Having Condition Responsive Control Patents (Class 60/660)
  • Publication number: 20120017592
    Abstract: A steam turbine having at least a HP blade cascade, an IP blade cascade and a plurality of dummy members that are attached to a common rotor shaft, is provided with, but not limited to, a detection unit that detects a steam flow into an IP chamber, a pressure reducing unit that reduces a pressure difference between both sides of a target dummy member of said plurality of the dummy members when the steam flow into the IP chamber stops, the target dummy member having one side communicating with a part of the IP chamber, and a control unit that controls the pressure reducing unit based on a detection result obtained by the detection unit.
    Type: Application
    Filed: June 29, 2011
    Publication date: January 26, 2012
    Inventors: Takashi MARUYAMA, Asaharu MATSUO
  • Patent number: 8100580
    Abstract: A solution for measuring steam quality in a steam turbine is disclosed. A steam quality measurement (SQM) device and an ejector are coupled to a steam turbine through an appropriate piping configuration to draw steam emitted from the turbine through the SQM device for measurement of the steam quality, for example, continuously, during operation of the turbine.
    Type: Grant
    Filed: April 22, 2009
    Date of Patent: January 24, 2012
    Assignee: General Electric Company
    Inventors: Scott Victor Hannula, Randy Scott Rosson, Kevin Wood Wilkes
  • Publication number: 20120011852
    Abstract: A steam turbine flow adjustment system is disclosed. In one embodiment, the system includes a steam turbine having a first inlet port and a second inlet port for receiving inlet steam; a first conduit and a second conduit operably connected to a first valve and a second valve, respectively, the first conduit and the second conduit for providing the inlet steam to the first inlet port and the second inlet port, respectively; and a control system operably connected to the first valve and the second valve for controlling an amount of inlet steam flow admitted and pressure to each of the first inlet port and the second inlet port based upon a load demand on the steam turbine and an admission pressure of the inlet steam.
    Type: Application
    Filed: July 14, 2010
    Publication date: January 19, 2012
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Kamlesh Mundra, Nestor Hernandez Sanchez
  • Patent number: 8096128
    Abstract: A waste heat recovery system, method and device executes a thermodynamic cycle using a working fluid in a working fluid circuit which has a high pressure side and a low pressure side.
    Type: Grant
    Filed: December 4, 2009
    Date of Patent: January 17, 2012
    Assignee: Echogen Power Systems
    Inventors: Timothy J. Held, Stephen Hostler, Jason D. Miller, Brian F. Hume
  • Publication number: 20110308252
    Abstract: A pressure sensor measures an organic Rankine cycle (ORC) working fluid pressure in front of a radial inflow turbine, while a temperature sensor measures an ORC working fluid temperature in front of the radial inflow turbine. A controller responsive to algorithmic software determines a superheated temperature of the working fluid in front of the radial inflow turbine based on the measured working fluid pressure and the measured working fluid temperature. The controller then manipulates the speed of a working fluid pump, the pitch of turbine variable inlet guide vanes when present, and combinations thereof, in response to the determined superheated temperature to maintain the superheated temperature of the ORC working fluid in front of the radial inflow turbine close to a predefined set point. The superheated temperature can thus be maintained in the absence of sensors other than pressure and temperature sensors.
    Type: Application
    Filed: June 18, 2010
    Publication date: December 22, 2011
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Herbert Kopecek, Gabor Ast, Thomas Johannes Frey, Pierre Sebastien Huck
  • Publication number: 20110277478
    Abstract: An electronic probe housing having two speed pick up devices automatically sends electric signals to an electronic governor which causes the RPM of the steam turbine to increase, decrease or remain constant, in conjunction with one or more additional speed pick up devices in the same probe housing which uses a logical array of electro-hydraulic solenoid valves to control an automatic shut off system which cuts off the steam supply to the steam turbine.
    Type: Application
    Filed: March 7, 2011
    Publication date: November 17, 2011
    Inventors: James Leon Jacoby, JR., Timothy A. Pieszchala
  • Publication number: 20110221206
    Abstract: A linear power generator for generating electrical power utilizing a waste or low grade heat source. According to an embodiment, the linear power generator comprises a cylinder assembly and an electromagnetic coil. The cylinder assembly comprises two chambers with respective pistons in a coaxial arrangement and the pistons are configured to move in opposite directions in response to the application of pressurized vapour or gas. The vapour or gas is heated utilizing the waste or low grade heat source and pressurized for the cylinder assembly. Each of the pistons includes a drive shaft which is coupled to an electromagnetic component. The pressurized vapour or gas is applied in a substantially synchronized manner to each of the chambers to move the pistons through substantially equal but opposite linear cycles. The movement of the pistons moves the electromagnetic components through the electromagnetic coil, which induces a voltage in the coil.
    Type: Application
    Filed: March 11, 2010
    Publication date: September 15, 2011
    Inventors: MIRO MILINKOVIC, GIAN L. VASCOTTO
  • Patent number: 8015811
    Abstract: A method and apparatus are disclosed for alleviating the problem of windage heating when flow, in a turbine running at full speed, no load, decreases greatly at the exhaust of the high pressure sections of the turbine. Valves connecting the different pressure levels of a heat recovery steam generator to the input of the turbine are adjusted to mix steam coming from the different pressure levels to create desired steam conditions at the inlet and the exhaust output of the turbine that allow the use of existing steam path hardware and thereby reduce the cost of such piping. In an alternative embodiment for a single pressure HRSG, high pressure saturated steam is extracted from the HSRG evaporator and then flashed into superheated steam when passing thru a control valve, that is then used to create the desired steam conditions at the inlet and the exhaust output of the turbine.
    Type: Grant
    Filed: January 13, 2009
    Date of Patent: September 13, 2011
    Assignee: General Electric Company
    Inventors: Karen J. Tyler, Nestor Hernandez
  • Publication number: 20110203278
    Abstract: A waste heat recovery plant control system includes a programmable controller configured to generate expander speed control signals, expander inlet guide vane pitch control signals, fan speed control signals, pump speed control signals, and valve position control signals in response to an algorithmic optimization software to substantially maximize power output or efficiency of a waste heat recovery plant based on organic Rankine cycles, during mismatching temperature levels of external heat source(s), during changing heat loads coming from the heat sources, and during changing ambient conditions and working fluid properties. The waste heat recovery plant control system substantially maximizes power output or efficiency of the waste heat recovery plant during changing/mismatching heat loads coming from the external heat source(s) such as the changing amount of heat coming along with engine jacket water and its corresponding exhaust in response to changing engine power.
    Type: Application
    Filed: February 25, 2010
    Publication date: August 25, 2011
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Herbert Kopecek, Gabor Ast, Thomas Johannes Frey, Sebastian Freund, Pierre Sebastien Huck
  • Patent number: 7997078
    Abstract: In a nuclear power plant, thermal power in a second operation cycle of a nuclear reactor is uprated from thermal power in a first operation cycle preceding the second operation cycle by at least one operation cycle. A proportion of steam extracted from a steam system and introduced to a feedwater heater, which is in particular extracted from an intermediate point and an outlet of a high pressure turbine, with respect to a flow rate of main steam, is reduced in the second operation cycle from that in the first operation cycle such that the temperature of feedwater discharged from the feedwater heater is lowered by 1° C. to 40° C. in the second operation cycle.
    Type: Grant
    Filed: October 6, 2009
    Date of Patent: August 16, 2011
    Assignee: Hitachi-GE Nuclear Energy, Ltd.
    Inventors: Masao Chaki, Kazuaki Kitou, Motoo Aoyama, Masaya Ootsuka, Kouji Shiina
  • Publication number: 20110185734
    Abstract: Embodiments of an ORC system can be configured to reduce ingress of contaminants from the ambient environment. In one embodiment, the ORC system can comprise a pressure equilibrating unit that comprises a variable volume device for holding a working fluid. The variable volume device can be fluidly coupled to a condenser so that working fluid can move amongst the condenser and the variable volume device. This movement can occur in response to changes in the pressure of the working fluid in the ORC system, and in one example the working fluid is allowed to move when the pressure deviates from atmospheric pressure.
    Type: Application
    Filed: January 29, 2010
    Publication date: August 4, 2011
    Applicant: United Technologies Corporation
    Inventors: Sitaram Ramaswamy, Sean P. Breen
  • Publication number: 20110185733
    Abstract: Embodiments of an ORC system can be configured to reduce ingress of contaminants from the ambient environment. In one embodiment, the ORC system can comprise a pressure equilibrating unit that comprises a variable volume device for holding a working fluid. The variable volume device can be fluidly coupled to a condenser so that working fluid can move amongst the condenser and the variable volume device. This movement can occur in response to changes in the pressure of the working fluid in the ORC system, and in one example the working fluid is allowed to move when the pressure deviates from atmospheric pressure.
    Type: Application
    Filed: January 29, 2010
    Publication date: August 4, 2011
    Applicant: United Technologies Corporation
    Inventors: Sitaram Ramaswamy, Sean P. Breen
  • Publication number: 20110173947
    Abstract: A gas turbine power augmentation system and method are provided. The system includes a chiller, a controller, a heat exchanger, and a gas turbine inlet air flow. The chiller may be operable to chill a coolant flow using energy from a heat source. The controller may be operably connected to the chiller and configured to regulate operation of the chiller in relation to at least one environmental condition. The heat exchanger may be in fluid communication with the chiller and configured to allow the coolant flow to pass through the heat exchanger. The gas turbine inlet air flow may be directed through the heat exchanger before entering a gas turbine inlet, allowing the air flow to interact with the coolant flow, thereby cooling the air flow.
    Type: Application
    Filed: January 19, 2010
    Publication date: July 21, 2011
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: JIANMIN ZHANG, LISA KAMDAR AMMANN, BRADLY AARON KIPPEL, HUA ZHANG, JAMES PATRICK TOMEY
  • Publication number: 20110146276
    Abstract: The present invention has the technical effect of reducing the start-up time associated with starting a steam turbine. Embodiments of the present invention provide a new methodology for reducing the steam-to-metal temperature mismatch present during the start-up of a steam turbine. Essentially, embodiments of the invention may raise the pressure of the steam upstream of an admission valve associated with a High Pressure (HP) section of a steam turbine. The initial high pressure of the steam may reduce the enthalpy of steam, reducing temperature of the steam admitted to the HP section.
    Type: Application
    Filed: December 23, 2009
    Publication date: June 23, 2011
    Inventors: Dileep Sathyanarayana, Steven Dipalma
  • Publication number: 20110131962
    Abstract: An exhaust heat recovery system (18) includes first and second loop heat pipes (20 and 30). The first loop heat pipe (20) recovers exhaust heat downstream of a catalyst (5) in an exhaust passage (4) of an internal combustion engine (1) to exchange heat with the catalyst (5). The second loop heat pipe (30) recovers heat of the catalyst (5) to exchange heat with coolant that is once delivered from the internal combustion engine (1).
    Type: Application
    Filed: August 7, 2009
    Publication date: June 9, 2011
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Masao Toi, Hideyuki Komisu, Toshio Murata
  • Publication number: 20110126540
    Abstract: A high-strength heat resisting cast steel which has high creep rupture strength at temperatures of 620° C. or above, high toughness, and good weldability. A method of producing the steel, a steam turbine casing, a main steam valve casing, and a steam control valve casing, each casing being made of that steel, as well as a steam turbine power plant using those components are also provided. The high-strength heat resisting cast steel contains 0.06-0.16% by mass of C, 0.1-1% of Si, 0.1-1% of Mn, 8-12% of Cr, 0.1-1.0% of Ni, 0.7% or less of Mo, 1.9-3.0% of W, 0.05-0.3% of V, 0.01-0.15% of one or more of Nb, Ta and Zr in total, 0.1-2% of Co, 0.01-0.08% of N, and 0.0005-0.01% of B, the balance being Fe and unavoidable impurities.
    Type: Application
    Filed: February 7, 2011
    Publication date: June 2, 2011
    Applicant: HITACHI, LTD.
    Inventors: Masahiko ARAI, Hirotsugu KAWANAKA, Hideo YODA
  • Patent number: 7950230
    Abstract: A waste heat recovery apparatus including a Rankine cycle which includes a heater for heating an operation fluid by waste heat from a heat-generating device, an expansion unit for converting energy of expansion of the operation fluid flowing out from the heater into mechanical energy, and a condenser for condensing and liquefying the expanded operation fluid, a temperature detector for detecting the temperature of the operation fluid on the inlet side of the expansion unit, a pressure detector for detecting inlet-side pressure of the expansion unit, a pressure detector for detecting outlet-side pressure of the expansion unit, and a control unit. The control unit controls a command rotational speed of the expansion unit based on superheated degree information at the inlet of the expansion unit obtained from the operation fluid temperature and the inlet-side pressure, and pressure information in which the outlet-side pressure is considered.
    Type: Grant
    Filed: September 9, 2008
    Date of Patent: May 31, 2011
    Assignees: Denso Corporation, Nippon Soken, Inc.
    Inventors: Michio Nishikawa, Kouji Yamashita, Hiroshi Kishita, Keiichi Uno
  • Publication number: 20110120128
    Abstract: The present invention relates to a method of controlling a power plant, which power plant comprises: a boiler being adapted for combusting an organic fuel and for generating steam and a process gas comprising carbon dioxide; a steam system being; and a carbon dioxide capture system being adapted to remove at least a portion of the carbon dioxide from the process gas by contacting a carbon dioxide absorbent solution with the process gas, the method comprising: forwarding a portion of the steam produced by the power plant boiler to a regenerator of the carbon dioxide capture system; regenerating the absorbent solution in said regenerator through heating of said carbon dioxide absorbent solution by means of the forwarded steam; and automatically controlling the operation of the carbon capture system by means of at least one automatic controller. The invention also relates to a power plant including a carbon dioxide capture system.
    Type: Application
    Filed: November 20, 2009
    Publication date: May 26, 2011
    Applicant: ALSTOM Technology Ltd
    Inventors: Nareshkumar B. Handagama, Stephen Hepner, Raesh R. Kotdawala, Jacques Marchand, Allen M. Pfeffer, Vikram S. Shabde
  • Publication number: 20110120130
    Abstract: A fossil fuel combustion thermal power system including a carbon dioxide separation and capture unit comprising a fossil fuel combustion thermal power system including a boiler for burning fossil fuel and generating steam and a steam turbine including a high-pressure turbine driven by the steam generated by the boiler for generating power, and a carbon dioxide separation and capture unit.
    Type: Application
    Filed: November 23, 2010
    Publication date: May 26, 2011
    Applicant: Hitachi, Ltd.
    Inventors: Nobuyoshi MISHIMA, Takashi SUGIURA, Osamu MATSUURA, Tetsuya KOSAKA
  • Publication number: 20110109157
    Abstract: A waste heat controller controls waste heat quantity of an engine according to a required heat quantity along with a heat-utilize requirement. When the heat-utilize requirement is generated, a fuel-increase-rate indicating a fuel increase quantity is computed. A reference fuel-increase-rate is established to be compared with the fuel-increase-rate. Based on this comparison result, it is determined whether the waste heat increase control will be executed.
    Type: Application
    Filed: November 10, 2010
    Publication date: May 12, 2011
    Applicant: DENSO CORPORATION
    Inventor: Keisuke TANI
  • Publication number: 20110100008
    Abstract: A method for operating a steam power station is provided. The steam turbine power station includes at least one steam turbine and a process steam consumer, wherein a steam mass flow is subdivided into a first partial mass flow and a second partial mass. In a first operating state, the first partial mass flow is supplied to the steam turbine and the second partial mass flow is supplied to the process steam consumer. In a second operating state, at least part of the second partial mass flow is supplied to the steam turbine at least after the first turbine stages. A steam power station is also provided.
    Type: Application
    Filed: May 4, 2009
    Publication date: May 5, 2011
    Inventors: Ulrich Beul, Stefan Glos, Matthias Heue, Thomas Hofbauer, Ralf Hoffacker, Nils Lückemeyer, Norbert Pieper, Roland Sievert
  • Patent number: 7922155
    Abstract: A control method for boiler outlet temperatures includes predictive control of SH and RH desuperheater systems. The control method also includes control and optimization of steam generation conditions, for a boiler system, such as burner tilt and intensity, flue-gas recirculation, boiler fouling, and other conditions for the boiler. The control method assures a proportional-valve control action in the desuperheater system, that affects the boiler system.
    Type: Grant
    Filed: April 13, 2007
    Date of Patent: April 12, 2011
    Assignee: Honeywell International Inc.
    Inventor: Vladimir Havlena
  • Publication number: 20110056201
    Abstract: A system and a method are provided that may be used to control the temperature of steam being reheated by a moisture separator reheater (MSR). The temperature of a steam being reheated by a MSR may be sensed, and controller embodiments may use the sensed temperature to control the transfer of heat from various MSR components into the reheated steam. By using such control embodiments, the MSR may provide optimally heated steam to other power plant components, thus increasing the performance, efficiency, and safety of a power plant.
    Type: Application
    Filed: September 8, 2009
    Publication date: March 10, 2011
    Applicant: General Electric Company
    Inventors: Steven Craig Kluge, Michael James Molitor
  • Publication number: 20110041504
    Abstract: A system and method for controlling the temperature of a fuel gas. The system and method includes mixing an intermediate pressure feedwater stream from the heat recovery steam generator with a high pressure feedwater stream from the heat recovery steam generator, then using that mixture to heat the fuel gas mixture. The system and method may provide for improved control over the Modified Wobbe Index of the fuel gas, which may allow for greater variation in the composition of the fuel gas.
    Type: Application
    Filed: October 29, 2010
    Publication date: February 24, 2011
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Kelvin R. ESTRADA, John MART
  • Publication number: 20110041505
    Abstract: A waste heat utilization device (2) for an internal combustion engine (6) includes a heat medium circuit (8) through which a heat medium applied with waste heat from at least one of the engine and a heat source of the engine is circulated as the engine is operated, and a Rankine cycle circuit (4) through which a working fluid is circulated. The Rankine cycle circuit includes a heating unit (10, 12) for heating the working fluid by causing heat to transfer to the working fluid from at least one of the heat medium and the heat source, an expander (14) for expanding the working fluid introduced therein from the heating unit to produce driving force, and a condenser (16) for condensing the working fluid introduced therein from the expander. The working fluid is delivered from the condenser to the heating unit. The flow rate of at least one of the heat medium and the heat source that transfer heat to the working fluid in the heating unit is controlled in accordance with an operating condition of the engine.
    Type: Application
    Filed: November 1, 2010
    Publication date: February 24, 2011
    Applicant: Sanden Corporation
    Inventors: Junichiro KASUYA, Yasuaki KANOU
  • Publication number: 20110030373
    Abstract: A method and system for an external combustion engine operable using at least two different working fluids to be supplied to an engine to cause it to do mechanical work. The engine is started by providing a compressed gaseous working fluid at a sufficient pressure to the engine. At the same time the compressed gaseous working fluid is provided to the engine, a second working fluid that is liquid at ambient temperatures is provided to a heater to be heated. The second working fluid is heated to its boiling point and converted to pressurized gas form. Once the pressure is increased to a sufficient level, the second working fluid is injected into the engine to generate power, and the supply of the first working fluid may be stopped. After expansion in the engine, the working fluids are is exhausted from the engine, and the second working fluid may be condensed for separation from the first working fluid. The initial compressed fluid is recompressed for later use.
    Type: Application
    Filed: June 28, 2010
    Publication date: February 10, 2011
    Inventors: Michael Jeffrey Brookman, Douglas M. Read, Michael Anthony Cocuzza
  • Publication number: 20110016863
    Abstract: A thermodynamic system for waste heat recovery, using an organic rankine cycle is provided which employs a single organic heat transferring fluid to recover heat energy from two waste heat streams having differing waste heat temperatures. Separate high and low temperature boilers provide high and low pressure vapor streams that are routed into an integrated turbine assembly having dual turbines mounted on a common shaft. Each turbine is appropriately sized for the pressure ratio of each stream.
    Type: Application
    Filed: July 23, 2009
    Publication date: January 27, 2011
    Applicant: CUMMINS INTELLECTUAL PROPERTIES, INC.
    Inventor: Timothy C. ERNST
  • Publication number: 20110011079
    Abstract: A Stirling cycle machine. The machine includes at least one rocking drive mechanism which includes: a rocking beam having a rocker pivot, at least one cylinder and at least one piston. The piston is housed within a respective cylinder and is capable of substantially linearly reciprocating within the respective cylinder. Also, the drive mechanism includes at least one coupling assembly having a proximal end and a distal end. The linear motion of the piston is converted to rotary motion of the rocking beam. Also, a crankcase housing the rocking beam and housing a first portion of the coupling assembly is included. The machine also includes a working space housing the at least one cylinder, the at least one piston and a second portion of the coupling assembly. An airlock is included between the workspace and the crankcase and a seal is included for sealing the workspace from the airlock and crankcase.
    Type: Application
    Filed: July 1, 2010
    Publication date: January 20, 2011
    Applicant: New Power Concepts LLC
    Inventors: Dean Kamen, Christopher C. Langenfeld, Prashant Bhat, Michael G. Norris, Stanley B. Smith, III, Christopher M. Werner
  • Publication number: 20100327587
    Abstract: A fuel gas generator includes: a combustion chamber generating thermal energy through combustion of air and fuel gas therein, and supplying the thermal energy to a thermal engine such that the thermal engine is driven to generate kinetic energy that is converted into electrical energy by an electric generator; a temperature sensor for generating a sensing signal indicative of a temperature in the combustion chamber; and a controller for controlling a flow valve coupled to the combustion chamber based on the sensing signal such that the flow valve is switched to an OFF state upon detecting that the temperature is higher than a first temperature, thereby supplying the air and the fuel gas to the combustion chamber therethrough, and to an OFF-state upon detecting that the temperature is lower than a second temperature lower than the first temperature, thereby ceasing supply of the air and the fuel gas to the combustion chamber.
    Type: Application
    Filed: December 16, 2009
    Publication date: December 30, 2010
    Inventor: Chin-Kuang LUO
  • Patent number: 7827793
    Abstract: To provide a power generation system that prevents a reduction in the efficiency of a steam turbine due to an aperture adjustment of a turbine governing valve. There is provided a power generation system comprising: a furnace in which a solid fuel or a liquid fuel is combusted; a steam turbine that generates electric power by rotating a turbine rotor using steam generated by the furnace; a superheater that is provided between the furnace and the steam turbine and that superheats the steam; a first steam piping that connects the furnace to the superheater; a second steam piping that connects the superheater to the steam turbine; a first valve provided in the first steam piping; a turbine governing valve provided in the second steam piping; and a control section that adjusts an aperture of the first valve according to a load of the steam turbine.
    Type: Grant
    Filed: November 19, 2007
    Date of Patent: November 9, 2010
    Assignees: The Tokyo Electric Power Company, Incorporated, Mitsubishi Heavy Industries, Ltd.
    Inventors: Ikuo Onaka, Yoshiaki Kouno, Toshiki Matsuoka, Taishi Muraki
  • Patent number: 7805941
    Abstract: The invention relates to a method for starting a steam turbine installation which comprises at least one steam turbine and at least one steam-generating installation for generating steam for driving the steam turbines, the steam turbine installation having at least one casing component, which has an initial starting temperature of more than 250° C., the temperature of the steam and of the casing component being continually measured, and the casing component of the steam turbine installation being supplied with steam from the starting time point onwards. The starting temperature of the steam is lower than the temperature of the casing component and the temperature of the steam is increased with a start transient and the staring temperature is chosen such that the change in temperature per unit of time of the casing component lies below a predefined limit. The temperature of the casing component initially decreases, until a minimum is reached and then increases.
    Type: Grant
    Filed: June 13, 2006
    Date of Patent: October 5, 2010
    Assignee: Siemens Aktiengesellschaft
    Inventors: Edwin Gobrecht, Rainer Quinkertz
  • Publication number: 20100236241
    Abstract: A heat recovery steam generation system is provided. The heat recovery steam generation system includes at least one superheater in a steam path for receiving a steam flow and configured to produce a superheated steam flow. The system also includes an inter-stage attemperator for injecting an attemperation fluid into the steam path. The system further includes a control valve coupled to the inter-stage attemperator. The control valve is configured to control flow of attemperation fluid to the inter stage attemperator. The system also includes a controller coupled to the control valve and the inter-stage attemperator. The controller further includes a feedforward controller and a trimming feedback controller.
    Type: Application
    Filed: March 23, 2009
    Publication date: September 23, 2010
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Rajeeva Kumar, Karl Dean Minto, William Forrester Seely, William George Carberg, Peter Paul Polukort
  • Patent number: 7797938
    Abstract: An energy recovery system is provided having a fluid configured to absorb and convey thermal energy. The system also has an exhaust treatment device cooling system configured to transmit thermal energy from an exhaust treatment device to the fluid. In addition, the system has a turbine that is driven by the fluid configured to convert at least a portion of the thermal energy to mechanical energy. The system further has a generator that is powered by the turbine configured to convert at least a portion of the mechanical energy to electrical energy.
    Type: Grant
    Filed: July 31, 2007
    Date of Patent: September 21, 2010
    Assignee: Caterpillar Inc
    Inventor: Victoriano Ruiz
  • Patent number: 7784280
    Abstract: In an engine having at least one cylinder with a reciprocating piston and a connecting rod for driving rotation of a crank disk and a crankshaft, a cam sleeve is moved along the crankshaft in response to a change in engine speed. The cam sleeve is coupled to a cam ring that moves with the cam sleeve and in a spiraling motion about the longitudinal axis of the crankshaft. A follower engages an outer face of the cam ring and is movable against a push rod that opens an injector valve. The follower is structured and disposed to move in response to contact with a lobe on the outer face of the cam ring to urge the push rod against the injector valve.
    Type: Grant
    Filed: April 12, 2007
    Date of Patent: August 31, 2010
    Assignee: Cyclone Power Technologies, Inc.
    Inventor: Harry Schoell
  • Patent number: 7784279
    Abstract: A steam valve has: a valve casing; a valve seat; a main valve body slidable to abut to or to detach from the valve seat; a bypass valve body slidably disposed in the main valve body; a cylindrical flow guide surrounding the annular wall of the bypass valve body; and a strainer surrounding the main valve body and the flow guide. The bypass valve body has a steam passage and the annular wall that protrudes out of the main valve body when the bypass valve body is in an open position. The annular wall has steam inlet ports. The flow guide guides steam from outside to flow through a space between the annular wall and the flow guide so as to admit steam into the steam passage in the bypass valve body through whole peripheral part of the annular wall.
    Type: Grant
    Filed: October 4, 2007
    Date of Patent: August 31, 2010
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Osamu Shindo
  • Publication number: 20100205967
    Abstract: In certain embodiments, a system includes an air heating system. The air heating system is configured to heat air with waste heat generated by a waste heat source external to a turbine engine. The air heating system is also configured to deliver the heated air to a compressor of the turbine engine.
    Type: Application
    Filed: February 16, 2009
    Publication date: August 19, 2010
    Applicant: General Electric Company
    Inventors: Vinod Kumar Baikampady Gopalkrishna, Aslam Basha, Shivaprasad Lokanath, Rajarshi Saha, Indrajit Mazumder
  • Publication number: 20100199672
    Abstract: A method of substantially preventing contaminants from entering a condenser adapted for use within a steam generating system. A condenser is provided. Steam or a combination of water and steam is passed into the condenser, the condenser operating in a normal mode a pressure in a control area is equal to or greater than a predefined pressure and in a non-normal mode if the pressure in the control area is less than the predefined pressure. An inert gas is injected into the condenser if a pressure in the control area is less than a holding pressure, the holding pressure being equal to or greater than the predefined pressure.
    Type: Application
    Filed: February 6, 2009
    Publication date: August 12, 2010
    Applicant: SIEMENS ENERGY, INC.
    Inventor: James C. Bellows
  • Publication number: 20100175378
    Abstract: A method and apparatus are disclosed for alleviating the problem of windage heating when flow, in a turbine running at full speed, no load, decreases greatly at the exhaust of the high pressure sections of the turbine. Valves connecting the different pressure levels of a heat recovery steam generator to the input of the turbine are adjusted to mix steam coming from the different pressure levels to create desired steam conditions at the inlet and the exhaust output of the turbine that allow the use of existing steam path hardware and thereby reduce the cost of such piping. In an alternative embodiment for a single pressure HRSG, high pressure saturated steam is extracted from the HSRG evaporator and then flashed into superheated steam when passing thru a control valve, that is then used to create the desired steam conditions at the inlet and the exhaust output of the turbine.
    Type: Application
    Filed: January 13, 2009
    Publication date: July 15, 2010
    Applicant: General Electric Company
    Inventors: Karen J. Tyler, Nestor Hernandez
  • Publication number: 20100162721
    Abstract: An external steam turbine main steam startup control valve bypass loop is provided to facilitate a full pressure combined cycle rapid response/fast start powerplant. The main steam startup bypass control loop particularly includes a main steam startup bypass control valve, which allows for the implementation of high efficiency, low pressure drop main steam control valve that otherwise would not be able to handle the severe throttling duty during a full pressure steam turbine startup and enhances the controllability of the steam turbine allowing for the high fidelity controls necessary to minimize steam turbine rotor stresses.
    Type: Application
    Filed: December 31, 2008
    Publication date: July 1, 2010
    Inventors: David E. Welch, Dileep Sathyanarayana, James C. Mondello, Edward L. Kudlacik
  • Publication number: 20090320477
    Abstract: A system for controlled recovery of thermal energy and conversion to mechanical energy. The system collects thermal energy from a reciprocating engine (for example, from engine jacket fluid) and may also collect further thermal energy from a natural gas compressor (for example, from compressor lubricating fluid). The collected thermal energy is used to generate secondary power by evaporating an organic propellant and using the gaseous propellant to drive an expander in production of mechanical energy. Secondary power is used to power parasitic loads, improving energy efficiency of the system. A supplementary cooler may provide additional cooling capacity without compromising system energy efficiency.
    Type: Application
    Filed: September 4, 2009
    Publication date: December 31, 2009
    Inventor: Victor Juchymenko
  • Publication number: 20090293478
    Abstract: A condenser that restrains fluctuations in the condenser vacuum in a power generating installation. In particular, the condenser has a circulating path through which cooling water flows; a tube nest for condensing steam from a steam turbine with the cooling water; and a discharge path. Additionally, a bypass tube; a control valve for controlling the flow rate of the cooling water supplied from the circulating path to the discharge path; a recirculating path; and a booster pump that controls the flow rate of the cooling water are provided. One of the temperature, the flow rate and both the temperature and the flow rate of the cooling water to flow through the two tube nests is deviated from the temperature and the flow rate of the cooling water on the upstream side of the circulating path using the control valve and booster pump.
    Type: Application
    Filed: May 19, 2009
    Publication date: December 3, 2009
    Applicant: HITACHI, LTD.
    Inventors: Fumio TAKAHASHI, Akihito SUZUKI, Yasuyuki KAWASATO, Shuuichi IMAZU
  • Publication number: 20090288416
    Abstract: The present invention provides a turbine system which can start a turbine, while controlling thermal stress generated in a turbine rotor and an expansion difference, due to thermal expansion, between a casing and the turbine rotor, to be lower than defined values, respectively. The turbine system (1) according to the present invention includes the turbine (4) having a casing (2) and the turbine rotor (3) rotatably attached to the casing (2), and a main steam pipe (5) connected to an upstream portion of the casing (2). A control valve (6) adapted for controlling a flow rate of steam discharging into the casing (2) is provided with the main steam pipe (5), and a power generator (7) is coupled with the turbine rotor (3). Additionally, a starting control system (10) is adapted for controlling the control valve (6), while obtaining an operational amount of the control valve (6).
    Type: Application
    Filed: May 20, 2009
    Publication date: November 26, 2009
    Inventors: Shigeru MATSUMOTO, Koji YAKUSHI, Asako INOMATA, Eiji NAKAGAWA
  • Publication number: 20090288414
    Abstract: In a steam system having a turbine driven by steam supplied from a high-pressure header to a low-pressure header, when the pressure in the low-pressure header drops, a turbine bypass valve is opened and the high-pressure side steam is supplied to the low-pressure side header in a normal control. When the turbine is tripped, steam is rapidly flow into the low-pressure side header and its pressure temporally increases. the steam in the low-pressure header is discharged through a discharge valve. After that, if a steam supply from the low-pressure header to another process increases, the discharge valve is closed. After the discharge valve is fully closed, an after-trip control is performed in which the opening of the turbine bypass valve is increased at an earlier timing than the normal control for preventing the steam amount in the low-pressure header to be too small. The control stability of the steam system when the turbine is tripped can be enhanced.
    Type: Application
    Filed: February 14, 2008
    Publication date: November 26, 2009
    Applicant: MITSUBISHI HEAVY INDUSTRIES, LTD.
    Inventors: Kazuko Takeshita, Susumu Kouno, Haruaki Hirayama, Naohiko Ishibashi, Yosuke Nakagawa
  • Publication number: 20090223223
    Abstract: In a steam engine having multiple main containers, first and second communication pipes are arranged in parallel to each other for respectively communication an auxiliary container with the main containers. Restricted portions and a first switching device are formed in the first communication pipe. The first communication pipe is closed during a start-up step of a starting operation of the engine, in order to prevent that an excess amount of working fluid may flow back from the auxiliary container to the main containers. As a result, a start-up time can be reduced.
    Type: Application
    Filed: January 15, 2009
    Publication date: September 10, 2009
    Applicant: DENSO CORPORATION
    Inventors: Shuzo Oda, Shinichi Yatsuzuka, Yasunori Niiyama, Takashi Kaneko
  • Publication number: 20090223222
    Abstract: An external combustion engine comprising a pipe-shaped main container in which a working fluid is sealed flowably in a liquid state, a heated part formed at a location of one end of the main container and heating part of the working fluid in the main container in order to make it evaporate, a cooled part formed at a location next to the heated part toward the other end of the main container and cooling the vapor of the working fluid evaporated at the heated part in order to make it condense, an output unit communicated with the other end of the main container and converting the displacement of the liquid phase part of the working fluid to mechanical energy for output, and a controller alternately performing a heat storage mode making displacement of the liquid phase part of the working fluid stop in order to make the heated part store heat and an output mode allowing displacement of the liquid phase part of the working fluid and taking output from the output unit.
    Type: Application
    Filed: January 19, 2009
    Publication date: September 10, 2009
    Applicant: DENSO CORPORATION
    Inventors: Shuzo Oda, Shinichi Yatsuzuka, Yasunori Niiyama, Takashi Kaneko, Mamoru Shimoda
  • Publication number: 20090217665
    Abstract: A method of operating a steam turbine in a combined-cycle power system is provided. The method includes channeling a first amount of steam from a first steam generator to the steam turbine to facilitate powering the steam turbine, generating a second amount of steam within a second steam generator that is coupled in flow communication with the steam turbine, and calculating a predicted stress level within the steam turbine in the event the second amount of steam is channeled from the second steam generator into the steam turbine. An initiation time at which to channel the second amount of steam into the steam turbine is determined such that the calculated predicted stress level will not exceed a predetermined stress limit of the steam turbine. The second amount of steam is automatically channeled from the second steam generator to the steam turbine at the determined initiation time.
    Type: Application
    Filed: February 29, 2008
    Publication date: September 3, 2009
    Inventors: Daniel Francis Holzhauer, Fernando Javier D'Amato
  • Publication number: 20090151356
    Abstract: A control system includes a temperature sensor communicatively coupled to an exit of an expander of an expansion system and configured to detect temperature of the working fluid flowing through the exit of the expander. A pressure sensor is communicatively coupled to the exit of the expander and configured to detect pressure of the working fluid flowing through the exit of the expander. A controller is configured to receive output signals from the temperature sensor and the pressure sensor and control operation of one or more components of the expansion system so as to control the thermodynamic conditions at the exit of the expander while driving a quality of vapor of the working fluid at the exit of the expander towards a predetermined degree of superheat.
    Type: Application
    Filed: December 14, 2007
    Publication date: June 18, 2009
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Gabor Ast, Michael Adam Bartlett, Thomas Johannes Frey, Herbert Kopecek, Helge Burghard Herwig Klockow, Matthew Alexander Lehar
  • Patent number: 7533530
    Abstract: An engine comprising a detonation chamber in thermal communication with a tank, a fuel system connected to the chamber, and a controller wherein energy from fuel detonations in the chamber is transferred to a fluid in the tank. By rapidly transferring the energy from the chamber, the detonation produces little or no toxic by-products. The fluid in the tank is energized to provide power for a wide range of machines from large equipment to small appliances.
    Type: Grant
    Filed: January 19, 2007
    Date of Patent: May 19, 2009
    Inventor: Geoffrey B. Courtright
  • Publication number: 20090107144
    Abstract: A method of generating power from a heat source, said method including: compressing (10) a working fluid to increase its temperature; exchanging (11) heat between said working fluid and said heat source to superheat said working fluid; expanding (12) said superheated working fluid to drive a turbine, thereby reducing its temperature; condensing (13) said working fluid to further reduce its temperature: and returning said working fluid to said compressing step (10), the method further including the step (14) of regenerating the heat of said working fluid wherein working fluid passing between said compressing step (10) and said heat exchanging step (11) exchanges heat with working fluid passing between said expanding step (12) and said condensing step (13); wherein said steps are performed in a thermodynamic cycle (S1-S1?-S2-S3-S3?-S4) within a supercritical region (SC) above the saturation dome (A) of said working fluid, and wherein said heat regenerating step (14) is performed under isenthalpic conditions to
    Type: Application
    Filed: May 14, 2007
    Publication date: April 30, 2009
    Applicant: NEWCASTLE INNOVATION LIMITED
    Inventors: Behdad Moghtaderi, Elham Doroodchi
  • Publication number: 20090094982
    Abstract: The invention relates to a power station comprising a condenser installation (2) for the condensation of water vapour, said condenser installation being mounted on a supporting structure (8) and comprising heat exchanger elements (5) past which cooling air flows from below. The condenser installation (2) is arranged in such a way that a longitudinal side thereof is directly adjacent to a building structure of the power station (1). A turbine house (3) comprises at least one wind passage (6) through which cooling air flows and/or is sucked beneath the heat exchanger elements (5).
    Type: Application
    Filed: March 13, 2007
    Publication date: April 16, 2009
    Applicant: GEA Energietechnik GmbH
    Inventor: Heinrich Schulze