Including Plural Distinct Boilers, Heat Supplies Or External Sources Of Vapor Patents (Class 60/676)
  • Publication number: 20120255301
    Abstract: A system and process is provided for generating power from a syngas fermentation process. The process includes contacting hot syngas having a temperature above about 1400° F. with cooled syngas to produce a pre-cooled syngas having a temperature of 1400° F. or less at an inlet of a waste heat boiler. A waste heat boiler receives the pre-cooled syngas and is effective for producing waste heat boiler high pressure steam and a cooled syngas.
    Type: Application
    Filed: December 13, 2011
    Publication date: October 11, 2012
    Inventors: Peter S. Bell, Kim Ocfemia, Stephen John Benstead, Graeme Parker
  • Publication number: 20120255306
    Abstract: A carbon dioxide recovery system includes a high-pressure turbine 11, an intermediate-pressure turbine 12, a low-pressure turbine 13, a main boiler 15 that generates steam 14 for driving these turbines, a carbon dioxide recovery unit 24 including a carbon dioxide absorber 21 that absorbs and reduces carbon dioxide in flue gas (emission gas) G emitted from the main boiler 15 using a carbon dioxide absorbent and an absorbent regenerator 23 that regenerates a carbon dioxide absorbent having absorbed the carbon dioxide using a regenerating superheater 22 to obtain a regenerated carbon dioxide absorbent, an auxiliary boiler 30 that generates saturated water vapor 31 to be supplied to the regenerating superheater 22 in the absorbent regenerator 23, and a steam turbine 32 that is driven by steam from the auxiliary boiler 30.
    Type: Application
    Filed: April 2, 2012
    Publication date: October 11, 2012
    Applicant: MITSUBISHI HEAVY INDUSTRIES, LTD.
    Inventor: Masaki Iijima
  • Publication number: 20120247103
    Abstract: The present invention relates to systems and methods for controlling the flow of steam provided to a gas recovery unit 130 based on changes to steam flow to and/or power generated by a power generation unit 119. The gas recovery unit 130 may be part of a thermal power generation unit and may be an amine based CO2 recovery unit including two or more regenerator columns 153.
    Type: Application
    Filed: February 14, 2012
    Publication date: October 4, 2012
    Applicant: ALSTOM TECHNOLOGY LTD.
    Inventors: Nareshkumar B. HANDAGAMA, Rasesh R. KOTDAWALA, Jacques MARCHAND, Vikram SHABDE
  • Publication number: 20120242090
    Abstract: A hybrid solar power plant includes a first circuit including a first flow medium and a second circuit including a second flow medium. The first circuit includes at least one solar collector to transfer collected solar heat to the first flow medium. The first circuit includes at least one first fluid/second fluid heat exchanger to exchange heat from the first flow medium in the first circuit to the second flow medium in the second circuit. The second circuit is preferably a water/steam circuit. The second circuit includes at least one steam turbine for generating electricity out of steam. The first circuit further includes a heat source for generating a flow of heating gas. The heat source serves as the auxiliary energy. A gas/first fluid heat exchanger is provided for transferring heat from the flow of heating gas to the first flow medium in the first circuit.
    Type: Application
    Filed: December 14, 2010
    Publication date: September 27, 2012
    Applicant: NEM ENERGY B.V.
    Inventor: Peter Simon Rop
  • Publication number: 20120240589
    Abstract: According to one embodiment, there is provided a power plant operating method. The method includes calculating by a turbine output calculating unit a turbine output based on an exponential value of a steam pressure measured at an arbitrary point downstream from the repeater, calculating by a power generator output calculating unit a power generator output generated by the power generator, detecting by an output deviation detecting unit a deviation between the turbine output and the power generator output, detecting by a power load unbalance detecting unit power load unbalance when the deviation exceeds a preset value, and outputting by a control unit a rapid close command to regulator valves of the steam turbine when the power load unbalance is detected.
    Type: Application
    Filed: March 21, 2012
    Publication date: September 27, 2012
    Inventors: Manabu TATEISHI, Takahiro MORI, Masayuki TOBO, Kouichi KITAGUCHI
  • Publication number: 20120240579
    Abstract: According to one embodiment, a carbon-dioxide-recovery-type thermal power generation system includes an absorption column allows carbon dioxide contained in exhaust gas from a boiler to be absorbed in an absorption liquid, a regeneration column that discharges a carbon dioxide gas from the absorption liquid supplied from the absorption column, a reboiler that heats the absorption liquid discharged from the regeneration column and supplies steam generated, to the regeneration column, a condenser that generates condensate by cooling the steam exhausted from a turbine, a heater that heats the condensate, a water supply pump that supplies the condensate to the boiler, a line through the steam extracted from the turbine is supplied to the reboiler and the heater, and a steam flow rate adjusting unit. The steam flow rate adjusting unit maintains an amount of steam, which is extracted from the turbine through the line, to be constant.
    Type: Application
    Filed: October 27, 2011
    Publication date: September 27, 2012
    Applicant: Kabushiki Kaisha Toshiba
    Inventors: Haruhiko Hirata, Hideo Kitamura, Takashi Ogawa, Yukio Ohashi
  • Publication number: 20120227406
    Abstract: A thermal power plant includes a boiler for burning fossil fuel to generate steam, a steam turbine including a high-pressure turbine, an intermediate-pressure turbine, and a low-pressure turbine which are driven by steam generated in the boiler, an absorber for absorbing and capturing CO2 contained in boiler exhaust gas discharged from the boiler in an absorbing liquid, a desorber for circulating the absorbing liquid between the desorber and the absorber and separating CO2 from the absorbing liquid that has absorbed CO2, a reboiler for feeding a heating source for separating CO2 from the absorbing liquid to the desorber, a steam pipe system for feeding steam taken out from the high-pressure turbine and the intermediate-pressure turbine to the reboiler, and a steam feed source switching device.
    Type: Application
    Filed: January 5, 2012
    Publication date: September 13, 2012
    Applicant: Hitachi, Ltd.
    Inventors: Tetsuya KOSAKA, Nobuyoshi Mishima, Takashi Sugiura
  • Publication number: 20120227404
    Abstract: The invention relates to a thermodynamic machine having a circulation system in which a working fluid, in particular a low-boiling working fluid, circulates alternately in a gaseous and a liquid phase, a heat exchanger, an expansion machine, a condenser, and a fluid pump. The invention also relates to a method for operating the thermodynamic machine. According to certain embodiments of the invention, in the flow line of the fluid pump, a partial pressure increasing the system pressure is applied to the liquid working fluid by adding a non-condensing auxiliary gas. Compact ORC machines can be implemented, preventing cavitation in the liquid working fluid.
    Type: Application
    Filed: October 30, 2010
    Publication date: September 13, 2012
    Applicant: Orcan Energy GmbH
    Inventors: Andreas Schuster, Andreas Sichert, Richard Aumann
  • Publication number: 20120216539
    Abstract: A boiler system for producing steam from water includes a plurality of serially arranged oxy fuel boilers. Each boiler has an inlet in flow communication with a plurality of tubes. The tubes of each boiler form at least one water wall. Each of the boilers is configured to substantially prevent the introduction of air. Each boiler includes an oxy fuel combustion system including an oxygen supply for supplying oxygen having a purity of greater than 21 percent, a carbon based fuel supply for supplying a carbon based fuel and at least one oxy-fuel burner system for feeding the oxygen and the carbon based fuel into its respective boiler in a near stoichiometric proportion. The oxy fuel system is configured to limit an excess of either the oxygen or the carbon based fuel to a predetermined tolerance. The boiler tubes of each boiler are configured for direct, radiant energy exposure for energy transfer. Each of the boilers is independent of each of the other boilers.
    Type: Application
    Filed: December 22, 2011
    Publication date: August 30, 2012
    Applicant: Jupiter Oxygen Corporation
    Inventors: Brian R. Patrick, Tom L. Ochs, Danylo B. Oryschyn, Cathy A. Summers
  • Publication number: 20120198847
    Abstract: Systems and methods of integrating plasma waste processing are described. An integrated energy generation system provided with a fossil fuel power plant system having a combustion chamber and a plasma waste processing system having an output. The integrated energy generation system also including an integrator for combining the output of thermal energy from the plasma waste processing system with the combustion chamber of the fossil fuel power plant.
    Type: Application
    Filed: April 17, 2012
    Publication date: August 9, 2012
    Applicant: Applied Plasma Arc Technologies, LLC
    Inventors: Louis J. Circeo, Robert C Martin, JR., Michael S. Smith, Kevin C. Caravati
  • Publication number: 20120192564
    Abstract: A thermal power plant includes carbon dioxide capture scrubbing equipment that suppresses reductions in the efficiency and output of a steam turbine, and, at the same time, reduces variations in the amount of steam supplied from a solar heat collection apparatus to a reboiler and variations in the temperature and pressure of reboiler generated steam, and stably carries out reactions for separating carbon dioxide from an absorbent by heating. The thermal power plant includes the carbon dioxide capture scrubbing equipment for capturing carbon dioxide from a boiler exhaust gas and the solar heat collection apparatus. Steam generated by the solar heat collection apparatus is supplied to the reboiler provided for a regeneration tower of the carbon dioxide capture scrubbing equipment.
    Type: Application
    Filed: January 30, 2012
    Publication date: August 2, 2012
    Applicant: Hitachi, Ltd.
    Inventors: Nobuyoshi Mishima, Takashi Sugiura, Toshihiko Sakakura
  • Publication number: 20120186252
    Abstract: A method is provided for generating and distributing electricity via an electrical grid, wherein a fossil fuel plant and a renewable energy electricity generating station are interconnected with the electrical grid and are both operable to generate electricity output. The electricity output is directed from both the fossil fuel plant and the renewable energy electricity generating station to the electrical grid for distribution. Then, at the fossil fuel plant, at least a portion of the electricity output is directed to within the plant and utilized in generating hydrogen. The method provides further a reacting step wherein the generated hydrogen reacts with carbon dioxide to produce methane. Continued operation of the fossil fuel plant is conducted utilizing the produced methane as fuel, to generate electricity output, and also, capturing carbon dioxide exhaust and utilizing it in the reacting step.
    Type: Application
    Filed: February 20, 2012
    Publication date: July 26, 2012
    Inventor: Eric Schmidt
  • Publication number: 20120167568
    Abstract: A steam power plant including a number of partial turbines is provided. Each partial turbine is permeated by steam, an overflow line disposed between a first partial turbine and a second partial turbine and an intermediate superheater in the overflow line. A bleeder line for extracting steam is thereby fluidically connected to the first partial turbine after the expansion stage, prior to the intermediate superheater. An expansion device is further provided, into which the bleeder line opens, and a consumer is connected via a process steam line of the expansion device.
    Type: Application
    Filed: September 17, 2010
    Publication date: July 5, 2012
    Inventors: Carsten Graeber, Georg Haberberger, Michael Wechsung
  • Publication number: 20120151917
    Abstract: The invention relates to a method and to a steam power plant, wherein solar energy can be very flexibly and very efficiently coupled into the water steam circuit of the steam power plant.
    Type: Application
    Filed: February 19, 2010
    Publication date: June 21, 2012
    Inventors: Bjoern Ungerer, Ewald Kitzmann, Volker Schuele
  • Patent number: 8201408
    Abstract: A sustainable closed loop system with zero waste for cogeneration of electric and thermal energy using woodfuel from a closeby energy plantation of quick growing trees such as Gliricidia Sepium. In addition to the energy plantation sub-system, the system includes a biomass fuel preparing sub-system and a steam and power generation sub-system for use with a biological wastewater treatment sub-system. No chemicals are used for wastewater treatment.
    Type: Grant
    Filed: October 11, 2010
    Date of Patent: June 19, 2012
    Inventor: Jose A. Sepulveda
  • Publication number: 20120117969
    Abstract: A method for operating a hybrid power plant comprising fuel-operated heating and solar energy heating of carrier fluids, wherein a first portion of total power provided by the power plant is based on fuel-operated heating of carrier fluids and a second portion of the total power is based on solar energy heating of carrier fluids, the heat absorbed by a solar energy heated carrier fluid is transferred to a carrier fluid circuit of a fuel-operated part of the power plant. When a sudden increase or reduction of the total power provided by the power plant is required as compared to a basic state, the second portion is first increased or reduced over a short time period in order to provide a positive or negative reserve power. Subsequently, the first portion is slowly increased or reduced and the second portion based on solar energy heating is correspondingly reduced or increased again.
    Type: Application
    Filed: February 24, 2010
    Publication date: May 17, 2012
    Applicant: STEAG Energy Services GmbH
    Inventors: Dirk Neumann, Marcus Kurth, Udo Sommer
  • Patent number: 8171733
    Abstract: A system comprises a first heat recovery steam generator (HRSG) operative to receive steam from a source of steam and output water to the source of steam, a second HRSG operative to receive steam from the source of steam and output water to the source of steam, a first water flow control valve operative to regulate a flow of the water output from the first HRSG to the source of steam, and a second water flow control valve operative to regulate a flow of the water output from the second HRSG to the source of steam.
    Type: Grant
    Filed: April 15, 2009
    Date of Patent: May 8, 2012
    Assignee: General Electric Company
    Inventor: Gordon Raymond Smith
  • Publication number: 20120096865
    Abstract: According to one embodiment, a carbon-dioxide-recovery-type steam power generation system comprises a boiler that produces steam and generates an exhaust gas, a first turbine that is rotationally driven by the steam, an absorption tower allows carbon dioxide contained in the exhaust gas to be absorbed into an absorption liquid, a regeneration tower that discharges the carbon dioxide gas from the absorption liquid supplied from the absorption tower, a condenser that removes moisture from the carbon dioxide gas, discharged from the regeneration tower, by condensing the carbon dioxide gas using cooling water, a compressor that compresses the carbon dioxide gas from which the moisture is removed by the condenser, and a second turbine that drives the compressor. The steam produced by the cooling water recovering the heat from the carbon dioxide gas in the condenser is supplied to the first turbine or the second turbine.
    Type: Application
    Filed: October 21, 2011
    Publication date: April 26, 2012
    Applicant: Kabushiki Kaisha Toshiba
    Inventors: Yuya MURAKAMI, Nobuo OKITA, Takeo TAKAHASHI, Mikio TAKAYANAGI, Takeo SUGA, Takeshi SASANUMA, Toshihisa KIYOKUNI, Hideo KITAMURA
  • Publication number: 20120085096
    Abstract: Heat recovery systems and methods for producing electrical and/or mechanical power from heat by-product of an overhead stream from a process column are provided. Heat recovery systems and methods include a process heat by-product stream for directly or indirectly heating a working fluid of an organic Rankine cycle. The organic Rankine cycle includes a heat exchanger, a turbine-generator system for producing electrical or mechanical power, a condenser heat exchanger, and a pump for recirculating the working fluid to the heat exchanger.
    Type: Application
    Filed: October 6, 2011
    Publication date: April 12, 2012
    Applicant: Chevron U.S.A. Inc.
    Inventors: John David Penton, Leonore R. Rouse, Jerry M. Rovner
  • Publication number: 20120067049
    Abstract: A power generating system in one embodiment employs a Rankine Cycle system that is coupled to multiple heat sources. The Rankine cycle system includes a customized working fluid that comprises a mixture of a plurality of constituent fluids, the selection of which causes the mixture to exhibit a working fluid profile. In one embodiment, the working fluid profile includes a temperature glide portion selected and optimized based on operating conditions of the heat sources, wherein the temperature glide portion includes a constituent phase point at which one of the constituent fluids undergoes a phase change before the other constituent fluids of the mixture.
    Type: Application
    Filed: September 17, 2010
    Publication date: March 22, 2012
    Applicant: United Technologies Corporation
    Inventors: Lance D. Woolley, Sean P. Breen, Ahmad M. Mahmoud
  • Patent number: 8110012
    Abstract: In a retrofit system for hot solids combustion and gasification, a chemical looping system includes an endothermic reducer reactor 12 having at least one materials inlet 22 for introducing carbonaceous fuel and CaCO3 therein and a CaS/gas outlet 26. A first CaS inlet 40 and a first CaSO4 inlet 64 are also defined by the reducer reactor 12. An oxidizer reactor 14 is provided and includes an air inlet 68, a CaSO4/gas outlet 46, a second CaS inlet 44, and a second CaSO4 inlet 66. A first separator 30 is in fluid communication with the CaS/gas outlet 26 and includes a product gas and a CaS/gas outlet 32 and 34 from which CaS is introduced into said first and second CaS inlets. A second separator 50 is in fluid communication with the CaSO4/gas outlet 46 and has an outlet 52 for discharging gas therefrom, and a CaSO4 outlet from which CaSO4 is introduced into the first and second CaSO4 inlets 62, 66.
    Type: Grant
    Filed: July 31, 2009
    Date of Patent: February 7, 2012
    Assignee: ALSTOM Technology Ltd
    Inventors: John H. Chiu, Herbert E. Andrus, Gregory N. Liljedahl, Paul R. Thibeault
  • Patent number: 8109097
    Abstract: A high efficiency combined cycle internal combustion and steam engine includes a cylinder with a combustion chamber outward of a piston, a cylinder cap slideably mounted within the piston and a steam expansion chamber inside the piston. The cap can be heated to reduce condensation of steam. Steam remaining when a steam exhaust valve closes can be recompressed prior to admitting the next charge of steam. One valve or a pair of steam inlet valves connected in series act in cooperation to help maximize efficiency. The amount of steam admitted each stroke is regulated by shifting the phase of one steam admission valve of a pair to vary their overlap for determining the steam mass admitted each cycle. Other valves balance steam displacement with the steam generator output to use steam more efficiently.
    Type: Grant
    Filed: April 28, 2009
    Date of Patent: February 7, 2012
    Assignee: Thermal Power Recovery, LLC
    Inventors: James V. Harmon, Sr., James V. Harmon, Jr., Stephen C. Harmon
  • Publication number: 20120023944
    Abstract: A device for phase separating a multi-phase fluid flow has a housing configured substantially rotationally symmetrically about a center axis and encloses a hollow space, at least one in-feed line for the fluid flow configured for inflow of the fluid flow directed substantially tangentially to an interior of the housing, and at least one outlet line for the separated gaseous portion of the fluid flow. The device heats the gaseous portion of the fluid flow, such as steam, and requires little material and space. To this end, heating elements configured for heating the gaseous portion are disposed in the hollow space in an annular chamber placed concentrically about the center axis.
    Type: Application
    Filed: March 8, 2010
    Publication date: February 2, 2012
    Applicant: AREVA NP GMBH
    Inventor: Barnaby Bruce
  • Publication number: 20110314818
    Abstract: A pair of organic rankine cycle systems are connected in series with the geothermal fluid passing first through an evaporator of the first system and then through an evaporator of the second system before returning to a sink. Similarly, the cooling tower is arranged to provide cooling water to pass first through the condenser in one system and then through the condenser of the other system, to reduce the total flow required and the size of associated cooling hardware.
    Type: Application
    Filed: August 4, 2008
    Publication date: December 29, 2011
    Applicant: United Technologies Corporation
    Inventors: Sean P. Breen, Shawn T. Collins, Lance D. Woolley
  • Patent number: 8061140
    Abstract: A high efficiency combined cycle internal combustion and steam engine includes a cylinder and a piston with an internal combustion chamber outward of the piston, a fixed cylinder cap and a steam expansion chamber inside the piston. The cylinder cap can be heated to reduce condensation of steam entering from a steam generator fired by waste combustion heat. Following exhaust, residual steam can be recompressed prior to admitting the next charge of steam. A wrist pin connected to an inner end of the piston skirt inwardly of the cylinder cap is coupled to a connecting rod secured to a crankshaft. One valve or a pair of steam inlet valves are connected to communicate in series within the cylinder cap inside the piston. The steam mass admitted is regulated to reduce fuel consumption. Coolant can be superheated in the combustion exhaust manifold.
    Type: Grant
    Filed: August 12, 2009
    Date of Patent: November 22, 2011
    Assignee: Thermal Power Recovery LLC
    Inventor: James V. Harmon, Sr.
  • Patent number: 8051637
    Abstract: A heat absorbing radiator and a gas turbine engine or a reciprocating piston engine are used to recapture and reconvert wasted heat energies into electric power and finally into hydrogen-deuterium fuel by having the engine's tailpipes submerged in cold compressed air inside the heat absorbing radiator pipes in reverse air flow to further drive the same engine. In order to capture fusion heat energy a hydrogen bomb is detonated in deep ocean to catch the flames by the water and the hot water energizes compressed air inside heat absorbing radiator pipes. In order to produce fusion energy an electric arc is passed thru/across liquid or gaseous deuterium by an electro-plasma torch and by a sparkplug in an internal combustion engine, or by detonating a dynamite inside liquid deuterium. Diamond is produced by placing carbon inside a hydrogen bomb which is then detonated in deepwater. Deuterium fusion flame is used first in smelting glass into large structural sizes before running an engine.
    Type: Grant
    Filed: July 27, 2005
    Date of Patent: November 8, 2011
    Inventor: Gaudencio Aquino Labrador
  • Publication number: 20110265474
    Abstract: A system reclaiming contaminated water includes a heat exchanger that receives the contaminated water and converts at least a portion of the contaminated water into steam and collects at least a portion of the contaminants within the heat exchanger. A thermal transfer fluid is heated by a heat exchanger is communication with a heat source. The heated fluid is circulated through the heat exchanger to heat the contaminated water. A steam engine is coupled to a generator, the steam engine receives the steam from the heat exchanger to drive the generator to provide power for the system. Steam exhausted from the steam engine is supplied to supplemental heat loads and then condensed in a modular condensing system. The collected contaminants are directed to an evaporation device to remove residual liquid.
    Type: Application
    Filed: July 13, 2011
    Publication date: November 3, 2011
    Inventor: Frank Schubert
  • Publication number: 20110265477
    Abstract: A power plant system including a fossil fuel fired power plant (6) for the generation of electricity, a carbon dioxide capture and compression system (5, 13), and an external heat cycle system has at least one heat exchanger (1,2,3) for the heating of the flow medium of the external heat cycle system. The heat exchanger (1,2,3) is connected to a heat flow from the CO2 capture plant (5) or a CO2 compression unit (13). A return flow from the heat exchanger (1,2,3) is led to the CO2 capture and compression system (5,13) or to the power plant (6). The power plant system allows an increase in overall efficiency of the system.
    Type: Application
    Filed: April 25, 2011
    Publication date: November 3, 2011
    Inventors: Paul DROUVOT, Hongtao LI, Jörg DIETZMANN
  • Publication number: 20110247335
    Abstract: A heat recovery steam generator is provided. The heat recovery steam generator includes an exhaust gas inlet for receiving an exhaust gas from a gas turbine. A first superheater is positioned in a flow direction of the exhaust gas. A heating surface is disposed between the exhaust gas inlet and the first superheater. A separator is connected downstream of the heating surface on a secondary side of the heating surface.
    Type: Application
    Filed: November 5, 2009
    Publication date: October 13, 2011
    Inventors: Erich Schmid, Helmut Stierstorfer
  • Publication number: 20110247330
    Abstract: A steam turbine plant of one embodiment includes at least one heater configured to change water into steam to produce high pressure steam and low pressure steam having a lower pressure than the high pressure steam, a high pressure turbine including a turbine or turbines connected to each other in series, and having a first inlet to supply the high pressure steam, a second inlet to supply the low pressure steam and located at a downstream of the first inlet, and an exhaust port located at a downstream of the second inlet, the high pressure turbine being configured to be driven by the steam supplied from the first and second inlets, a reheater configured to heat the steam exhausted from the exhaust port, and a reheat turbine configured to be driven by the steam from the reheater.
    Type: Application
    Filed: April 6, 2011
    Publication date: October 13, 2011
    Inventors: Koichi GOTO, Nobuo Okita
  • Publication number: 20110247331
    Abstract: A steam turbine plant of one embodiment includes a boiler configured to change water into steam, a high pressure turbine including a turbine or turbines connected to each other in series, and having a first inlet to supply the steam from the boiler, an extraction port located at a downstream of the first inlet, a second inlet to supply the steam extracted from the extraction port and located at a downstream of the extraction port, and an exhaust port located at a downstream of the second inlet, the high pressure turbine being configured to be driven by the steam supplied from the first and second inlets, an extraction steam heater configured to heat the steam extracted from the extraction port and to supply the heated steam to the second inlet, a reheater configured to heat the steam exhausted from the exhaust port, and a reheat turbine configured to be driven by the steam from the reheater.
    Type: Application
    Filed: April 6, 2011
    Publication date: October 13, 2011
    Inventors: Koichi GOTO, Nobuo Okita
  • Patent number: 8007729
    Abstract: Hydrocarbon feed to a catalytic reactor can be heat exchanged with flue gas from a catalyst regenerator. This innovation enables recovery of more energy from flue gas thus resulting in a lower flue gas discharge temperature. As a result, other hot hydrocarbon streams conventionally used to preheat hydrocarbon feed can now be used to generate more high pressure steam.
    Type: Grant
    Filed: March 20, 2009
    Date of Patent: August 30, 2011
    Assignee: UOP LLC
    Inventors: Yunbo Liu, Xin X. Zhu, Daniel N. Myers, Patrick D. Walker
  • Patent number: 7997080
    Abstract: A combination internal combustion and steam engine includes a cylinder having a piston mounted for reciprocation therein with an internal combustion chamber and a steam chamber in the cylinder adjacent the piston and at least one steam exhaust port positioned to communicate with the steam chamber through the wall of the cylinder for exhausting steam at a location in the cylinder wall adjacent to an engine cylinder cap surface that is heated externally to assist in reducing chilling or condensation of steam entering the steam chamber from a boiler fired by waste combustion heat. The invention also permits steam admitted from a steam chest jacketing the cylinder cap to be exhausted from the engine when the steam chamber is in an expanded state whereupon residual steam is then recompressed prior to admitting the next charge of steam with the stream in the steam chamber being heated directly by the combustion chamber as well as by heat from the steam chest. An I.C. exhaust powered heater is a part of an I.C.
    Type: Grant
    Filed: March 7, 2008
    Date of Patent: August 16, 2011
    Assignee: Thermal Power Recovery LLC
    Inventors: James V. Harmon, Sr., James V. Harmon, Jr., Stephen C. Harmon
  • Publication number: 20110185732
    Abstract: A steam turbine system including a steam turbine is provided. The steam turbine system includes a high-pressure side steam inlet device, a low-pressure side steam device, and a control device for controlling the steam turbine. An additional steam inlet device is also included arranged between the high-pressure side steam inlet device and the low-pressure side steam device. The control device control a supply of steam via the additional steam inlet device as a function of operating parameters detected at the steam turbine system.
    Type: Application
    Filed: July 16, 2009
    Publication date: August 4, 2011
    Inventors: Jörg Eppendorfer, Bernd Leidinger, Markus Mantei
  • Patent number: 7981835
    Abstract: A system and method for producing activated carbon comprising carbonizing a solid carbonaceous material in a carbonization zone of an activated carbon production apparatus (ACPA) to yield a carbonized product and carbonization product gases, the carbonization zone comprising carbonaceous material inlet, char outlet and carbonization gas outlet; activating the carbonized product via activation with steam in an activation zone of the ACPA to yield activated carbon and activation product gases, the activation zone comprising activated carbon outlet, activation gas outlet, and activation steam inlet; and utilizing process gas comprising at least a portion of the carbonization product gases or a combustion product thereof; at least a portion of the activation product gases or a combustion product thereof; or a combination thereof in a solid fuel boiler system that burns a solid fuel boiler feed with air to produce boiler-produced steam and flue gas, the boiler upstream of an air heater within a steam/electricity g
    Type: Grant
    Filed: May 14, 2008
    Date of Patent: July 19, 2011
    Assignee: Energy & Environmental Research Center Foundation
    Inventors: Srivats Srinivasachar, Steven Benson, Charlene Crocker, Jill Mackenzie
  • Publication number: 20110146278
    Abstract: A power generation plant and a method of generating electric energy from recovered heat during an industrial process that uses steam as a means of transferring energy. The method comprises: a) generating a first saturated steam in a first heat exchanger heated by a first source of recovered heat; b) feeding the first saturated steam into a first steam turbine generator, where the first steam turbine generator outputs exhaust steam; c) removing moisture from the exhaust steam with a moisture separator; d) superheating the moisture reduced exhaust steam from step c) in a main heat exchanger with a heat source; and e) feeding the superheated exhaust steam into a second steam turbine generator. The power generation plant comprises a first source of saturated steam, a first steam turbine generator, a moisture separator, a second source of saturated steam, a heat exchanger and a second steam turbine generator.
    Type: Application
    Filed: June 28, 2010
    Publication date: June 23, 2011
    Applicant: HATCH LTD.
    Inventors: Shimin DENG, Ruairi P. HYNES, William DAVEY
  • Publication number: 20110113781
    Abstract: A method, system, and apparatus including a compressed air energy storage (CAES) system including a compression train with a compressor path, a storage volume configured to store compressed air, a compressed air path configured to provide passage of compressed air egressing from the compression train to the storage volume, and a heat recovery system coupled to at least one of the compressor path and the compressed air path and configured to draw heat from at least one of the compressor path and the compressed air path to a first liquid. The compression train is configured to provide passage of compressed air from a first compressor to a second compressor. The heat recovery system includes a first evaporator configured to evaporate the first liquid to a first gas and a first generator configured to produce electricity based on an expansion of the first gas.
    Type: Application
    Filed: November 13, 2009
    Publication date: May 19, 2011
    Inventors: Thomas Johannes Frey, Matthias Finkenrath, Gabor Ast, Stephanie Marie-Noelle Hoffmann, Matthew Lehar, Richard Aumann
  • Publication number: 20110036096
    Abstract: In an integrated gasification power plant a steam recovery system is provided. The system enables power generation equipment designed for a predominant fuel and operating condition to efficiently utilize additional steam generation by syngas coolers when heat transfer surface condition or fuel characteristics enable additional steam generation. The system can detect excess steam generation, integrate it with the syngas cleaning process and transmit it to the power generation equipment. The system results in a low cost power generation system which is capable of efficiently operating with a wide range of fuels and a wide rang of operating conditions.
    Type: Application
    Filed: August 13, 2009
    Publication date: February 17, 2011
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Sampath Kumar Bommareddy, Douglas Kirk Holland, Charles Michael Jones, Darrin Glen Kirchhof, James Michael Storey, Leroy Omar Tomlinson
  • Publication number: 20110023485
    Abstract: A system reclaiming contaminated water includes a heat exchanger that receives the contaminated water and converts at least a portion of the contaminated water into steam and collects at least a portion of the contaminants within the heat exchanger. A thermal transfer fluid is heated by a solar concentrator during daytime and by a biofuel combustion device during nighttime. The heated fluid is circulated through the heat exchanger to heat the contaminated water. A steam engine is coupled to a generator, the steam engine receives the steam from the heat exchanger to drive the generator to provide power for the system. Steam exhausted from the steam engine is supplied to supplemental heat loads. The collected contaminants are directed to an evaporation device to remove residual liquid.
    Type: Application
    Filed: April 14, 2009
    Publication date: February 3, 2011
    Inventor: Frank Schubert
  • Patent number: 7856823
    Abstract: A pre-heater arrangement in a heat regenerative engine for pre-heating water in its delivery path from a condenser sump to a combustion chamber. The engine includes a steam generator, including the combustion chamber, for producing pressurized steam. The engine further includes at least one piston and cylinder arrangement for receiving the pressurized steam in order to drive the piston within the cylinder, and a condenser for condensing steam to liquid. A conduit formed of a heat transferring material provides the delivery path from the condenser sump to the combustion chamber. The pre-heater arrangement includes at least one exhaust port associated with the cylinder for releasing steam from within the cylinder after driving the piston, and a tubular coil connected to the steam delivery conduit and wound about the cylinder, adjacent to the exhaust port, for transferring heat from the exhausted steam to the water traveling through the coil, thereby heating the water on its delivery path to the steam generator.
    Type: Grant
    Filed: August 24, 2006
    Date of Patent: December 28, 2010
    Assignee: Cyclone Power Technologies, Inc.
    Inventor: Harry Schoell
  • Publication number: 20100146929
    Abstract: The invention relates to a method for increasing the efficiency of a combined gas/steam power station (10) with integrated gasification combined cycle. Said power station comprises a gas turbine compressor (14) and an air-separation unit (18) having a defined working pressure. Compressed air is removed from the gas turbine compressor (14) at a pressure level that is adapted to the working pressure of the air-separation unit (18). The removed air is then supplied to the air-separation unit (18) where the air is broken down into its individual constituents, especially oxygen and nitrogen. The nitrogen produced in the air-separation unit (18) is removed from the air-separation unit and at least a part of the removed nitrogen quantity is used as a coolant in the gas/steam power station in order to improve its efficiency.
    Type: Application
    Filed: July 26, 2006
    Publication date: June 17, 2010
    Inventors: Werner Günster, Erik Wolf, Gerhard Zimmermann
  • Publication number: 20100146972
    Abstract: In a cement burning plant waste heat power generation system, an AQC boiler comprises an economizer, an evaporator and a superheater, and a PH boiler comprises a first evaporator and a superheater. A part of hot water heated by the economizer of the AQC boiler is fed through a flasher to the low pressure stage of a stream turbine, another part is superheated by the evaporator and the superheater of the AQC boiler, and further one part is superheated by the evaporator and the superheater of the PH boiler and these high pressure steams are fed to the high pressure stage of the stream turbine. The PH boiler is provided with a second evaporator on the outlet side of PH waste gas in addition to the evaporator and the superheater, and return hot water of the flasher is introduced into the second evaporator through a steam drum. Hot water heated by the second evaporator is introduced into the steam drum and its steam is fed to the low pressure stage of the stream turbine.
    Type: Application
    Filed: September 18, 2007
    Publication date: June 17, 2010
    Applicant: KAWASAKI PLANT SYSTEMS KABUSHIKI KAISHA
    Inventors: Katsushi Sorita, Tatsuo Ino, Yukihiro Takenaka, Masao Shirai
  • Publication number: 20100139274
    Abstract: Aspects of the present invention are directed to working fluids and their use in processes wherein the working fluids comprise compounds having the structure of formula (I): wherein R1, R2, R3, and R4 are each independently selected from the group consisting of: H, F, Cl, Br, and C1-C6 alkyl, at least C6 aryl, at least C3 cycloalkyl, and C6-C15 alkylaryl optionally substituted with at least one F, Cl, or Br, wherein formula (I) contains at least one F and at least one Cl or Br, provided that if any R is Br, then the compound does not have hydrogen. The working fluids are useful in Rankine cycle systems for efficiently converting waste heat generated from industrial processes, such as electric power generation from fuel cells, into mechanical energy or further to electric power. The working fluids of the invention are also useful in equipment employing other thermal energy conversion processes and cycles.
    Type: Application
    Filed: December 3, 2009
    Publication date: June 10, 2010
    Applicant: HONEYWELL INTERNATIONAL INC.
    Inventors: Gary Zyhowski, Ryan Hulse, Haridasan K. Nair, David Nalewajek, Rajiv R. Singh
  • Patent number: 7727380
    Abstract: Disclosed is a process for combusting dry gas to heat the air supplied to an FCC regenerator to increase its temperature and minimize production of undesirable combustion products. Preferably, the dry gas is a selected FCC product gas. Alternatively or additionally, dry gas from an FCC product stream is separated and delivered to an expander to recover power before combustion.
    Type: Grant
    Filed: August 1, 2007
    Date of Patent: June 1, 2010
    Assignee: UOP LLC
    Inventors: Keith A. Couch, Xin X. Zhu, James P. Glavin
  • Patent number: 7727486
    Abstract: Disclosed is an apparatus for combusting dry gas to heat the air fed to an FCC regenerator to increase its temperature and minimize production of undesirable combustion products. Preferably, the dry gas is a selected FCC product gas. Alternatively or additionally, dry gas from an FCC product stream is separated and delivered to an expander to recover power before combustion.
    Type: Grant
    Filed: August 1, 2007
    Date of Patent: June 1, 2010
    Assignee: UOP LLC
    Inventors: Keith A. Couch, Xin X. Zhu, James P. Glavin
  • Publication number: 20100113267
    Abstract: A system and method for producing activated carbon comprising carbonizing a solid carbonaceous material in a carbonization zone of an activated carbon production apparatus (ACPA) to yield a carbonized product and carbonization product gases, the carbonization zone comprising carbonaceous material inlet, char outlet and carbonization gas outlet; activating the carbonized product via activation with steam in an activation zone of the ACPA to yield activated carbon and activation product gases, the activation zone comprising activated carbon outlet, activation gas outlet, and activation steam inlet; and utilizing process gas comprising at least a portion of the carbonization product gases or a combustion product thereof; at least a portion of the activation product gases or a combustion product thereof; or a combination thereof in a solid fuel boiler system that burns a solid fuel boiler feed with air to produce boiler-produced steam and flue gas, the boiler upstream of an air heater within a steam/electricity g
    Type: Application
    Filed: November 11, 2009
    Publication date: May 6, 2010
    Inventors: Srivats Srinivasachar, Steven Benson, Charlene Crocker, Jill Mackenzie
  • Publication number: 20100089060
    Abstract: A hybrid power plant that combines a variety of renewable heat sources with a fossil fuel furnace system. Saturated steam generated by the renewable sources is routed through the fossil fuel fired furnace where superheat is added. The renewable sources would include geothermal, thermal solar, and biomass energy sources. Reductions in emissions per unit of power and cost per unit of power are obtained.
    Type: Application
    Filed: September 30, 2009
    Publication date: April 15, 2010
    Inventors: Roger Ferguson, Steve Corns, Kenneth Bryden
  • Publication number: 20100089059
    Abstract: A hybrid power plant is disclosed wherein a first power plant produces secondary steam of a first, relatively low temperature using a renewable source of energy such as geothermal or solar. The steam from the renewable source plant is passed through a fossil fuel power plant that has an operating temperature higher than that of the first temperature which results in superheating the first temperature steam to the higher temperature in the fossil fuel power plant. Higher efficiencies and reductions in emissions are obtained.
    Type: Application
    Filed: June 12, 2009
    Publication date: April 15, 2010
    Inventors: Roger Ferguson, Luke Shors, Kenneth Bryden, Steven Michael Corns
  • Publication number: 20100083666
    Abstract: A process for the production of carbon dioxide in concentrated form and electricity from a hydrocarbon feedstock said process comprising the steps of: a) introducing an air feed stream comprising air and optionally steam and a fuel feed stream comprising methane and optionally hydrogen and/or steam to an autothermal reactor unit (ATR) for the production of synthesis gas wherein (i) the temperature of the fuel feed stream is in the range 350 to 7000 C; and (ii) the molar ratio of oxygen contained in the air feed stream to carbon (in hydrocarbons) in the fuel feed stream is from 0.45:1 to 0.85:1, preferably 0.6:1 to 0.
    Type: Application
    Filed: November 29, 2007
    Publication date: April 8, 2010
    Inventors: Peter Holroyd Brook, Geoffrey Frederick Skinner
  • Patent number: 7686944
    Abstract: Disclosed is a process for recovering power from an FCC product. The dry gas is combusted and combined with FCC regenerator flue gas to raise the power recovery capability of the flue gas. The flue gas can be used to generate electrical power or steam. Alternatively or additionally, dry gas from an FCC product stream is separated and delivered to an expander to recover power before combustion.
    Type: Grant
    Filed: August 1, 2007
    Date of Patent: March 30, 2010
    Assignee: UOP LLC
    Inventors: Xin X. Zhu, Keith A. Couch, James P. Glavin