Including Heat, Steam, Or Compressed Gas Storage Means Patents (Class 60/659)
  • Publication number: 20120055160
    Abstract: An air current generating system and method, includes an air source, a passage (105), at least a motor-less air pump device (104) and at least a turbine generating set (102, 103); the passage has an air current inlet connected with the air source and an air current outlet; the motor-less air pump device is mounted at the air current outlet and in the natural wind; the turbine generating set at least includes a rotating blade provided in the passage; the motor-less air pump device is driven by the air current from the air source and/or the outside wind to form negative pressure in the passage, absorbs air from the air source continuously and forms an air current in the passage, wherein the air current rotates the rotating blade to drive the turbine generating set to generate electricity.
    Type: Application
    Filed: January 8, 2009
    Publication date: March 8, 2012
    Inventor: Jianning Peng
  • Publication number: 20120047891
    Abstract: During off-peak operation of a power plant operating on a thermodynamic cycle wherein heat is rejected to an ambient fluid, heat is removed from a cold temperature storage medium. The cold temperature storage medium is stored until the power plant is experiencing a peak period. During the peak period, the stored cold temperature storage medium is used to absorb heat from the ambient fluid prior to heat rejection from the thermodynamic cycle to the ambient fluid, to improve performance of the thermodynamic cycle. In another aspect, the stored cold temperature storage medium is mixed with the ambient fluid prior to heat rejection from the thermodynamic cycle to the ambient fluid. Corresponding systems, apparatuses, retrofit methods, design and control techniques are also disclosed.
    Type: Application
    Filed: July 21, 2011
    Publication date: March 1, 2012
    Inventor: Matthew Rosenfeld
  • Publication number: 20120036853
    Abstract: A compressed air energy storage system including a compressor adapted to receive a process gas and output a compressed process gas. A heat transfer unit may be coupled to the compressor and adapted to receive the compressed process gas and a heat transfer medium and to output a cooled process gas and a heated heat transfer medium. A compressed gas storage unit may be coupled to the heat transfer unit and adapted to receive and store the cooled process gas. A waste heat recovery unit may be coupled to the heat transfer unit and adapted to receive the heated heat transfer medium.
    Type: Application
    Filed: March 17, 2011
    Publication date: February 16, 2012
    Applicant: Dresser-Rand Company
    Inventors: H. Allan Kidd, Harry F. Miller
  • Patent number: 8087246
    Abstract: A temperature fluctuation suppressing device for a heating medium is provided which is capable of sufficiently suppressing temperature fluctuations of the heating medium at the time of supplying collected solar heat for steam generation. The temperature fluctuation suppressing device includes a heating medium mixer provided on a heating medium supply passage configured to supply a liquid heating medium to a heat exchanging device, the heating medium mixer including: a heating medium passage forming member having plural heating medium passages; an inlet member and an outlet member provided separately from the inlet member, whereby the heating medium continuously flowing into the heating medium passage forming member through the inlet member passes through the plural heating medium passages with time-lags to form respective streams, which are then joined together before flowing out through the outlet member.
    Type: Grant
    Filed: June 16, 2006
    Date of Patent: January 3, 2012
    Assignee: Kawasaki Jukogyo Kabushiki Kaisha
    Inventor: Hideaki Ota
  • Publication number: 20110304155
    Abstract: CO2 compression is a main step in carbon capture and storage, which is essential to control global warming. CO2 compressors are powered by electric motors, which increase operational flexibility but require much energy leading to additional expenses, power and efficiency losses. A method is provided for optimized operation of a plant including a power generation unit with a CO2 capture system and compressor with minimum losses during normal operation, allowing flexible part load. The method allows steam from the power unit to drive a steam turbine, which drives the CO2 compressor via an engaged overrunning clutch if a sufficient amount of steam is available from the power unit, and to drive it by the generator, which is used as motor when insufficient steam is available from the power unit. When no or insufficient steam is available the clutch is disengaged and the steam turbine may be at standstill or idling.
    Type: Application
    Filed: June 7, 2011
    Publication date: December 15, 2011
    Applicant: ALSTOM TECHNOLOGY LTD
    Inventors: Jürgen HOFFMANN, Holger NAGEL, Hongtao LI
  • Publication number: 20110290636
    Abstract: A method and system for managing heat energy in a fluid purification system is provided. Initially, air is compressed using one or more compressors to obtain a compressed hot air. Then one or more fluids are purified using the heat energy associated with the compressed hot air in one or more fluid purification units thereby releasing a compressed cooled air. One or more hot purified fluids are stored in one or more fluid storage tanks obtained in response to the purification of the one or more fluids. Thereafter, the compressed cooled air is heated using a heat energy associated with the one or more hot purified fluids to obtain a heated compressed air. Subsequently, one or more turbines are operated using heat energy associated with the heated compressed air to obtain an expanded cooled air. The expanded cooled air is utilized for cooling.
    Type: Application
    Filed: May 25, 2010
    Publication date: December 1, 2011
    Applicant: KING ABDUL AZIZ CITY FOR SCIENCE AND TECHNOLOGY
    Inventors: Mazen Abdullah BA-ABBAD, Hany Abdulrahman AL-ANSARY
  • Patent number: 8056341
    Abstract: A method of and an apparatus for storing heat energy in a body of graphite at an elevated temperature are disclosed. The method comprises heating an inner region of a body of graphite when it is required to store the heat energy and recovering the heat by way of a heat exchanger, when the energy is required to be used. The apparatus is suitable for the storage of renewable energy and electric energy obtainable from off peak periods of supply.
    Type: Grant
    Filed: March 14, 2005
    Date of Patent: November 15, 2011
    Assignee: Lardken Pty Limited
    Inventors: Steven John Hamer, Stephen Hollis, Richard Howard Gentle, Hirak Kumar Dutt
  • Publication number: 20110259007
    Abstract: Provided is a concentrated solar power gas turbine that enables efficient operation to allow a reduction in capacity of the start-up driving source used for compensating for the shortage of solar heat quantity at the start-up/acceleration. The concentrated solar power gas turbine (GT1) includes a compressor (1) for taking in air and increasing the pressure thereof, the compressor (1) being provided with a start-up driving source for start-up/acceleration; a solar central receiver (2) for heating the high-pressure air, the pressure of which has been increased by the compressor (1), by the heat of sunlight collected by a heliostat to increase the temperature thereof; and a turbine (3) for converting thermal energy possessed by the high-temperature/high-pressure air to mechanical energy, wherein the fluid flow in the solar central receiver (2) is shut off to store heat in the period from the shutdown of the turbine (3) to the start-up thereof.
    Type: Application
    Filed: May 31, 2010
    Publication date: October 27, 2011
    Applicant: MITSUBISHI HEAVY INDUSTRIES, LTD.
    Inventors: Kuniaki Aoyama, Kei Inoue, Kazuta Kobayashi, Masashi Tagawa, Toshiyuki Osada, Masahiro Masuda
  • Patent number: 8024928
    Abstract: The invention relates to a method and apparatus for using solar energy to enhance the efficiency of a compressed air energy storage system (and visa-versa). The apparatus comprises a photovoltaic panel to drive a compressor, which provides compressed air energy into an inner vessel housed within a storage tank. Two solar receiving panels are used to heat water which can be circulated and stored within an annulus surrounding the inner vessel, wherein the heated water can help regulate the temperature of the compressed air within the tank. This way, when air is released using a turbo expander, any excess temperature drops that can otherwise result from air expansion can be avoided.
    Type: Grant
    Filed: January 26, 2009
    Date of Patent: September 27, 2011
    Inventors: Ben M. Enis, Paul Lieberman
  • Patent number: 7997079
    Abstract: The present invention discloses a self-regulating thermal energy storage system for use in conjunction with at least one thermal energy client, and a method for self-regulating the storage and use of thermal energy in the system.
    Type: Grant
    Filed: July 18, 2006
    Date of Patent: August 16, 2011
    Inventor: Pessach Seidel
  • Patent number: 7971437
    Abstract: A thermal energy storage apparatus is disclosed. The thermal energy storage apparatus has a phase change medium. The thermal energy storage apparatus also has an inner manifold area having at least one inner feed port. The thermal energy storage apparatus also has an outer manifold area having at least one outer feed port and fluidically coupled to the inner manifold area. The inner manifold area and the outer manifold area are configured to be substantially immersed in the phase change medium. Methods of constructing and controlling embodiments of related thermal energy storage apparati are also disclosed, as well as embodiments of related heat exchangers.
    Type: Grant
    Filed: July 14, 2008
    Date of Patent: July 5, 2011
    Assignee: Bell Independent Power Corporation
    Inventors: Brian J. Flynn, Gerald Geiken
  • Patent number: 7954321
    Abstract: A method for storing heat from a solar collector CSTC in Concentrating Solar Power plants and delivering the heat to the power plant PP when needed. The method uses a compressed gas such as carbon dioxide or air as a heat transfer medium in the collectors CSTC and transferring the heat by depositing it on a bed of heat-resistant solids and later, recovering the heat by a second circuit of the same compressed gas. The storage system HSS is designed to allow the heat to be recovered at a high efficiency with practically no reduction in temperature. Unlike liquid heat transfer media, our storage method itself can operate at very high temperatures, up to 3000° F., a capability which can lead to greater efficiency. Due to material constraints and cost considerations in the rest of the system the maximum temperature is presently limited to between 1700° F. and 2000° F. The method can be applied to all current solar collector designs.
    Type: Grant
    Filed: July 27, 2007
    Date of Patent: June 7, 2011
    Assignee: Research Foundation of the City University of New York
    Inventor: Reuel Shinnar
  • Publication number: 20110113781
    Abstract: A method, system, and apparatus including a compressed air energy storage (CAES) system including a compression train with a compressor path, a storage volume configured to store compressed air, a compressed air path configured to provide passage of compressed air egressing from the compression train to the storage volume, and a heat recovery system coupled to at least one of the compressor path and the compressed air path and configured to draw heat from at least one of the compressor path and the compressed air path to a first liquid. The compression train is configured to provide passage of compressed air from a first compressor to a second compressor. The heat recovery system includes a first evaporator configured to evaporate the first liquid to a first gas and a first generator configured to produce electricity based on an expansion of the first gas.
    Type: Application
    Filed: November 13, 2009
    Publication date: May 19, 2011
    Inventors: Thomas Johannes Frey, Matthias Finkenrath, Gabor Ast, Stephanie Marie-Noelle Hoffmann, Matthew Lehar, Richard Aumann
  • Publication number: 20110100213
    Abstract: A method, system, and apparatus including a compressed air energy storage system that includes an ambient air intake configured to intake a quantity of ambient air for storage in a compressed air storage volume, a compression system having a compression path that is configured to convey air compressed by the compression system through the compression system, a first path configured to convey ambient air to the compression system, a second path proceeding from the compression system to the compressed air storage volume and configured to convey compressed air to the compressed air storage volume, and a dehumidifying system. The dehumidifying system is coupleable to at least one of the first path that proceeds from the ambient air intake to the compression system, the compression path, and the second path. The dehumidifying system includes a dehumidifying component configured to remove moisture from the ambient air and/or the compressed air.
    Type: Application
    Filed: October 30, 2009
    Publication date: May 5, 2011
    Inventors: Matthias Finkenrath, Cristina Botero, Sebastian W. Freund, Clarissa S.K. Belloni, Miguel Angel Gonzalez Salazar, Stephanie Marie-Noelle Hoffmann
  • Publication number: 20110100010
    Abstract: An adiabatic compressed air energy storage (ACAES) system includes a compressor system, an air storage unit, and a turbine system. The ACAES system further includes a thermal energy storage (TES) system that includes a container, a plurality of heat exchangers, a liquid TES medium conduit system fluidly coupling the container to the plurality of heat exchangers, and a liquid TES medium stored within the container. The TES system also includes a plurality of pumps coupled to the liquid TES medium conduit system and configured to transport the liquid TES medium between the plurality of heat exchangers and the container, and a thermal separation system positioned within the container configured to thermally isolate a first portion of the liquid TES medium at a lower temperature from a second portion of the liquid TES medium at a higher temperature.
    Type: Application
    Filed: October 30, 2009
    Publication date: May 5, 2011
    Inventors: Sebastian W. Freund, Matthias Finkenrath, Cristina Botero, Clarissa S.K. Belloni, Miguel Angel Gonzalez Salazar, Stephanie Marie-Noelle Hoffmann
  • Patent number: 7918091
    Abstract: Systems and methods for controlling humidity of a working fluid used to provided climate control of a mission critical application are provided. Such control may be accomplished by using a humidification system in connection with a CAS or TACAS system. The humidification system may introduce a liquid (e.g., water) into one or more, predetermined points within the CAS or TACAS system to adjust the moisture content of a working fluid used to influence the environment of a mission critical application or enclosure.
    Type: Grant
    Filed: September 20, 2006
    Date of Patent: April 5, 2011
    Assignee: Active Power, Inc.
    Inventors: David E Perkins, Joseph F Pinkerton
  • Patent number: 7891187
    Abstract: A multi-chamber heat accumulator for storing heat energy as well as for generating electrical energy comprises a pit structure having a bottom, a sidewall, and a cover. The pit structure comprises at least one inner zone with a first solid matter pit filling and at least one outer zone with a second solid matter pit filling. The outer zone at least partially surrounds the inner zone, the pit filling of the inner zone being separated at least in parts from the pit filling of the outer zone by at least one partition wall. The inner zone comprises at least one first pipeline system with at least one inlet to the inner zone and at least one outlet from the inner zone for passing fluids through, which is present at least in parts in the first pit filling material of the inner zone. A method for generating electrical energy is also disclosed.
    Type: Grant
    Filed: July 11, 2007
    Date of Patent: February 22, 2011
    Inventor: Peter Mohr
  • Patent number: 7891188
    Abstract: The present inventive subject matter is drawn to an apparatus for producing power using geothermal liquid comprising: a geothermal power plant for producing power using heat contained in geothermal liquid supplied thereto; and heating means apparatus for heating a solution and producing a heated solution for use in an electrolysis unit with heat from heat depleted geothermal liquid exiting a vaporizer of the geothermal power plant, wherein the electrolysis unit produces hydrogen for use in producing power.
    Type: Grant
    Filed: April 25, 2007
    Date of Patent: February 22, 2011
    Assignee: Ormat Technologies, Inc.
    Inventor: Oron David Zachar
  • Publication number: 20110025065
    Abstract: A clean steam electric engine utilizes a unique insulated chamber with a steel cylinder to store thermal energy. The apparatus includes: insulated chamber to prevent heat lost to the outside, steel cylinder to store thermal energy, natural gas burner, heating element, a turbine to convert the thermal energy into kinetic energy, condenser coil with air conditioning unit to convert the steam back to water, steel container to store water from the condenser, electric pump to the pump water back to the cylinder to be converted back to steam, and steel container to store natural gas.
    Type: Application
    Filed: July 31, 2009
    Publication date: February 3, 2011
    Inventor: TEWODROS MULUGETA
  • Publication number: 20110023488
    Abstract: A compressed-air energy storage system according to embodiments of the present invention comprises a reversible mechanism to compress and expand air, one or more compressed air storage tanks, a control system, one or more heat exchangers, and, in certain embodiments of the invention, a motor-generator. The reversible air compressor-expander uses mechanical power to compress air (when it is acting as a compressor) and converts the energy stored in compressed air to mechanical power (when it is acting as an expander). In certain embodiments, the compressor-expander comprises one or more stages, each stage consisting of pressure vessel (the “pressure cell”) partially filled with water or other liquid. In some embodiments, the pressure vessel communicates with one or more cylinder devices to exchange air and liquid with the cylinder chamber(s) thereof. Suitable valving allows air to enter and leave the pressure cell and cylinder device, if present, under electronic control.
    Type: Application
    Filed: August 25, 2010
    Publication date: February 3, 2011
    Applicant: LightSail Energy Inc.
    Inventors: Danielle A. FONG, Stephen E. Crane, Edwin P. Berlin, JR., AmirHossein Pourmousa Abkenar, Kartikeya Mahalatkar, Yongxi Hou, Todd Bowers
  • Patent number: 7877999
    Abstract: A thermodynamic engine is configured to convert heat provided in the form of a temperature difference to a nonheat form of energy. Heat is directed through a heating loop in thermal contact with a first side of the thermodynamic engine. A second side of the thermodynamic engine is coupled to an environmental cooling loop in thermal contact with an environmental cooling device. The thermodynamic engine is operated to dispense heat from the second side of the thermodynamic engine through the environmental cooling loop into the environmental cooling device. Operation of the thermodynamic engine thereby generates the nonheat form of energy from the temperature difference established between the first side and the second side of the thermodynamic engine.
    Type: Grant
    Filed: April 13, 2007
    Date of Patent: February 1, 2011
    Assignee: Cool Energy, Inc.
    Inventors: Brian P. Nuel, Lee S. Smith, Samuel P. Weaver, Samuel C. Weaver, Daniel Weaver
  • Publication number: 20110016864
    Abstract: A compressed air energy storage (CAES) system encompassing direct heating. The compressed air energy storage system includes a compressor for compressing ambient air, an air storage reservoir, and a thermal energy storage system. The air storage reservoir is adapted to store compressed air from the compressor. The thermal energy storage system is adapted to supply heat to the compressed air energy storage system such that the compressed air is heated to increase work production of the compressed air. The thermal energy storage system is heated using off-peak electricity.
    Type: Application
    Filed: July 23, 2009
    Publication date: January 27, 2011
    Applicant: ELECTRIC POWER RESEARCH INSTITUTE, INC.
    Inventors: Sean Edward Wright, Richard Joseph Lordan, Robert B. Schainker
  • Publication number: 20110005226
    Abstract: Thermo-dynamic battery is a energy storage unit for converting compressed gas energy into consumable electrical power for application uses with any device that requires electrical power to function. A method for storing electrical energy in the form of compressed gas and converting the same energy to electric power includes compressing gas and storing the compressed gas for release to drive a generator. A system and method for storing, disseminating, and utilizing energy in the form of gas compression and expansion comprises a method for expanding compressed gas in at least two stages and further provides for storing energy in the form of compressed gas through compression in at least two stages. Apparatus is provided to operate in accordance with the described procedure to contribute at or about 90% efficiency.
    Type: Application
    Filed: July 27, 2010
    Publication date: January 13, 2011
    Inventor: Daniel Ashikian
  • Publication number: 20100326069
    Abstract: A compressed-air energy storage system according to embodiments of the present invention comprises a reversible mechanism to compress and expand air, one or more compressed air storage tanks, a control system, one or more heat exchangers, and, in certain embodiments of the invention, a motor-generator. The reversible air compressor-expander uses mechanical power to compress air (when it is acting as a compressor) and converts the energy stored in compressed air to mechanical power (when it is acting as an expander). In certain embodiments, the compressor-expander comprises one or more stages, each stage consisting of pressure vessel (the “pressure cell”) partially filled with water or other liquid. In some embodiments, the pressure vessel communicates with one or more cylinder devices to exchange air and liquid with the cylinder chamber(s) thereof. Suitable valving allows air to enter and leave the pressure cell and cylinder device, if present, under electronic control.
    Type: Application
    Filed: January 28, 2010
    Publication date: December 30, 2010
    Applicant: LightSail Energy Inc.
    Inventors: Danielle A. FONG, Stephen E. Crane, Edwin P. Berlin, JR.
  • Publication number: 20100288571
    Abstract: The present invention combines the principles of a gas turbine engine with an electric transmission system. A method and apparatus are disclosed for utilizing metallic and ceramic elements to store heat energy derived from a regenerative braking system. The subject invention uses this regenerated electrical energy to provide additional energy storage over conventional electrical storage methods suitable for a gas turbine engine. The subject invention provides engine braking for a gas turbine engine as well as reducing fuel consumption.
    Type: Application
    Filed: May 11, 2010
    Publication date: November 18, 2010
    Inventors: David William Dewis, James B. Kesseli, Frank Wegener Donnelly, Thomas L. Wolf, Timothy D. Upton, John D. Watson
  • Publication number: 20100251711
    Abstract: An apparatus for storing energy includes a compression chamber for receiving a gas, a compression piston for compressing gas contained in the compression chamber, a first heat store for receiving and storing thermal energy from gas compressed by the compression piston, an expansion chamber for receiving gas after exposure to the first heat store, an expansion piston for expanding gas received in the expansion chamber, and a second heat store for transferring thermal energy to gas expanded by the expansion piston. The cycle used by the apparatus has two different stages that can be split into separate devices or combined into one device.
    Type: Application
    Filed: April 2, 2010
    Publication date: October 7, 2010
    Applicant: Isentropic Limited
    Inventors: Jonathan Sebastian Howes, James Macnaghten
  • Publication number: 20100251712
    Abstract: An adiabatic Compressed Air Energy Storage (CAES) system includes a low pressure compressor structure (14) to provide compressed air; a first heat exchanger (26) to extract heat from the compressed air exiting the low pressure compressor structure; a thermal storage device (60) to store the extracted heat during off-peak load periods; a motor-driven high pressure compressor (30) to receive compressed air cooled by the first heat exchanger, an aftercooler (34) to extract heat from the further compressed air; an air storage (36) to receive and store the further compressed air cooled by the second heat exchanger; a second heat exchanger (64) to transfer heat stored in the first thermal storage device to compressed air released from the air storage during peak periods; and a turbine structure (40) to expand the heated compressed air released from the air storage to produce power.
    Type: Application
    Filed: June 18, 2010
    Publication date: October 7, 2010
    Inventor: Michael Nakhamkin
  • Publication number: 20100252028
    Abstract: In some implementations, there is provided an apparatus. The apparatus may include a first steam engine, an intermediate storage, and a second steam engine. The first steam engine may include a first inlet and a first exhaust, wherein the first inlet receives steam from a source of thermal energy. The intermediate storage may be coupled to the first exhaust, wherein the intermediate storage stores thermal energy provided by steam from the first exhaust. The second steam engine may include a second inlet coupled to the intermediate storage. Moreover, at least one of the first steam engine and the second steam engine may produce work. Furthermore, the first steam engine may be driven by the steam received from the source of thermal energy, and the second steam engine may be driven by steam from at least one of the intermediate storage and the first exhaust. Related apparatus and methods are also described.
    Type: Application
    Filed: March 26, 2010
    Publication date: October 7, 2010
    Inventors: Robert Charles Mierisch, Stephen James Bisset
  • Publication number: 20100218741
    Abstract: A thermal engine includes a cylinder and piston and an insulated thermal battery including at least a thermal mass such as the engine block itself for storing and retaining heat to enhance or cause fluid expansion within the cylinder and drive the piston, the thermal battery optionally including an electrolyte chamber containing a thermal electrolyte for functioning as an electric thermal battery. Heat is stored in the thermal battery such as by activating electric resistance heating elements in the thermal mass. The stored heat either causes expansion of a non-combustible expansion fluid such as water or enhances the expansion of a combustible expansion fluid such as gasoline. Where the thermal battery is an electric thermal battery containing an electrolyte, the storage of heat also stores electricity which can be used to power an electric motor.
    Type: Application
    Filed: March 2, 2009
    Publication date: September 2, 2010
    Inventor: Michael Anthony
  • Publication number: 20100218500
    Abstract: The present invention relates to an installation and to methods for storing and returning electrical energy, comprising first and second lagged enclosures containing porous refractory material through which a gas is caused to flow by causing the gas to flow through first and second compression/expansion groups interposed in the pipe circuit between the top and bottom ends respectively of said first and second enclosures, each compression/expansion group comprising a piston moved in translation in a cylinder, each group operating in a different mode, either in compression mode or in expansion mode, one of the two compression/expansion groups receiving a gas at a temperature that is higher than the other group, such that in compression mode it is driven by an electric motor that consumes electrical energy for storage E1, and in a thermodynamic engine mode it drives an electricity generator enabling the electrical energy (ER) to be returned.
    Type: Application
    Filed: October 3, 2008
    Publication date: September 2, 2010
    Inventor: Jacques Ruer
  • Publication number: 20100212316
    Abstract: A power generation system that includes a heat source loop that supplies heat to a turbine loop. The heat can be waste heat from a steam turbine, industrial process or refrigeration or air-conditioning system, solar heat collectors or geothermal sources. The heat source loop may also include a heat storage medium to allow continuous operation even when the source of heat is intermittent. In the turbine loop a working fluid is boiled, injected into the turbine, recovered condensed and recycled. The power generation system further includes a heat reclaiming loop having a fluid that extracts heat from the turbine loop. The fluid of the heat claiming loop is then raised to a higher temperature and then placed in heat exchange relationship with the working fluid of the turbine loop. The turbine includes one or more blades mounted on a rotating member.
    Type: Application
    Filed: February 18, 2010
    Publication date: August 26, 2010
    Inventors: Robert Waterstripe, Gary Hoffman, Richard Willoughby
  • Publication number: 20100162702
    Abstract: A solar thermal powered aircraft powered by heat energy from the sun. A Rankine-Brayton hybrid cycle heat engine is carried by the aircraft body for producing power for a propulsion mechanism, such as a propeller or other mechanism for enabling sustained free flight. The Rankine-Brayton engine has a thermal battery, preferably containing a lithium-hydride and lithium mixture, operably connected to it so that heat is supplied from the thermal battery to a working fluid. A solar concentrator, such as reflective parabolic trough, is movably connected to an optically transparent section of the aircraft body for receiving and concentrating solar energy from within the aircraft. Concentrated solar energy is collected by a heat collection and transport conduit, and heat transported to the thermal battery. A solar tracker includes a heliostat for determining optimal alignment with the sun, and a drive motor actuating the solar concentrator into optimal alignment with the sun based on a determination by the heliostat.
    Type: Application
    Filed: July 30, 2009
    Publication date: July 1, 2010
    Inventor: Charles L. Bennett
  • Patent number: 7723858
    Abstract: A power plant for generating electricity has a high temperature heat reservoir and a low temperature heat reservoir. The plant is operated to store heat during off peak power periods and to use the stored heat during peak power periods to produce additional electricity.
    Type: Grant
    Filed: January 10, 2006
    Date of Patent: May 25, 2010
    Assignee: New World Generation Inc.
    Inventors: Duraid S. Nayef, Na'al S. Nayef
  • Publication number: 20100107635
    Abstract: To provide an indicator for indicating current amounts and predicted amounts of cold energy and heat energy stored in a thermal storing device. The thermal storage device storing and outputting heat energy and cold energy, comprises: a thermal storage amount indicating means for detecting and indicating a storage amount of the heat energy or the cold energy; a thermal output amount indicating means for detecting and indicating an output amount of the heat energy or the cold energy and a thermal input amount indicating means for detecting and indicating an amount of the heat energy or the cold energy inputted from outside to be stored.
    Type: Application
    Filed: February 28, 2008
    Publication date: May 6, 2010
    Inventor: Kenji Tsubone
  • Patent number: 7681395
    Abstract: Backup energy systems utilizing compressed air storage (CAS) systems and bridging energy systems to supply backup power to a load are provided. During a power failure, the bridging energy system provides backup power to the load at least until the CAS system begins supplying adequate power. In various embodiments, backup power capability is enhanced through the use of one or more exhaustless heaters, which are used to heat compressed air. The compressed air, in turn, drives a turbine which is used to power an electrical generator. In various embodiments, ambient air heat exchangers or other types of heat exchangers are used to heat compressed air prior to the compressed air being routed to the turbine, thereby increasing system efficiency. Backup power and backup HVAC are also provided by utilizing turbine exhaust, heat exchangers and various resistive heating elements.
    Type: Grant
    Filed: August 24, 2006
    Date of Patent: March 23, 2010
    Inventors: Joseph F Pinkerton, David Beatty, David E Perkins
  • Patent number: 7663256
    Abstract: A cogeneration system is disclosed. The system has a cooling water circulation channel for returning cooling water of the engine to the engine after some of the cooling water has been removed. The cooling water circulation channel is provided with a cooling water pump for pressure-feeding the cooling water; electricity supplying means; and a control part for performing a control so that electrical energy is supplied from the electricity supplying means to a motor for driving the cooling water pump when a power outage signal is received.
    Type: Grant
    Filed: October 23, 2008
    Date of Patent: February 16, 2010
    Assignee: Honda Motor Co., Ltd.
    Inventors: Nobuyuki Yuri, Tsutomu Wakitani
  • Publication number: 20090313997
    Abstract: A unitary, hybrid engine which includes an internal combustion engine which is used both for locomotive and heat generation externally of the cylinders of the combustion engine, wherein the generated heat is employed in conjunction with an evaporator to generate steam, which is then stored in an energy accumulator which retains the stored energy by way of a pressured water containment unit. The pressurized water containment unit accretes the energy and, upon attainment of a predetermined pressure and liquid level, the steam is transmitted to one or more of the cylinders of the unitary engine to provide the motive power to the unitary engine. The engine includes control systems to permit the sole use of steam during such times as may be required for environmental or pollution control requirements. The control systems may also selectively permit the use of steam in one or more of the cylinders of the engine simultaneously with the use of fossil fuel in others.
    Type: Application
    Filed: June 23, 2008
    Publication date: December 24, 2009
    Inventors: Frederick John Bayley, Michael Burns, Martin Smaller, Marco Cucinotta, Paul Burns
  • Publication number: 20090308074
    Abstract: An apparatus for generating energy using sensible heat of an offgas during manufacture of molten iron and a method for generating energy using the same are provided. The method for generating energy includes i) providing an offgas discharged from an apparatus for manufacturing molten iron including a reduction reactor that provides reduced iron that is reduced from iron ore and a melter-gasifier that melts the reduced iron to manufacture molten iron; ii) converting cooling water into high pressure steam by contacting the cooling water with the offgas; and iii) generating energy from at least one steam turbine by supplying the high pressure steam to the steam turbine and rotating the steam turbine.
    Type: Application
    Filed: December 17, 2007
    Publication date: December 17, 2009
    Inventors: Myoung-Kyun Shin, Sang-Hyun Kim, Min-Chul Park, Sang-Hoon Joo, Robert Millner
  • Publication number: 20090288414
    Abstract: In a steam system having a turbine driven by steam supplied from a high-pressure header to a low-pressure header, when the pressure in the low-pressure header drops, a turbine bypass valve is opened and the high-pressure side steam is supplied to the low-pressure side header in a normal control. When the turbine is tripped, steam is rapidly flow into the low-pressure side header and its pressure temporally increases. the steam in the low-pressure header is discharged through a discharge valve. After that, if a steam supply from the low-pressure header to another process increases, the discharge valve is closed. After the discharge valve is fully closed, an after-trip control is performed in which the opening of the turbine bypass valve is increased at an earlier timing than the normal control for preventing the steam amount in the low-pressure header to be too small. The control stability of the steam system when the turbine is tripped can be enhanced.
    Type: Application
    Filed: February 14, 2008
    Publication date: November 26, 2009
    Applicant: MITSUBISHI HEAVY INDUSTRIES, LTD.
    Inventors: Kazuko Takeshita, Susumu Kouno, Haruaki Hirayama, Naohiko Ishibashi, Yosuke Nakagawa
  • Publication number: 20090288415
    Abstract: There is described a method for heating a steam turbine comprising a medium-pressure turbine section and/or a low-pressure turbine section, the discharge end of the medium-pressure turbine section being provided with a catchment device. Steam penetrating the medium-pressure turbine section during a starting process is retained at an outlet by means of a catchment device in such a way that the pressure of the steam increases in the medium-pressure turbine section. The steam that is discharged from the medium-pressure turbine section is retained, thus increasing the pressure and the temperature of the steam. Heat transfer from the steam to the thick-walled parts located on the medium pressure turbine section and the shaft of the medium-pressure turbine section is augmented, thus reducing the starting time of the steam turbine.
    Type: Application
    Filed: October 11, 2006
    Publication date: November 26, 2009
    Inventors: Edwin Gobrecht, Karsten Peters
  • Publication number: 20090282828
    Abstract: An engine/heat pump is shown. Most of its parts rotate around the same central axis. It comprises two doubly connected chambers. Blades in each chamber substantially rotate with the chamber and may be firmly attached to the walls of the chamber, thus forming a modified centrifugal pump with axial input and discharge. An expandable fluid is rotated outward by one of the pumps and then heat is added for an engine or removed for a heat pump as the fluid is being sent to the outer part of the second pump. The fluid travels toward the center of the second pump, thus impelling the pump in the rotation direction. Then heat is removed for an engine or added for a heat pump as the fluid leaves the second pump and travels back to the first pump near the center of rotation of both pumps. Rotation energy of the fluid is typically much larger than the circulation energy. A modified centrifugal pump with axial discharge having a casing rotating with the blades is also claimed.
    Type: Application
    Filed: May 15, 2008
    Publication date: November 19, 2009
    Inventor: Ronald Edward Graf
  • Publication number: 20090223222
    Abstract: An external combustion engine comprising a pipe-shaped main container in which a working fluid is sealed flowably in a liquid state, a heated part formed at a location of one end of the main container and heating part of the working fluid in the main container in order to make it evaporate, a cooled part formed at a location next to the heated part toward the other end of the main container and cooling the vapor of the working fluid evaporated at the heated part in order to make it condense, an output unit communicated with the other end of the main container and converting the displacement of the liquid phase part of the working fluid to mechanical energy for output, and a controller alternately performing a heat storage mode making displacement of the liquid phase part of the working fluid stop in order to make the heated part store heat and an output mode allowing displacement of the liquid phase part of the working fluid and taking output from the output unit.
    Type: Application
    Filed: January 19, 2009
    Publication date: September 10, 2009
    Applicant: DENSO CORPORATION
    Inventors: Shuzo Oda, Shinichi Yatsuzuka, Yasunori Niiyama, Takashi Kaneko, Mamoru Shimoda
  • Publication number: 20090211252
    Abstract: A power generation complex plant has a control switch, an overall control unit and a steam bypass facility. The overall control unit determines that a desired steam volume has reached a limit value of the volume of steam to be generated by a steam generating facility. A steam bypass facility control unit adds a bias value B1 to a control command value V4 of the steam bypass facility to generate a new control command value V5 when the desired steam volume is determined to have reached the limit value. The steam bypass facility control unit then controls the volume and pressure of steam passing through the steam bypass facility on the basis of the new control command value V5 so that no switch of control may be made in the control switch.
    Type: Application
    Filed: February 18, 2009
    Publication date: August 27, 2009
    Inventors: Akinori Tani, Akimasa Nakai, Masuo Yamasaki, Kazuo Nogami, Yoji Kubo
  • Publication number: 20090205335
    Abstract: In a domestic energy supply system, the thermal energy of the temperature difference between at least one heat source and at least one heat sink is converted into work by way of a thermal engine. The thermal engine has a fluid cycle with at least two reservoirs, which, in each case as a condenser to be cooled or an evaporator to be heated, are thermally coupled to the heat source or the heat sink. A working temperature difference between the reservoirs of approximately 10° to 200° C. is set at a working temperature of 30° to 280° C. The thermal engine has a hybrid motor in the form of a combination of a pressure media motor and an internal combustion engine, in which firstly a pressure difference of the fluid as a result of the working temperature difference is used for driving purposes and secondly fuel is combusted and converted into work. Furthermore, the invention relates to a method for controlling such a system.
    Type: Application
    Filed: August 23, 2007
    Publication date: August 20, 2009
    Inventor: Karl Wohlleib
  • Publication number: 20090178409
    Abstract: Method and apparatus for storing heat in industrial systems where large sources of stored energy are called upon to meet a work load, storing the heat content of a hot working fluid by using the hot working fluid as a heat transfer fluid in vapor form and depositing its heat content on a heat storage medium and then removing the cooled and condensed liquid phase of that heat transfer fluid, and when hot working fluid again is needed, the liquid heat transfer fluid is returned to the heated storage medium and is reheated as it passes through the hot storage medium and then is returned to the working system to be used as a hot working fluid.
    Type: Application
    Filed: December 19, 2008
    Publication date: July 16, 2009
    Applicant: Research Foundation of the City University of New York
    Inventor: Reuel SHINNAR
  • Publication number: 20090173072
    Abstract: A recuperator includes a heating gas duct; an inlet manifold; a discharge manifold; and a once-through heating area disposed in the heating-gas duct through which a heating gas flow is conducted. The once-through heating area is formed from a plurality of first single-row header-and-tube assemblies and a plurality of second single-row header-and-tube assemblies. Each of the plurality of first single-row header-and-tube assemblies including a plurality of first heat exchanger generator tubes is connected in parallel for a through flow of a flow medium therethrough and further includes an inlet header connected to the inlet manifold. Each of the plurality of second single-row header-and-tube assemblies including a plurality of second heat exchanger generator tubes is connected in parallel for a through flow of the flow medium therethrough from respective first heat exchanger generator tubes, and further includes a discharge header connected to the discharge manifold.
    Type: Application
    Filed: January 7, 2008
    Publication date: July 9, 2009
    Applicant: ALSTOM TECHNOLOGY LTD.
    Inventor: Thomas P. Mastronarde
  • Publication number: 20090158736
    Abstract: A thermal power plant is disclosed that comprises a heating system (10) that utilizes solar radiation for heating a working fluid, a turbine (11) to which, in operation, the working fluid is delivered, a condenser (13) located downstream from the turbine and arranged for condensing vapour exhausted from the turbine, and a cooling system (14) associated with the condenser. The heating system comprises a field of reflectors (17) that, during diurnal periods, are arranged (for example by pivoting) to reflect incident solar radiation to a receiver (18) for heating the working fluid. The cooling system (14) is arranged in operation of the power plant to transport a coolant fluid to which heat is transferred during vapour condensing and it comprises a subterranean heat exchanger incorporating conduits (27) through which the coolant is recirculated when cycling through the condenser.
    Type: Application
    Filed: March 2, 2007
    Publication date: June 25, 2009
    Applicant: SOLAR HEAT AND POWER PTY LTD
    Inventor: Robert Charles Mierisch
  • Publication number: 20090158740
    Abstract: A compressed air energy storage system including a gas inlet pipe, at least one air compressor stage attached to the gas inlet pipe and adapted for compression of a gas, a heat transfer system to cool the gas during or after compression, at least one absorption bed attached to the heat transfer system, at least one compressed gas reservoir having an inlet and an outlet, the compressed gas reservoir being attached at its inlet to the absorption bed, at least one preheater stage that is attached to the outlet of the compressed gas reservoir for heating a compressed gas before expansion but after storage in the compressed gas reservoir, and at least one gas expander that is attached to the preheater stage and is adapted for the expansion of the compressed gas.
    Type: Application
    Filed: December 21, 2007
    Publication date: June 25, 2009
    Applicant: PALO ALTO RESEARCH CENTER INCORPORATED
    Inventors: Karl A. Littau, Raphael Stumpp
  • Patent number: 7550054
    Abstract: A method of manufacturing a mirror for a dish reflector of a system for generating electrical power from solar radiation is disclosed. The method includes the steps of: (a) shaping a blank of a deformable material to have a concave surface that is a required surface profile for a mirror; and (b) glueing, laminating or otherwise adhering together a back surface of a sheet of reflective glass and the concave surface of the shaped blank to form the mirror.
    Type: Grant
    Filed: March 28, 2002
    Date of Patent: June 23, 2009
    Assignee: Solar Systems Pty Ltd.
    Inventor: John Beavis Lasich
  • Publication number: 20090125152
    Abstract: A method of measurement, control, and regulation for a solar integrated Rankine cycle power generation system can include a central processing unit (CPU) which receives input from an operator and/or sensors regarding load forecast, weather forecast, system cost, and capacity or efficiency needs. The method can include activation, in various sequencing, of heat transfer fluid control valves, storage control valves, and at least one turbine control valve.
    Type: Application
    Filed: November 7, 2008
    Publication date: May 14, 2009
    Applicant: Markron Technologies, LLC
    Inventors: Mark Joseph Skowronski, Ronald Farris Kincaid