioxide cycle.
    Type: Application
    Filed: January 22, 2012
    Publication date: July 26, 2012
    Inventor: Michael Gurin
  • Patent number: 8224495
    Abstract: A thermal source provides heat to a heat engine and or one or more thermal demands, including space and water heating and heat storage. Additionally the output of the heat engine may be used for local in situ electricity needs, or directed out over the grid. A system controller monitors conditions of the components of the system, and operates that system in modes that maximize a particular benefit, such as a total accrued desired benefit obtained such as reduced electricity cost, reduced fossil fuel use, maximized return on investment and other factors. The controller may use past history of use of the system to optimize the next mode of operation, or both past and future events such as predicted solar insolation.
    Type: Grant
    Filed: August 5, 2009
    Date of Patent: July 17, 2012
    Assignee: Cool Energy, Inc.
    Inventors: Samuel P. Weaver, Lee S. Smith
  • Publication number: 20120153628
    Abstract: Heated air rises in a long, diagonal chimney up the side of a mountain. The airflow in the chimney turns wind turbines. Air entering the chimney's feeder tubes is heated in stages, where each stage has its own solar concentration and thermal insulation needs. Water, water vapor and air can be preheated as they are shipped to a chimney's lower end. Both low heat for preheating and high heat can be stored for night electricity generation and for continuing the chimney's electric production during cloudy periods. A pressurized chimney or tube may be built with cables pulling the sides outward or holding the sides inward as needed, with separate air fairing and weather protection layers for the chimney or tube. Putting wind turbines in series in a chimney can lessen the air pressure stresses on the chimney's roof. Water vapor rising a considerable elevation in a diagonal chimney will condense, giving up latent heat to the chimney air as it produces distilled water or mountaintop snow.
    Type: Application
    Filed: June 10, 2010
    Publication date: June 21, 2012
    Inventor: Paul Klinkman
  • Publication number: 20120137683
    Abstract: A run-up method for a solar steam power plant is proposed. In the run-up method an auxiliary steam is used to generate seal steam for a steam-turbine of the power plant. The auxiliary steam is produced by a heat-exchanger-system that is to provide, during a subsequent power-mode, overheated steam for driving the steam-turbine.
    Type: Application
    Filed: June 21, 2010
    Publication date: June 7, 2012
    Inventors: Birnbaum Jürgen, Markus Fichtner, Mark Reissig, Marc Sattelberger
  • Publication number: 20120131915
    Abstract: System and method for accumulating steam in tanks for solar use made up of two sets of Ruths tanks (1, 2), called base set and overheat set, identical to one another and each having a saturated steam inlet (3), steam injectors (10) installed inside the tank (1, 2), a steam outlet (4, 4?) with a valve (13) and drainage means (11). A heat exchanger (6) is installed between the two sets of tanks (1, 2). The method of storage consists of a tank loading stage and a tank discharging stage, the latter comprising two discharging phases, the first one from a maximum to an intermediate pressure and the second one from an intermediate to a low pressure.
    Type: Application
    Filed: June 18, 2010
    Publication date: May 31, 2012
    Applicant: ABENGOA SOLAR NEW TECHNOLOGIES, S.A.
    Inventors: Rafael Olavarria Rodríguez-Arango, Elena García Ramírez, José Barragán Jiménez
  • Publication number: 20120079825
    Abstract: A generator comprising heat differential, pressure, and conversion modules, and a heat recovery arrangement; the differential module comprising a first high temperature reservoir containing a work medium at high temperature, a second low temperature reservoir containing a work medium at low temperature and a heat mechanism in fluid communication with the reservoir(s). The heat mechanism maintains a temperature difference therebetween by providing heat to and/or removing heat from the reservoirs; the pressure module comprises a pressure medium in selective fluid communication with the reservoirs for alternately performing a heat exchange process with the work medium.
    Type: Application
    Filed: October 12, 2011
    Publication date: April 5, 2012
    Applicant: GERSHON MACHINE LTD.
    Inventor: Gershon HARIF
  • Publication number: 20120067047
    Abstract: Embodiments of a system for storing and providing electrical energy are disclosed. Also disclosed are embodiments of a system for purifying fluid, as well as embodiments of a system in which energy storage and fluid purification are combined. One disclosed embodiment of the system comprises a latent heat storage device, a sensible heat storage device, a vapor expander/compressor device mechanically coupled to a motor/generator device, a heat-exchanger, and a liquid pressurization and depressurization device. The devices are fluidly coupled in a closed-loop system, and a two-phase working fluid circulates therein. Embodiments of a method for operating the system to store and generate energy also are disclosed. Embodiments of a method for operating the system to purify fluid, as well as embodiments of a method for operating a combined energy storage and fluid purification system are disclosed.
    Type: Application
    Filed: September 19, 2011
    Publication date: March 22, 2012
    Inventors: Richard B. Peterson, Robbie Ingram-Goble, Kevin J. Harada
  • Patent number: 8136354
    Abstract: In an embodiment of the present disclosure, an energy storage device is presented. The energy storage device includes a porous material that adsorbs air and a compressor. The compressor converts mechanical energy into pressurized air and heat, and the pressurized air is cooled and adsorbed by the porous material. The energy storage device also includes a tank used to store the pressurized and adsorbed air and a motor. The motor is driven to recover the energy stored as compressed and adsorbed air by allowing the air to desorb and expand while driving the motor.
    Type: Grant
    Filed: August 12, 2010
    Date of Patent: March 20, 2012
    Assignee: Energy Compression Inc.
    Inventor: Timothy F. Havel
  • Patent number: 8136358
    Abstract: A heat reservoir for use in a power plant that burns a dirty fuel such as coal to absorb the heat from the resulting dirty hot gas flow. The heat reservoir includes a number of heat absorbing walls that form dirty hot gas flow passages and clean hot gas flow passages. Cross-over holes are formed in the walls to equalize pressure. The dirty hot gas flow is passed though the dirty passages to heat up the walls. When the heat absorbing walls have absorbed enough heat, the dirty hot gas flow is stopped and compressed air is passed through the clean passages to absorb heat from the walls and is then passed through a turbine to drive an electric generator. The heat reservoir is then recharged again by passing the dirty hot gas flow through the dirty passages to recharge the walls.
    Type: Grant
    Filed: May 22, 2009
    Date of Patent: March 20, 2012
    Assignee: Florida Turbine Technologies, Inc.
    Inventor: Joseph Brostmeyer
  • Publication number: 20120060501
    Abstract: An exemplary system and method for storing and retrieving energy in a thermoelectric energy storage system is disclosed. The thermoelectric energy storage system includes a working fluid that is circulated through a first and second heat exchanger, and a thermal storage medium that is circulated through the first heat exchanger. The second heat exchanger is in connection with a first thermal bath during a charging cycle and with a second thermal bath during a discharging cycle. In this way roundtrip efficiency is improved through minimizing the temperature difference between the first thermal bath and the hot storage tank during charging, and maximizing the temperature difference between the second thermal bath and the hot storage tank during discharging.
    Type: Application
    Filed: October 14, 2011
    Publication date: March 15, 2012
    Applicant: ABB RESEARCH LTD
    Inventors: Jaroslav HEMRLE, Lilian Kaufmann, Mehmet Mercangoez
  • Publication number: 20120055159
    Abstract: An apparatus and a method, for converting fluid heat energy to motive force by the heating and pressurization of air, and for storing and delivering motive force to motive force users, which includes at least one air pressurizer. The air pressurizer facilitates the transfer of heat energy contained in a hot fluid to air confined within the air pressurizer, thus pressurizing the air to provide motive force.
    Type: Application
    Filed: September 2, 2010
    Publication date: March 8, 2012
    Inventor: Marvin W. Hicks
  • Publication number: 20120055160
    Abstract: An air current generating system and method, includes an air source, a passage (105), at least a motor-less air pump device (104) and at least a turbine generating set (102, 103); the passage has an air current inlet connected with the air source and an air current outlet; the motor-less air pump device is mounted at the air current outlet and in the natural wind; the turbine generating set at least includes a rotating blade provided in the passage; the motor-less air pump device is driven by the air current from the air source and/or the outside wind to form negative pressure in the passage, absorbs air from the air source continuously and forms an air current in the passage, wherein the air current rotates the rotating blade to drive the turbine generating set to generate electricity.
    Type: Application
    Filed: January 8, 2009
    Publication date: March 8, 2012
    Inventor: Jianning Peng
  • Publication number: 20120055157
    Abstract: A system may include an insulated water tank configured to store a first heated water from a first plant component during operation of a plant, and a fuel heater comprising a heat exchanger, wherein the heat exchanger is configured to transfer heat from the first heated water to a fuel for a gas turbine engine during startup of the plant.
    Type: Application
    Filed: September 2, 2010
    Publication date: March 8, 2012
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Seyfettin Can Gulen, Tailai Hu
  • Publication number: 20120047891
    Abstract: During off-peak operation of a power plant operating on a thermodynamic cycle wherein heat is rejected to an ambient fluid, heat is removed from a cold temperature storage medium. The cold temperature storage medium is stored until the power plant is experiencing a peak period. During the peak period, the stored cold temperature storage medium is used to absorb heat from the ambient fluid prior to heat rejection from the thermodynamic cycle to the ambient fluid, to improve performance of the thermodynamic cycle. In another aspect, the stored cold temperature storage medium is mixed with the ambient fluid prior to heat rejection from the thermodynamic cycle to the ambient fluid. Corresponding systems, apparatuses, retrofit methods, design and control techniques are also disclosed.
    Type: Application
    Filed: July 21, 2011
    Publication date: March 1, 2012
    Inventor: Matthew Rosenfeld
  • Publication number: 20120036853
    Abstract: A compressed air energy storage system including a compressor adapted to receive a process gas and output a compressed process gas. A heat transfer unit may be coupled to the compressor and adapted to receive the compressed process gas and a heat transfer medium and to output a cooled process gas and a heated heat transfer medium. A compressed gas storage unit may be coupled to the heat transfer unit and adapted to receive and store the cooled process gas. A waste heat recovery unit may be coupled to the heat transfer unit and adapted to receive the heated heat transfer medium.
    Type: Application
    Filed: March 17, 2011
    Publication date: February 16, 2012
    Applicant: Dresser-Rand Company
    Inventors: H. Allan Kidd, Harry F. Miller
  • Patent number: 8087246
    Abstract: A temperature fluctuation suppressing device for a heating medium is provided which is capable of sufficiently suppressing temperature fluctuations of the heating medium at the time of supplying collected solar heat for steam generation. The temperature fluctuation suppressing device includes a heating medium mixer provided on a heating medium supply passage configured to supply a liquid heating medium to a heat exchanging device, the heating medium mixer including: a heating medium passage forming member having plural heating medium passages; an inlet member and an outlet member provided separately from the inlet member, whereby the heating medium continuously flowing into the heating medium passage forming member through the inlet member passes through the plural heating medium passages with time-lags to form respective streams, which are then joined together before flowing out through the outlet member.
    Type: Grant
    Filed: June 16, 2006
    Date of Patent: January 3, 2012
    Assignee: Kawasaki Jukogyo Kabushiki Kaisha
    Inventor: Hideaki Ota
  • Publication number: 20110304155
    Abstract: CO2 compression is a main step in carbon capture and storage, which is essential to control global warming. CO2 compressors are powered by electric motors, which increase operational flexibility but require much energy leading to additional expenses, power and efficiency losses. A method is provided for optimized operation of a plant including a power generation unit with a CO2 capture system and compressor with minimum losses during normal operation, allowing flexible part load. The method allows steam from the power unit to drive a steam turbine, which drives the CO2 compressor via an engaged overrunning clutch if a sufficient amount of steam is available from the power unit, and to drive it by the generator, which is used as motor when insufficient steam is available from the power unit. When no or insufficient steam is available the clutch is disengaged and the steam turbine may be at standstill or idling.
    Type: Application
    Filed: June 7, 2011
    Publication date: December 15, 2011
    Applicant: ALSTOM TECHNOLOGY LTD
    Inventors: Jürgen HOFFMANN, Holger NAGEL, Hongtao LI
  • Publication number: 20110290636
    Abstract: A method and system for managing heat energy in a fluid purification system is provided. Initially, air is compressed using one or more compressors to obtain a compressed hot air. Then one or more fluids are purified using the heat energy associated with the compressed hot air in one or more fluid purification units thereby releasing a compressed cooled air. One or more hot purified fluids are stored in one or more fluid storage tanks obtained in response to the purification of the one or more fluids. Thereafter, the compressed cooled air is heated using a heat energy associated with the one or more hot purified fluids to obtain a heated compressed air. Subsequently, one or more turbines are operated using heat energy associated with the heated compressed air to obtain an expanded cooled air. The expanded cooled air is utilized for cooling.
    Type: Application
    Filed: May 25, 2010
    Publication date: December 1, 2011
    Applicant: KING ABDUL AZIZ CITY FOR SCIENCE AND TECHNOLOGY
    Inventors: Mazen Abdullah BA-ABBAD, Hany Abdulrahman AL-ANSARY
  • Patent number: 8056341
    Abstract: A method of and an apparatus for storing heat energy in a body of graphite at an elevated temperature are disclosed. The method comprises heating an inner region of a body of graphite when it is required to store the heat energy and recovering the heat by way of a heat exchanger, when the energy is required to be used. The apparatus is suitable for the storage of renewable energy and electric energy obtainable from off peak periods of supply.
    Type: Grant
    Filed: March 14, 2005
    Date of Patent: November 15, 2011
    Assignee: Lardken Pty Limited
    Inventors: Steven John Hamer, Stephen Hollis, Richard Howard Gentle, Hirak Kumar Dutt
  • Publication number: 20110259007
    Abstract: Provided is a concentrated solar power gas turbine that enables efficient operation to allow a reduction in capacity of the start-up driving source used for compensating for the shortage of solar heat quantity at the start-up/acceleration. The concentrated solar power gas turbine (GT1) includes a compressor (1) for taking in air and increasing the pressure thereof, the compressor (1) being provided with a start-up driving source for start-up/acceleration; a solar central receiver (2) for heating the high-pressure air, the pressure of which has been increased by the compressor (1), by the heat of sunlight collected by a heliostat to increase the temperature thereof; and a turbine (3) for converting thermal energy possessed by the high-temperature/high-pressure air to mechanical energy, wherein the fluid flow in the solar central receiver (2) is shut off to store heat in the period from the shutdown of the turbine (3) to the start-up thereof.
    Type: Application
    Filed: May 31, 2010
    Publication date: October 27, 2011
    Applicant: MITSUBISHI HEAVY INDUSTRIES, LTD.
    Inventors: Kuniaki Aoyama, Kei Inoue, Kazuta Kobayashi, Masashi Tagawa, Toshiyuki Osada, Masahiro Masuda
  • Patent number: 8024928
    Abstract: The invention relates to a method and apparatus for using solar energy to enhance the efficiency of a compressed air energy storage system (and visa-versa). The apparatus comprises a photovoltaic panel to drive a compressor, which provides compressed air energy into an inner vessel housed within a storage tank. Two solar receiving panels are used to heat water which can be circulated and stored within an annulus surrounding the inner vessel, wherein the heated water can help regulate the temperature of the compressed air within the tank. This way, when air is released using a turbo expander, any excess temperature drops that can otherwise result from air expansion can be avoided.
    Type: Grant
    Filed: January 26, 2009
    Date of Patent: September 27, 2011
    Inventors: Ben M. Enis, Paul Lieberman
  • Patent number: 7997079
    Abstract: The present invention discloses a self-regulating thermal energy storage system for use in conjunction with at least one thermal energy client, and a method for self-regulating the storage and use of thermal energy in the system.
    Type: Grant
    Filed: July 18, 2006
    Date of Patent: August 16, 2011
    Inventor: Pessach Seidel
  • Patent number: 7971437
    Abstract: A thermal energy storage apparatus is disclosed. The thermal energy storage apparatus has a phase change medium. The thermal energy storage apparatus also has an inner manifold area having at least one inner feed port. The thermal energy storage apparatus also has an outer manifold area having at least one outer feed port and fluidically coupled to the inner manifold area. The inner manifold area and the outer manifold area are configured to be substantially immersed in the phase change medium. Methods of constructing and controlling embodiments of related thermal energy storage apparati are also disclosed, as well as embodiments of related heat exchangers.
    Type: Grant
    Filed: July 14, 2008
    Date of Patent: July 5, 2011
    Assignee: Bell Independent Power Corporation
    Inventors: Brian J. Flynn, Gerald Geiken
  • Patent number: 7954321
    Abstract: A method for storing heat from a solar collector CSTC in Concentrating Solar Power plants and delivering the heat to the power plant PP when needed. The method uses a compressed gas such as carbon dioxide or air as a heat transfer medium in the collectors CSTC and transferring the heat by depositing it on a bed of heat-resistant solids and later, recovering the heat by a second circuit of the same compressed gas. The storage system HSS is designed to allow the heat to be recovered at a high efficiency with practically no reduction in temperature. Unlike liquid heat transfer media, our storage method itself can operate at very high temperatures, up to 3000° F., a capability which can lead to greater efficiency. Due to material constraints and cost considerations in the rest of the system the maximum temperature is presently limited to between 1700° F. and 2000° F. The method can be applied to all current solar collector designs.
    Type: Grant
    Filed: July 27, 2007
    Date of Patent: June 7, 2011
    Assignee: Research Foundation of the City University of New York
    Inventor: Reuel Shinnar
  • Publication number: 20110113781
    Abstract: A method, system, and apparatus including a compressed air energy storage (CAES) system including a compression train with a compressor path, a storage volume configured to store compressed air, a compressed air path configured to provide passage of compressed air egressing from the compression train to the storage volume, and a heat recovery system coupled to at least one of the compressor path and the compressed air path and configured to draw heat from at least one of the compressor path and the compressed air path to a first liquid. The compression train is configured to provide passage of compressed air from a first compressor to a second compressor. The heat recovery system includes a first evaporator configured to evaporate the first liquid to a first gas and a first generator configured to produce electricity based on an expansion of the first gas.
    Type: Application
    Filed: November 13, 2009
    Publication date: May 19, 2011
    Inventors: Thomas Johannes Frey, Matthias Finkenrath, Gabor Ast, Stephanie Marie-Noelle Hoffmann, Matthew Lehar, Richard Aumann
  • Publication number: 20110100213
    Abstract: A method, system, and apparatus including a compressed air energy storage system that includes an ambient air intake configured to intake a quantity of ambient air for storage in a compressed air storage volume, a compression system having a compression path that is configured to convey air compressed by the compression system through the compression system, a first path configured to convey ambient air to the compression system, a second path proceeding from the compression system to the compressed air storage volume and configured to convey compressed air to the compressed air storage volume, and a dehumidifying system. The dehumidifying system is coupleable to at least one of the first path that proceeds from the ambient air intake to the compression system, the compression path, and the second path. The dehumidifying system includes a dehumidifying component configured to remove moisture from the ambient air and/or the compressed air.
    Type: Application
    Filed: October 30, 2009
    Publication date: May 5, 2011
    Inventors: Matthias Finkenrath, Cristina Botero, Sebastian W. Freund, Clarissa S.K. Belloni, Miguel Angel Gonzalez Salazar, Stephanie Marie-Noelle Hoffmann
  • Publication number: 20110100010
    Abstract: An adiabatic compressed air energy storage (ACAES) system includes a compressor system, an air storage unit, and a turbine system. The ACAES system further includes a thermal energy storage (TES) system that includes a container, a plurality of heat exchangers, a liquid TES medium conduit system fluidly coupling the container to the plurality of heat exchangers, and a liquid TES medium stored within the container. The TES system also includes a plurality of pumps coupled to the liquid TES medium conduit system and configured to transport the liquid TES medium between the plurality of heat exchangers and the container, and a thermal separation system positioned within the container configured to thermally isolate a first portion of the liquid TES medium at a lower temperature from a second portion of the liquid TES medium at a higher temperature.
    Type: Application
    Filed: October 30, 2009
    Publication date: May 5, 2011
    Inventors: Sebastian W. Freund, Matthias Finkenrath, Cristina Botero, Clarissa S.K. Belloni, Miguel Angel Gonzalez Salazar, Stephanie Marie-Noelle Hoffmann
  • Patent number: 7918091
    Abstract: Systems and methods for controlling humidity of a working fluid used to provided climate control of a mission critical application are provided. Such control may be accomplished by using a humidification system in connection with a CAS or TACAS system. The humidification system may introduce a liquid (e.g., water) into one or more, predetermined points within the CAS or TACAS system to adjust the moisture content of a working fluid used to influence the environment of a mission critical application or enclosure.
    Type: Grant
    Filed: September 20, 2006
    Date of Patent: April 5, 2011
    Assignee: Active Power, Inc.
    Inventors: David E Perkins, Joseph F Pinkerton
  • Patent number: 7891188
    Abstract: The present inventive subject matter is drawn to an apparatus for producing power using geothermal liquid comprising: a geothermal power plant for producing power using heat contained in geothermal liquid supplied thereto; and heating means apparatus for heating a solution and producing a heated solution for use in an electrolysis unit with heat from heat depleted geothermal liquid exiting a vaporizer of the geothermal power plant, wherein the electrolysis unit produces hydrogen for use in producing power.
    Type: Grant
    Filed: April 25, 2007
    Date of Patent: February 22, 2011
    Assignee: Ormat Technologies, Inc.
    Inventor: Oron David Zachar