With Means To Pressurize Oxidizer For Combustion Or Other Purposes Patents (Class 60/726)
  • Patent number: 9771829
    Abstract: A mid-turbine frame is provided. The mid-turbine frame may comprise an inner case having an annular surface with an interface section disposed on the annular surface. The interface section may include an interface feature. A balancing section may be disposed on the annular surface defining an opening and disposed circumferentially adjacent the interface section.
    Type: Grant
    Filed: April 13, 2015
    Date of Patent: September 26, 2017
    Assignee: UNITED TECHNOLOGIES CORPORATION
    Inventors: Alexander Broulidakis, Michael D. Collier, Patrick M. Devaney, Patrick M. Nadeau, Joseph J. Sedor, Christopher Treat
  • Patent number: 9435223
    Abstract: Provided is a gas turbine apparatus including: a turbine unit comprising an output shaft; a cooling gas generation unit, comprising a rotation shaft, which receives power from the output shaft through the rotation shaft and generates a compressed cooling gas; a first duct unit which transfers the generated compressed cooling gas to the turbine unit; a clutch unit which controls a power transfer connection between the output shaft and the rotation shaft; and a control unit which controls the transferring of the generated compressed cooling gas.
    Type: Grant
    Filed: May 17, 2013
    Date of Patent: September 6, 2016
    Assignee: Hanwha Techwin Co., Ltd.
    Inventor: Myeong-hyo Kim
  • Patent number: 9234463
    Abstract: A thermal management system for a gas turbine engine includes a high pressure compressor rotor having a plurality of disks and a shaft; at least one forward cavity between a rim of at least one of the disks and the shaft and at least one aft cavity formed between a rim of at least one other of the disks and the shaft; a first flow of cooling air in the at least one forward cavity; and a second flow of cooling air in the at least one aft cavity.
    Type: Grant
    Filed: April 24, 2012
    Date of Patent: January 12, 2016
    Assignees: United Technologies Corporation, MTU Aero Engines AG
    Inventors: Daniel Benjamin, Daniel Carminati, David S. Jang, Stephan Proestler
  • Publication number: 20150135715
    Abstract: The invention provides a gas turbine cooling system that efficiently cools a first-stage turbine wheel and the attachment portions of first-stage turbine blades. A gas turbine comprises: a compressor 1 for compressing air; a combustor 2 for combusting the air compressed by the compressor 1 with fuel; and a turbine 3 driven by the combustion gas generated by the combustor 2, the turbine 3 including at least one turbine wheel 12a having turbine blades 11a on an outer circumferential section thereof. A gas turbine cooling system comprises a group of impingement cooling holes 32, provided in a partition wall 16a that separates the exit space 42 of the compressor 1 and the wheel space 43a located upstream of the turbine wheel 12a, for ejecting the compressed air 101 in the exit space 42 toward the turbine wheel 12a and the attachment portions of the turbine blades 11a.
    Type: Application
    Filed: November 18, 2014
    Publication date: May 21, 2015
    Inventors: Tomoyuki MATSUI, Hayato MAEKAWA, Ryo KAWAI
  • Publication number: 20150128598
    Abstract: A converging-diverging nozzle that has particular application for providing a cooling air flow to ring segments in a gas turbine engine. The engine includes a turbine section that receives a hot working gas. The turbine section includes at least one row of vanes, at least one row of blades and a plurality of ring segments forming at least one ring. The ring segments and the vanes are mounted to a vane carrier, where the vane carrier includes a cooling flow channel for each of the ring segments that receives an air flow to cool the ring segments. A plug is provided in each channel and has an internal bore shaped to define the converging-diverging nozzle through which the air flows so as to create a supersonic flow that reduces the temperature of the air and thus provides more cooling for the same amount of air flow.
    Type: Application
    Filed: November 12, 2013
    Publication date: May 14, 2015
    Inventors: Chad W. Heinrich, Stephen Erick Holland
  • Patent number: 9027352
    Abstract: A method for operating a hydrogen-fueled gas turbine is provided wherein a supply of fuel is passed to a gas turbine combustor, and a supply of nitrogen and sufficient air to provide at least sufficient compressed air to the gas turbine for fuel combustion is passed to a compressor. A sufficient portion of the compressor discharge flow is passed to a combustor for fuel rich combustion of the fuel flow to the combustor and the fuel is combusted to produce hot combustion gases that are, in turn, passed to a turbine.
    Type: Grant
    Filed: November 10, 2011
    Date of Patent: May 12, 2015
    Assignee: Precision Combustion, Inc.
    Inventor: Lisa Burns
  • Publication number: 20150121880
    Abstract: An interface assembly for a combustor includes an interface housing having a channel defined by a forward wall and at least one aft wall segment, the aft wall segment operatively coupled to an aft flange of a flow sleeve. Also included is a piston ring fittingly disposed in the channel.
    Type: Application
    Filed: November 1, 2013
    Publication date: May 7, 2015
    Applicant: General Electric Company
    Inventors: Kyle Lee Kidder, Donald Timothy Lemon, Stephen Gerard Pope
  • Publication number: 20150113995
    Abstract: The present invention relates to an isothermal compression type heat engine using air as a heat working medium. It is technically characterized as follows. An air compressor is used to replace an adiabatic air compressor. Two engineering courses being air compression and expansion work are performed separately in different engine members, so as to significantly increase a working pressure of the heat engine. Temperature gradient type heat preservation composite tubes are disposed to recycle remaining heat of exhaust gas with high efficiency, so as to distinctly improve the heat efficiency of the heat engine.
    Type: Application
    Filed: July 24, 2012
    Publication date: April 30, 2015
    Inventor: Yuanming Yi
  • Publication number: 20150101333
    Abstract: A rotational machine such as a turbocompressor has a fluid recovery system for recovering leaked working fluid such as gaseous helium in a helium circuit which has leaked past a shaft seal, a purifier being provided for removing contaminants from the working fluid, and turbocompressor may have one fluid such as helium or hydrogen working through one turbo component such as a turbine thereof and a second working fluid such as air or helium working through a second turbo component such as a compressor thereof, the rotational machine being installable in an engine of a flying machine.
    Type: Application
    Filed: June 5, 2014
    Publication date: April 16, 2015
    Inventor: Alan Bond
  • Patent number: 8997494
    Abstract: A fan blade for a gas turbine engine includes an airfoil that includes leading and trailing edges joined by pressure and suction sides to provide an exterior airfoil surface that extends in a radial direction to a tip. The external airfoil surface is formed in substantial conformance with multiple cross-sectional profiles of the airfoil described by a set of Cartesian coordinates set forth in Table 1. The Cartesian coordinates are provided by an axial coordinate scaled by a local axial chord. A circumferential coordinate is scaled by the local axial chord, and a span location. The local axial chord corresponds to a width of the airfoil between the leading and trailing edges at the span location.
    Type: Grant
    Filed: October 31, 2012
    Date of Patent: April 7, 2015
    Assignee: United Technologies Corporation
    Inventors: Sue-Li Chuang, Yuan Dong, Sanjay S. Hingorani, Dilip Prasad
  • Patent number: 8978386
    Abstract: Provided is a gas turbine system capable of dealing with a request for output increase even when high-pressure hot water generated using solar thermal energy cannot be used according to the operating state of the gas turbine system. A gas turbine system which sucks in intake air from an air intake duct by a compressor and drives a gas turbine by combustion gas obtained by burning air and fuel by a combustor, said gas turbine system being provided with pipes for generating high-pressure hot water by providing a solar collecting tube that utilizes solar heat and spraying the high-pressure hot water into the intake air sucked in by the compressor, and pipes for spraying normal temperature water into the intake air sucked in by the compressor.
    Type: Grant
    Filed: September 30, 2010
    Date of Patent: March 17, 2015
    Assignee: Mitsubishi Hitachi Power Systems, Ltd.
    Inventors: Takaaki Sekiai, Kazuhito Koyama, Shigeo Hatamiya, Fumio Takahashi, Naoyuki Nagafuchi, Kazuo Takahashi
  • Publication number: 20150068209
    Abstract: A method for positioning sensors about a sensor ring includes the steps of assigning each sensor in a plurality of sensors a sensor number selected from a set of sensor numbers, where the set of sensor numbers is a whole number in the range of 0 to N, and where N is the total number of sensors in said plurality of sensors minus one, disposing a first sensor at a circumferential angular position zero on the sensor ring, and disposing each sensor in the plurality of sensors at a circumferential angular position about the sensor ring, wherein the circumferential angular position is defined by an offset from a circumferential angular position zero and the offset is equal to a base arc length between sensors multiplied by the sensor number of the sensor plus a base offset arc length multiplied by the sensor number of the sensor.
    Type: Application
    Filed: September 5, 2014
    Publication date: March 12, 2015
    Inventor: Rajendra K. Agrawal
  • Publication number: 20150059352
    Abstract: The present application and the resultant patent provide a dual fuel combustor for a gas turbine engine. The combustor may include a primary premixer positioned within a head end plenum of the combustor, and a dual fuel, injection system positioned within the head end plenum and upstream of the premixer. The injection system may be configured to inject a gas fuel about an inlet end of the premixer when the combustor operates on the gas fuel. The injection system also may be configured to vaporize and inject a liquid fuel about the inlet end of the premixer when the combustor operates on the liquid fuel. The present application and the resultant patent also provide a related method of operating a dual fuel combustor.
    Type: Application
    Filed: September 4, 2013
    Publication date: March 5, 2015
    Applicant: General Electric Company
    Inventor: Geoffrey D. Myers
  • Publication number: 20150052898
    Abstract: A component formed by an additive manufacturing process includes a body and a first vibration damper. The body is formed from an additive manufacturing material, and defines at least a first cavity completely enclosed within the body. The first vibration damper is disposed within the first cavity. The first vibration damper includes a flowable medium and a first solidified element formed from the additive manufacturing material. The flowable medium surrounds the first solidified element.
    Type: Application
    Filed: August 21, 2013
    Publication date: February 26, 2015
    Applicant: General Electric Company
    Inventors: Daniel Jason Erno, Robert Arvin Hedeen, Prabhjot Singh
  • Publication number: 20150052897
    Abstract: A method of recovering heat energy from a cooling medium used to cool hot gas path components in a turbine engine includes cooling one or more hot gas path components with the cooling medium; supplying spent cooling medium used to cool the one or more hot gas path components to a heat exchanger; supplying air (e.g., compressor discharge air) to the heat exchanger so as to be in heat exchange relationship with the spent cooling medium and thereby add heat to the compressor discharge air; and supplying the air heated in the heat exchanger to at least one combustor.
    Type: Application
    Filed: August 20, 2013
    Publication date: February 26, 2015
    Applicant: General Electric Company
    Inventors: John Charles INTILE, Kevin Richard KIRTLEY
  • Patent number: 8961115
    Abstract: A gas turbine engine section has a rotor carrying a plurality of blades. The blades have airfoils which define a radially outer tip. A blade outer air seal is positioned radially outwardly of the tips of the blades. The blade outer air seal is provided by at least a plurality of circumferentially spaced segments, which slide circumferentially relative to each other to adjust an inner diameter of an inner surface of the blade outer air seal segments. An actuator actuates the blade outer air seal segments to slide towards each other to control a clearance between the inner periphery of the blade outer air seal segments and the radially outer tip of the blade airfoils. A gas turbine engine is also disclosed.
    Type: Grant
    Filed: July 19, 2012
    Date of Patent: February 24, 2015
    Assignee: United Technologies Corporation
    Inventors: William E. Rhoden, Peter L. Jalbert
  • Publication number: 20150047358
    Abstract: An inner barrel member for a gas turbomachine includes a body having an outer surface, an inner surface and one or more radial flow splitters provided on the outer surface. The one or more radial flow splitters are configured and disposed to be arranged along a combustor centerline at a combustion flow outlet radially inwardly of a transition piece.
    Type: Application
    Filed: August 14, 2013
    Publication date: February 19, 2015
    Applicant: General Electric Company
    Inventors: Carl Gerard Schott, Kenneth Damon Black, Matthew Stephen Casavant
  • Publication number: 20150047359
    Abstract: This invention concerns a system for cooling components in a gas turbine engine, the gas turbine engine including a compressor for driving a primary gas flow to a combustor and a turbine arranged to be driven by combustion gases from the combustor, wherein the system includes: an annular cooling flow passage arranged for fluid communication between the compressor and the turbine, the flow passage having a first inlet arranged to receive gas from the primary gas flow downstream of compressor, and a second inlet located upstream of the first inlet, wherein the annular cooling flow passage has at least one internal wall for guiding airflow from the first inlet towards the airflow from the second inlet, the airflow from the first and second inlets coalesce within the annular flow passage prior to passing along the passage in a direction from the compressor to the turbine.
    Type: Application
    Filed: August 13, 2014
    Publication date: February 19, 2015
    Inventors: Alan Robert MAGUIRE, Timothy John SCANLON, Colin YOUNG
  • Publication number: 20150040576
    Abstract: An improved combustor for a gas turbine is operable to provide high combustion efficiency in a compact combustion chamber. The combustor includes a counter swirl doublet for improved fuel/air mixing. The enhanced combustor assembly and method of operation improves operation of the turbine.
    Type: Application
    Filed: December 20, 2013
    Publication date: February 12, 2015
    Applicant: Rolls-Royce Corporation
    Inventors: Charles B. Graves, Donald M. Wicksall, Thomas F. Richardson, JR.
  • Publication number: 20150033748
    Abstract: A system includes an oxidant compressor and a gas turbine engine. The gas turbine engine includes a combustor section having a turbine combustor, a turbine driven by combustion products from the turbine combustor, and an exhaust gas compressor driven by the turbine. The exhaust gas compressor is configured to compress and route an exhaust flow to the turbine combustor and the oxidant compressor is configured to compress and route an oxidant flow to the turbine combustor. The gas turbine engine also includes an inlet oxidant heating system configured to route at least one of a first portion of the combustion products, or a second portion of the exhaust flow, or any combination thereof, to an inlet of the oxidant compressor.
    Type: Application
    Filed: June 25, 2014
    Publication date: February 5, 2015
    Inventors: Vahid Vaezi, Franklin F. Mittricker, Richard A. Huntington
  • Publication number: 20150007576
    Abstract: The invention relates to a method for operating a gas turbine which includes a compressor with annular inlet area, at least two burners, a combustion chamber and a turbine. According to the method, at least one first partial intake flow, consisting of oxygen-reduced gas which has an oxygen concentration which is lower than the average oxygen concentration of the compressor intake flow, and at least one second partial intake flow, consisting of fresh air, are fed to the compressor in an alternating manner in the circumferential direction of the inlet area. In addition, the invention relates to a gas turbine power plant with a gas turbine, the compressor inlet of which includes at least one first segment and at least one second segment which are arranged in an alternating manner around a compressor inlet in the circumferential direction, wherein a feed for an oxygen-reduced gas is connected to the first segment and a fresh air feed is connected to the second segment of the compressor inlet.
    Type: Application
    Filed: September 22, 2014
    Publication date: January 8, 2015
    Inventors: Felix GUETHE, Madhavan Narasimhan Poyyapakkam, Frank Graf, Bruno Schuermans, Eribert Benz
  • Publication number: 20150000245
    Abstract: A hybrid electric rotary engine is provided having a pair of rotors separated by a divider and configured for rotation in opposite directions, a timing gear engaged between the inner faces of the rotors, and at least one pair of slanted rotor openings in the rim of each rotor for alignment with at least one pair of slanted divider openings to form a pair of combustion chambers in communication with at least one pair of exhaust chambers for venting of exhaust and to provide rotational thrust.
    Type: Application
    Filed: June 28, 2013
    Publication date: January 1, 2015
    Inventor: William A. Ellis
  • Publication number: 20150000295
    Abstract: The invention is directed to a process to obtain a compressed gas starting from a starting gas having a lower pressure by performing the following steps: (i) increasing the pressure and temperature of a gas having an intermediate pressure by means of indirect heat exchange against a fluid having a higher temperature to obtain a gas high in pressure and temperature, (ii) obtaining part of the gas high in temperature and pressure as the compressed gas, (iii) using another part of the gas high in temperature and pressure as a driving gas to increase the pressure of the starting gas in one or more stages to obtain the gas having an intermediate pressure for use in step (i). The invention is also directed to a configuration wherein the process can be performed and directed to a process to generate energy using the process.
    Type: Application
    Filed: February 15, 2013
    Publication date: January 1, 2015
    Applicant: Ice Industrial Properties BV
    Inventors: Johannes Arjen Hoogland, George Johannes Kruijer
  • Publication number: 20140352321
    Abstract: A gas turbine engine system includes a compressor, a combustor, and a turbine. The combustor is coupled to the compressor and disposed downstream of the compressor. The combustor includes a secondary combustor section coupled to a primary combustor section and disposed downstream of the primary combustor section. The combustor also includes a transition nozzle coupled to the secondary combustor section and disposed downstream of the secondary combustor section. The combustor further includes an injector coupled to the secondary combustor section, for injecting an air-fuel mixture to the secondary combustor section. The turbine is coupled to the combustor and disposed downstream of the transition nozzle; wherein the transition nozzle is oriented substantially tangential to the turbine.
    Type: Application
    Filed: November 30, 2012
    Publication date: December 4, 2014
    Applicant: GENERAL ELECTRIC COMPANY
    Inventor: General Electric Company
  • Publication number: 20140338334
    Abstract: One embodiment of the present invention is a unique aircraft propulsion gas turbine engine. Another embodiment is a unique gas turbine engine. Another embodiment is a unique gas turbine engine. Other embodiments include apparatuses, systems, devices, hardware, methods, and combinations for gas turbine engines with heat exchange systems. Further embodiments, forms, features, aspects, benefits, and advantages of the present application will become apparent from the description and figures provided herewith.
    Type: Application
    Filed: June 30, 2014
    Publication date: November 20, 2014
    Inventors: Michael Abraham Karam, Eric Sean Donovan, Michael Stephen Krautheim, Daniel Kent Vetters, Donald G. Chouinard
  • Publication number: 20140338335
    Abstract: A thermal/electrical power converter includes a gas turbine with an input couplable to an output of an inert gas thermal power source, a compressor including an output couplable to an input of the inert gas thermal power source, and a generator coupled to the gas turbine. The thermal/electrical power converter also includes a heat exchanger with an input coupled to an output of the gas turbine and an output coupled to an input of the compressor. The heat exchanger includes a series-coupled super-heater heat exchanger, a boiler heat exchanger and a water preheater heat exchanger. The thermal/electrical power converter also includes a reservoir tank and reservoir tank control valves configured to regulate a power output of the thermal/electrical power converter.
    Type: Application
    Filed: August 5, 2014
    Publication date: November 20, 2014
    Applicant: HI EFF UTILITY RESCUE LLC
    Inventor: William Edward Simpkin
  • Publication number: 20140338333
    Abstract: Embodiments of a Gas Turbine Engine (“GTE”) are provided, as are embodiments of a plasma flow-controlled intake system for deployment on a GTE. In one embodiment, the GTE includes a turbine section, a combustion section upstream of the turbine section, a compressor section upstream of the combustion section, and intake section upstream of the compressor section. The intake section includes a plenum, a first inlet fluidly coupled to the plenum, and a flow-obstructing structure projecting into the plenum and having an outer surface impinged by the airflow directed into the plenum through the first inlet during operation of the GTE. A first array of plasma actuators is disposed on flow-obstructing structure and, when activated, suppresses vortex shedding of the air flowing over the outer surface of the flow-obstructing structure.
    Type: Application
    Filed: May 20, 2013
    Publication date: November 20, 2014
    Applicant: Honeywell International Inc.
    Inventor: Mark Matwey
  • Publication number: 20140331684
    Abstract: The invention relates to rotary units and rotary mechanisms that are suitable for use in numerous applications. Rotary units typically include rotational components that are configured to rotate. In some embodiments, for example, multiple rotary units are assembled in rotary mechanisms such that neighboring pairs of rotational components counter-rotate or contra-rotate relative to one another during operation of the rotary mechanisms. Rotational components generally include one or more implements that are structured to perform or effect one or more types of work as the rotational components rotate relative to one another in a given rotary mechanism. In certain embodiments, implements are configured to rotate and/or to effect the movement of other components as rotational components rotate. In some embodiments, engines include rotary mechanisms and are used in, for example, ground vehicles, marine vehicles, aircraft, or devices.
    Type: Application
    Filed: July 26, 2014
    Publication date: November 13, 2014
    Inventor: Christopher C. Sappenfield
  • Publication number: 20140318133
    Abstract: A turbofan engine according to an exemplary embodiment of this disclosure, among other possible things includes a gas generator section for generating a gas stream flow with higher energy per unit mass flow than that contained in ambient air, a power turbine converting the gas stream flow into shaft power, the power turbine rotating at a first relative rotational speed, a speed reduction device driven by the power turbine, and a propulsor section including a fan driven by the power turbine through the speed reduction device at a second speed lower than the first speed for generating propulsive thrust as a mass flow rate of air through a bypass flow path, wherein an Engine Unit Thrust Parameter (“EUTP”) defined as net engine thrust divided by a product of the mass flow rate of air through the bypass flow path, a tip diameter of the fan and the first relative rotational speed of the power turbine is less than about 0.15 at a take-off condition.
    Type: Application
    Filed: April 26, 2013
    Publication date: October 30, 2014
    Applicant: United Technologies Corporation
    Inventor: United Technologies Corporation
  • Publication number: 20140319843
    Abstract: A unique, small microturbine engine adapted to integrate with an electrical generator for producing electrical power has been developed. The microturbine includes an ejector cooling scheme, a prevaporizing combustor, and a combustor air bypass. The ejector cooling scheme uses energy in the hot exhaust gas stream of the microturbine to entrain a flow of ambient air that cools the generator. The prevaporizing combustor of the present invention allows liquid fuel to be vaporized in a small amount of air prior to combustion, thereby increasing combustion efficiency and decreasing combustor size requirements. The combustor air bypass allows a fraction of the compressor discharge air to bypass the prevaporizing combustor under certain operating conditions. This permits control of the overall equivalence ratio and the fuel/air mixing process in the combustion zone, improving efficiency and operability.
    Type: Application
    Filed: February 26, 2014
    Publication date: October 30, 2014
    Inventors: Matthew V. Perry, Jordan T. Farina, Stephen D. LePera, Anthony M. Ferrar, Walter F. O'Brien, Samuel Shiver
  • Publication number: 20140318147
    Abstract: A gas turbine engine has a fan and a turbine having a fan drive turbine rotor. The fan drive turbine rotor drives a compressor rotor. A gear reduction effects a reduction in the speed of the fan relative to an input speed from the fan drive turbine rotor that drives the compressor rotor. The compressor rotor has a number of compressor blades in at least one of a plurality of rows of the compressor rotor. The blades operate at least some of the time at a rotational speed. The number of compressor blades in at least one row and the rotational speed are such that the following formula holds true for at least one row of the compressor rotor turbine: (number of blades×rotational speed)/60 s?5500 Hz, and the rotational speed is in revolutions per minute. A method of designing a gas turbine engine and a compressor module are also disclosed.
    Type: Application
    Filed: December 31, 2013
    Publication date: October 30, 2014
    Applicant: United Technologies Corporation
    Inventors: David A. Topol, Bruce L. Morin
  • Publication number: 20140311149
    Abstract: A fan blade for a gas turbine engine includes an airfoil that includes leading and trailing edges joined by pressure and suction sides to provide an exterior airfoil surface that extends in a radial direction to a tip. The external airfoil surface is formed in substantial conformance with multiple cross-sectional profiles of the airfoil described by a set of Cartesian coordinates set forth in Table 1. The Cartesian coordinates are provided by an axial coordinate scaled by a local axial chord. A circumferential coordinate is scaled by the local axial chord, and a span location. The local axial chord corresponds to a width of the airfoil between the leading and trailing edges at the span location.
    Type: Application
    Filed: October 31, 2012
    Publication date: October 23, 2014
    Applicant: UNITED TECHNOLOGIES CORPORATION
    Inventor: United Technologies Corporation
  • Patent number: 8868313
    Abstract: A method for controlling the combustion in a gas turbine including measuring, with one or more probes situated adjacent to the combustion chamber of the turbine, the amplitude of the pressure oscillations inside the combustion chamber and the persistence time or cycle of the same oscillations, evaluating the behavior under fatigue conditions of the combustion chamber, by constructing the Wohler curve for a certain material which forms the combustion chamber for a predefined combustion frequency and for the amplitude and cycle values of the pressure oscillations measured, measuring the cumulative damage to the combustion chamber during functioning under fatigue conditions of the turbine using the Palmgren-Miner hypothesis and exerting protection actions of the turbine if the cumulative damage value measured is exceeded.
    Type: Grant
    Filed: April 7, 2008
    Date of Patent: October 21, 2014
    Assignee: Nuovo Pignone S.p.A.
    Inventor: Antonio Asti
  • Publication number: 20140290260
    Abstract: A system includes a gas turbine. The gas turbine includes a first compressor configured to provide a first portion of a discharge air to a combustor. The gas turbine also includes the combustor configured to combust a mixture of the first portion of the discharge air and fuel to generate an exhaust gas and to provide the exhaust gas to a turbine. The gas turbine also includes an exhaust outlet coupled to the turbine and configured to enable the exhaust gas to exit the gas turbine. The system also includes a nitrogen purification system coupled to the gas turbine. The nitrogen purification system includes a membrane nitrogen generator configured to receive a second portion of the discharge air from the compressor or a portion of the exhaust gas from the exhaust outlet, wherein the membrane nitrogen generator is configured to generate nitrogen from the second portion of the discharge air or the portion of the exhaust gas.
    Type: Application
    Filed: March 27, 2013
    Publication date: October 2, 2014
    Applicant: General Electric Company
    Inventors: Hatim Anwarhusan Khandwavala, Douglas Scott Byrd, Brian Michael Gallagher, Durgaprasad Janapaneedi
  • Publication number: 20140290252
    Abstract: A gas turbine engine having high reliability is provided by suppressing occurrence of thermal stress between a scroll and a support member thereof. A gas turbine engine equipped with a combustor of a single-can type includes a scroll to guide a combustion gas fed from a combustor to a turbine while swirling the combustion gas about a rotation axis, a flange member to support the scroll with respect to the gas turbine engine from an inner peripheral side of the scroll, and a coupling member of an annular shape to couple the scroll and the flange member with each other. The scroll and the flange member are connected to the coupling member such that the scroll and the flange member are not in direct contact with each other.
    Type: Application
    Filed: June 17, 2014
    Publication date: October 2, 2014
    Applicant: KAWASAKI JUKOGYO KABUSHIKI KAISHA
    Inventors: Daisuke UEMURA, Yoshihiro YAMASAKI, Takahiro NAKASUJI
  • Publication number: 20140260292
    Abstract: A gas turbine having a combustion chamber with exhaust section through which combustion gas is exhaustable, plenum chamber and compressor are provided. The plenum chamber is coupled to the compressor wherein a first quantity of compressed fluid is injectable therein at a radially inner wall of the plenum chamber. A guide vane section with at least one airfoil is coupled to the exhaust section so combustion gas is flowable against the airfoil. The exhaust section and guide vane section are housed inside the plenum chamber. The airfoil has a first flow chamber where a second quantity of compressed fluid is flowable through the guide vane section from the compressor in the direction from the inner wall to a outer wall of the plenum chamber before being discharged. The second quantity of compressed fluid streamable through the guide vane section is larger than the first quantity of the compressed fluid.
    Type: Application
    Filed: September 4, 2012
    Publication date: September 18, 2014
    Applicant: SIEMENS AKTIENGESELLSCHAFT
    Inventor: Ulf Nilsson
  • Publication number: 20140260183
    Abstract: A gas generator for a reverse core engine propulsion system has a variable cycle intake for the gas generator, which variable cycle intake includes a duct system. The duct system is configured for being selectively disposed in a first position and a second position, wherein free stream air is fed to the gas generator when in the first position, and fan stream air is fed to the gas generator when in the second position.
    Type: Application
    Filed: December 30, 2013
    Publication date: September 18, 2014
    Applicant: UNITED TECHNOLOGIES CORPORATION
    Inventors: Gabriel L. Suciu, Jesse M. Chandler, Joseph B. Staubach
  • Publication number: 20140252161
    Abstract: A turbofan engine includes a core engine section including a compressor section feeding air to a combustor to generate high speed exhaust gases that drive a turbine section all disposed about an engine axis, a geartrain driven by the core engine section, a fan section driven by the geartrain about a fan axis spaced apart from the engine axis, and an accessory gearbox driven by the geartrain and mounted apart from the core engine section and the fan section.
    Type: Application
    Filed: February 25, 2014
    Publication date: September 11, 2014
    Applicant: United Technologies Corporation
    Inventor: Robert L. Gukeisen
  • Publication number: 20140238033
    Abstract: Systems and methods for frequency separation in a gas turbine engine are provided herein. The systems and methods for frequency separation in a gas turbine engine may include determining a hot gas path natural frequency, determining a combustion dynamic frequency, and modifying a compressor discharge temperature to separate the combustion dynamic frequency from the hot gas path natural frequency.
    Type: Application
    Filed: February 26, 2013
    Publication date: August 28, 2014
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Sarah Lori Crothers, Matthew Durham Collier, Scott Edward Sherman, Joseph Vincent Citeno
  • Patent number: 8807282
    Abstract: A lubricant system is disclosed, in particular for the supply of lubricant to a user in a gas turbine aircraft engine. The system includes a lubricant reservoir, where in the lubricant reservoir a lubricant can be set in rotation by at least one rotatable drum that is integrated into the lubricant reservoir or by at least one rotatable blade that is integrated into the lubricant reservoir, such that the lubricant, as a result of centrifugal force, comes into contact against a rotationally symmetrical wall of the lubricant reservoir, and from there can be transported toward a user. A drive system is included for the or each rotatable drum or the or each rotatable blade of the lubricant reservoir. At least one rotating lubricant separator is provided for the venting of the lubricant. The or each lubricant separator can be driven by the drive system of the or of each rotatable drum and/or of the or of each rotatable blade of the lubricant reservoir.
    Type: Grant
    Filed: June 29, 2006
    Date of Patent: August 19, 2014
    Assignee: MTU Aero Engines GmbH
    Inventor: Helmut Streifinger
  • Publication number: 20140216004
    Abstract: A gas turbine engine includes a fan, a compressor section fluidly connected to the fan, a combustor fluidly connected to the compressor section, a turbine section fluidly connected to the combustor, and a buffer system. The buffer system includes a heat exchanger having a first inlet, a first outlet, a second inlet, and a second outlet. The first outlet is configured to provide a cooled pressurized fluid. The buffer system includes first and second air sources that are selectively fluidly coupled to the first inlet, and a third air source that are fluidly coupled to the second inlet. Multiple fluid-supplied areas are located remotely from one another and are fluidly coupled to the first outlet. The multiple fluid-supplied areas include a bearing compartment. A method and a buffer system are also disclosed.
    Type: Application
    Filed: April 7, 2014
    Publication date: August 7, 2014
    Inventors: Peter M. Munsell, Philip S. Stripinis
  • Publication number: 20140216036
    Abstract: A solid oxide fuel cell system (10) comprises a solid oxide fuel cell stack (12) and a gas turbine engine (14). The solid oxide fuel cell stack (12) comprises a plurality of solid oxide fuel cells (16). The gas turbine engine (14) comprises a compressor (24) and a turbine (26). The compressor (24) supplies oxidant to the cathodes (22) of the fuel cells (16) via an oxidant ejector (60) and the oxidant ejector (60) supplies a portion of the unused oxidant from the cathodes (22) of the fuel cells (16) back to the cathodes (22) of the fuel cells (16) with the oxidant from the compressor (24). The fuel cell system (10) further comprises an additional compressor (64), an electric motor (66) arranged to drive the additional compressor (64), a cooler (70) and a recuperator (72). The compressor (24) supplies oxidant via the cooler (70) to the additional compressor (64) and the additional compressor (64) supplies oxidant to the oxidant ejector (60) via the recuperator (72).
    Type: Application
    Filed: August 30, 2012
    Publication date: August 7, 2014
    Applicant: LG FUEL CELL SYSTEMS, INC.
    Inventors: Michele Bozzolo, Cristiano Balestrino
  • Publication number: 20140196467
    Abstract: A mixture of air and fuel is received into a reaction chamber of a gas turbine system. The fuel is oxidized in the reaction chamber, and a maximum temperature of the mixture in the reaction chamber is controlled to be substantially at or below an inlet temperature of a turbine of the gas turbine system. The oxidation of the fuel is initiated by raising the temperature of the mixture to or above an auto-ignition temperature of the fuel. In some cases, the reaction chamber may be provided without a fuel oxidation catalyst material.
    Type: Application
    Filed: March 17, 2014
    Publication date: July 17, 2014
    Applicant: ENER-CORE POWER, INC.
    Inventor: Edan PRABHU
  • Publication number: 20140182293
    Abstract: A compressor rotor has a rotor centered on an axis, and a groove with opposed side edges. The groove receives a plurality of removable compressor blades, and has tangential sides. The tangential side surfaces are in contact with said tangential sides of the groove, and at least one slot is cut into the side edges. A first radial distance is measured from a radially outer edge of the side edge to a radially outer beginning point of the tangential sides of the groove. A second radial distance is radially between the radially outer beginning point of the tangential sides to a radially inner end of the tangential sides of the groove. A ratio of the first and second radial distance is between 1.1 and 5.0.
    Type: Application
    Filed: December 31, 2012
    Publication date: July 3, 2014
    Applicant: UNITED TECHNOLOGIES CORPORATION
    Inventors: Nicholas M. Aiello, Uyen Phan
  • Publication number: 20140182305
    Abstract: A system includes a turbine combustor that includes a head end portion having a head end chamber, a combustion portion having a combustion chamber disposed downstream from the head end chamber, a cap disposed between the head end chamber and the combustion chamber, a mixing region configured to mix an exhaust flow with an oxidant flow to provide an oxidant-exhaust mixture, and a flow distributor configured to distribute the oxidant-exhaust mixture circumferentially around the head end chamber. The flow distributor includes at least one oxidant-exhaust mixture path.
    Type: Application
    Filed: October 30, 2013
    Publication date: July 3, 2014
    Applicants: ExxonMobil Upstream Research Company, General Electric Company
    Inventors: Carolyn Ashley Antoniono, William Lawrence Byrne, Elizabeth Angelyn Fadde
  • Publication number: 20140182301
    Abstract: A system includes a turbine combustor that includes a head end portion having a head end chamber, a combustion portion having a combustion chamber disposed downstream from the head end chamber, a cap disposed between the head end chamber and the combustion chamber, and a flow separator configured to separate a first exhaust flow from an oxidant flow. The flow separator is configured to direct the first exhaust flow into the head end chamber. The turbine combustor also includes a mixing region configured to mix the first exhaust flow with the oxidant flow to provide an oxidant-exhaust mixture.
    Type: Application
    Filed: October 30, 2013
    Publication date: July 3, 2014
    Applicants: ExxonMobil Upstream Research Company, General Electric Company
    Inventors: Elizabeth Angelyn Fadde, William Lawrence Byrne, Carolyn Ashley Antoniono
  • Publication number: 20140182302
    Abstract: A system includes a turbine combustor that includes a head end portion having a head end chamber, a combustion portion having a combustion chamber disposed downstream from the head end chamber, a cap disposed between the head end chamber and the combustion chamber, and a flow distributor configured to distribute at least one of an exhaust flow, an oxidant flow, an oxidant-exhaust mixture, or any combination thereof circumferentially around the head end chamber.
    Type: Application
    Filed: October 30, 2013
    Publication date: July 3, 2014
    Applicants: ExxonMobil Upstream Research Company, General Electric Company
    Inventors: Carolyn Ashley Antoniono, William Lawrence Byrne, Elizabeth Angelyn Fadde
  • Publication number: 20140182304
    Abstract: A system includes a turbine combustor that includes a head end portion having a head end chamber, a combustion portion having a combustion chamber disposed downstream from the head end chamber, a cap disposed between the head end chamber and the combustion chamber, and a flow distributor configured to distribute an oxidant flow circumferentially around the head end chamber. The flow distributor includes at least one oxidant flow path.
    Type: Application
    Filed: October 30, 2013
    Publication date: July 3, 2014
    Applicants: ExxonMobil Upstream Research Company, General Electric Company
    Inventors: Carolyn Ashley Antoniono, William Lawrence Byrne, Elizabeth Angelyn Fadde
  • Publication number: 20140182303
    Abstract: A system includes a turbine combustor that includes a head end portion having a head end chamber, a combustion portion having a combustion chamber disposed downstream from the head end chamber, a cap disposed between the head end chamber and the combustion chamber, and a flow distributor configured to distribute an exhaust flow circumferentially around the head end chamber. The flow distributor includes at least one exhaust gas flow path.
    Type: Application
    Filed: October 30, 2013
    Publication date: July 3, 2014
    Applicants: ExxonMobil Upstream Research Company, General Electric Company
    Inventors: Carolyn Ashley Antoniono, William Lawrence Byrne, Elizabeth Angelyn Fadde
  • Publication number: 20140157751
    Abstract: Disclosed herein are screw shaft turbine compressors having (i) a compressor section, (ii) a turbine section, (iii) a combustion section coupling to the compressor section and the turbine section, and (iv) a grooved shaft. The grooved shaft can include one or more grooves for providing fuel from the compressor section to the combustion section and for allowing exhaust to leave the combustion section and exit the turbine section. A method for generating different speed to torque ratios on the shaft and a system for generating torque on the shaft are further disclosed.
    Type: Application
    Filed: February 11, 2014
    Publication date: June 12, 2014
    Inventor: John R. Jackson