Sensitivity To Electric Stimulus Patents (Class 600/554)
  • Patent number: 10918857
    Abstract: The present disclosure relates to an array of electrodes on a flexible scaffolding, with the ability to collapse into an axial configuration suitable for deploying through a narrow cylindrical channel. The electrode arrays can be placed into the ventricular system of the brain, constituting a minimally invasive platform for precise spatial and temporal localization of electrical activity within the brain, and precise electrical stimulation of brain tissue, to diagnose and restore function in conditions caused by abnormal electrical activity in the brain.
    Type: Grant
    Filed: December 28, 2017
    Date of Patent: February 16, 2021
    Assignee: Precision Neuroscience LLC
    Inventors: Benjamin I. Rapoport, Demetrios Papageorgiou, Jason Chen
  • Patent number: 10888696
    Abstract: A vestibular stimulation array is disclosed having one or more separate electrode arrays each operatively adapted for implantation in a semicircular canal of the vestibular system, wherein each separate electrode array is dimensioned and constructed so that residual vestibular function is preserved. In particular, the electrode arrays are dimensioned such that the membranous labyrinth is not substantially compressed. Furthermore, the electrode array has a stop portion to limit insertion of the electrode array into the semi-circular canal and is still enough to avoid damage to the anatomical structures.
    Type: Grant
    Filed: January 2, 2019
    Date of Patent: January 12, 2021
    Assignees: COCHLEAR LIMITED, UNIVERSITY OF WASHINGTON CENTER FOR COMMERCIALIZATION
    Inventors: Frank Risi, Colin Irwin, Jay T. Rubinstein, Felipe Santos, James O. Phillips
  • Patent number: 10874340
    Abstract: A computer-implemented method and system of hardware for acquiring objective data relating to biometric and physiological parameters of an individual to diagnose, devise a treatment plan, and/or monitor an emotional and mental state of the individual. The method and system are designed to capture and process in real time clinical observations of patient responses and reactions in different clinical and patient settings and situations.
    Type: Grant
    Filed: July 23, 2015
    Date of Patent: December 29, 2020
    Assignee: Sackett Solutions & Innovations, LLC
    Inventors: Hans Rau, Nemoy Rau, Visveshwar Baskaran, Ramarao Inguva
  • Patent number: 10835230
    Abstract: A surgical instrument includes a first member having an inner surface and an outer surface. A second member has an inner surface and an outer surface. At least one of the inner surfaces defines at least one mating element and the outer surfaces are engageable with tissue. The members are relatively movable between a first configuration and a second configuration to space the tissue and define an opening between the members. At least one third member defines at least one mating element engageable with the at least one mating element of the inner surface such that the at least one third member is disposed within the opening. Systems and methods are disclosed.
    Type: Grant
    Filed: July 26, 2018
    Date of Patent: November 17, 2020
    Assignee: Warsaw Orthopedic, Inc.
    Inventors: Richard A. Hynes, Anthony J. Melkent, Stanley T. Palmatier
  • Patent number: 10791996
    Abstract: An intraoperative nerve evaluation device includes a flexible substrate, and a plurality of detection units disposed on the substrate and spaced apart from one another. Each of the detection units includes an electrode and a conductive wire electrically connected to the electrode. When the electrodes are attached to a nerve, a selected one of the electrodes is configured to receive an input signal via the corresponding conductive wire and to transmit the input signal to the nerve, and each of the electrodes other than the selected one is configured to receive from the nerve a response signal associated with the input signal and to transmit the response signal via the corresponding conductive wire.
    Type: Grant
    Filed: November 20, 2017
    Date of Patent: October 6, 2020
    Assignees: Chang Gung University, Chang Gung Memorial Hospital, Linkou
    Inventors: Yu-Cheng Pei, Ting-Yu Chen, Cheng-Hung Lin, Jian-Jia Huang
  • Patent number: 10765866
    Abstract: An example a system includes a neuromodulation generator that may be configured to use electrodes to generate a first modulation field over a test region of neural tissue along the electrodes to prime the neural tissue throughout the test region and a second modulation field to test targeted locations within the test region for therapeutic effectiveness. A memory may be configured to store a first modulation field parameter for generating the first modulation field and a second modulation field parameter set for generating the second modulation field to modulate a targeted location within the test region. The second modulation field parameter set is programmable for modulating other targeted locations. The controller may be configured to control the neuromodulation generator to use the first modulation field parameter set to deliver the first modulation field and to use the second modulation field parameter set to deliver the second modulation field.
    Type: Grant
    Filed: January 23, 2019
    Date of Patent: September 8, 2020
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Que T. Doan, Bradley Lawrence Hershey, Changfang Zhu
  • Patent number: 10751137
    Abstract: A navigable probe system and method of use is provided. The system may include a handle assembly having a locking mechanism enclosed and a stylus, a cannula, and a tracking device extending from the handle assembly. The stylus may include undercuts for receiving pins of the locking mechanism. A cam of the handle assembly may rotate such that in a first position, the pins of the locking mechanism may be engaged with the undercuts and in a second position, the pins of the locking mechanism may be disengaged from the undercuts releasing the stylus from the locking mechanism. The stylus may be slidably engaged with an inner diameter of the cannula. In some arrangements, the handle assembly may include a quick connect system that in a first position attaches the cannula to the handle assembly and in a second position releases the handle assembly and thus stylus from the cannula.
    Type: Grant
    Filed: December 19, 2017
    Date of Patent: August 25, 2020
    Assignee: Stryker European Operations Holdings LLC
    Inventor: Anna Zastrozna
  • Patent number: 10716948
    Abstract: In one respect, there is provided an apparatus for neural stimulation. The apparatus may include an antenna, a plurality of electrodes, and a voltage supply generator. The antenna may be configured to receive, from an external source, radio frequency energy. The voltage supply generator configured to generate a voltage supply by at least ramping up a voltage of the radio frequency energy in successive increments, wherein the voltage supply drives a current to the plurality of electrodes during neural stimulation. Related methods and computer program products are also disclosed.
    Type: Grant
    Filed: June 15, 2016
    Date of Patent: July 21, 2020
    Assignee: The Regents of the University of California
    Inventors: Sohmyung Ha, Gert Cauwenberghs, Chul Kim, Jiwoong Park, Patrick P. Mercier, Abraham Akinin, Hui Wang, Christoph Hans Maier
  • Patent number: 10695044
    Abstract: A system for accessing a surgical target site and related methods, involving an initial distraction system for creating an initial distraction corridor, and an assembly capable of distracting from the initial distraction corridor to a secondary distraction corridor and thereafter sequentially receiving a plurality of retractor blades for retracting from the secondary distraction corridor to thereby create an operative corridor to the surgical target site, both of which may be equipped with one or more electrodes for use in detecting the existence of (and optionally the distance and/or direction to) neural structures before, during, and after the establishment of an operative corridor to a surgical target site.
    Type: Grant
    Filed: November 21, 2017
    Date of Patent: June 30, 2020
    Assignee: NuVasive, Inc.
    Inventors: Patrick Miles, Scot Martinelli, Eric Finley, James E. Gharib, Allen Farquhar, Norbert F. Kaula, Jeffrey J. Blewett
  • Patent number: 10675464
    Abstract: Provided is an electric stimulation treatment device which is capable of outputting a stimulation voltage more efficiently than a conventional device. A urination disorder treatment device includes a pair of body-surface electrode pads 37, an indifferent electrode pad 39 which is larger in area than a body-surface electrode pad 37 with a relatively larger area, of the pair of body-surface electrode pads 37, and disposed in the vicinity of the pair of body-surface electrode pads 37, and a control portion 48 which supplies an electric signal to the pair of body-surface electrode pads 37 and the indifferent electrode pad 39.
    Type: Grant
    Filed: July 2, 2018
    Date of Patent: June 9, 2020
    Assignee: OTSUKA TECHNO CORPORATION
    Inventors: Tetsuya Masuda, Nobuo Tsukui
  • Patent number: 10671174
    Abstract: Among other things, a user interface device has a sensor configured to detect, at a wrist of a human, nerve or other tissue electrical signals associated with an intended contraction of a muscle to cause a rapid motion of a finger. An output provides information representative of the nerve or other tissue electrical signals associated with the intended contraction of the muscle to an interpreter of the information.
    Type: Grant
    Filed: August 6, 2018
    Date of Patent: June 2, 2020
    Assignee: Pison Technology, Inc.
    Inventors: Dexter W. Ang, David O Cipoletta, Samuel J. Karnes, Michael P. Kowalczyk, Salil H. Patel, Steven D. Trambert, Sidhant Srikumar, Brodey Lajoie
  • Patent number: 10639479
    Abstract: A method of programming an implantable medical device (IMD) configured to provide electrical stimulation via a plurality of stimulation vectors during delivery of the electrical stimulation of a plurality of pulse widths to a neural target. The method may comprise comparing strength-duration curve data for the plurality of stimulation vectors to one another, the strength-duration curve data representing, for respective pulse widths and stimulation vectors, a corresponding stimulation strength that evokes a physiological response associated with the neural target. The method may comprise selecting at least one stimulation vector of the plurality of stimulation vectors based on the comparison of the strength-duration curve data for the plurality of stimulation vectors. The method may comprise programming, in response to the selection, the IMD to deliver the electrical stimulation to the neural target via the selected at least one stimulation vector.
    Type: Grant
    Filed: November 6, 2017
    Date of Patent: May 5, 2020
    Assignee: MEDTRONIC, INC.
    Inventors: David A. Dinsmoor, Xin Su
  • Patent number: 10568559
    Abstract: A method for determining a desired location at which to apply a neural therapy. An array of electrodes is positioned proximal to neural tissue. A stimulus is applied from the array which evokes a neural compound action potential response in the neural tissue proximal to the array. A plurality of electrodes of the array simultaneously obtain respective measurements of the neural compound action potential response. From the measurements of the neural compound action potential response a desired location for a neural therapy is determined.
    Type: Grant
    Filed: May 11, 2012
    Date of Patent: February 25, 2020
    Assignee: Saluda Medical Pty Ltd
    Inventors: John Louis Parker, Dean Michael Karantonis
  • Patent number: 10518093
    Abstract: An example of a system for delivering neurostimulation pulses to a patient using a plurality of electrodes and controlling the delivery of the neurostimulation pulses by a user may include a programming control circuit and a user interface. The programming control circuit may be configured to generate a plurality of stimulation parameters controlling delivery of neurostimulation pulses according to one or more stimulation waveforms. The interface may include a display screen and an interface control circuit. The interface control circuit may be configured to define the one or more stimulation waveforms, and may include an impedance presentation module. The impedance presentation module may be configured to determine values of impedances each between two electrodes of the plurality of electrodes for all of combinations of two electrodes available from the plurality of electrodes and display the determined values of impedances on the display screen.
    Type: Grant
    Filed: August 30, 2017
    Date of Patent: December 31, 2019
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Stephen Carcieri, Michael A. Moffitt, Peter J. Yoo, Dennis Allen Vansickle, Sridhar Kothandaraman, Michael Andrew Caruso, Dean Chen
  • Patent number: 10517493
    Abstract: A system for monitoring relative nerve health and the presence of neuropraxia is described. The system utilizes the integration of a waveform function of an elicited or monitored nerve response to provide an indication of the strength of a detected signal from a nerve and thus the relative health and integrity of the nerve. In some embodiments motor nerve stimulation innervates muscle and an EMG waveform is obtained in response thereto. The integration under the waveform is expressed and an indexed value indicating a percentage of a certain threshold value. Methods set forth provide a more reliable status of a nerve in real-time and allow action to be taken to reduce neuropraxia or prevent permanent nerve damage.
    Type: Grant
    Filed: January 17, 2017
    Date of Patent: December 31, 2019
    Assignee: Neurovision Medical Products, Inc.
    Inventor: James Lee Rea
  • Patent number: 10507120
    Abstract: The present invention involves systems and related methods for performing surgical procedures and assessments, including the use of neurophysiology-based monitoring to: (a) determine nerve proximity and nerve direction to surgical instruments employed in accessing a surgical target site; (b) assess the pathology (health or status) of a nerve or nerve root before, during, or after a surgical procedure; and/or (c) assess pedicle integrity before, during or after pedicle screw placement, all in an automated, easy to use, and easy to interpret fashion so as to provide a surgeon-driven system.
    Type: Grant
    Filed: February 10, 2015
    Date of Patent: December 17, 2019
    Assignee: NuVasive, Inc.
    Inventors: James E. Gharib, Allen Farquhar, Norbert F. Kaula, Jeffrey J. Blewett, Eric Finley, Scot Martinelli
  • Patent number: 10492713
    Abstract: One aspect of the present disclosure relates to a system for monitoring a diaphragmatic twitch response. The diaphragmatic twitch response can be used to determine a depth of neuromuscular blockade. The system includes a neural stimulation device to stimulate a phrenic nerve of a subject, which has the effect of stimulating the subject's diaphragm. The system also includes a monitor to detect the diaphragm's response to the stimulation. For example, the monitor can include a nasogastric tube with two distally positioned inflatable balloons. Each of the inflatable balloons is coupled to a sensor to measure a corresponding pressure (e.g., an esophageal pressure and a gastric pressure). The pressure differential between the esophagus above the diaphragm and the stomach below the diaphragm (also referred to as the transdiaphragmatic pressure) can be used as a measure of the diaphragmatic twitch response.
    Type: Grant
    Filed: June 5, 2017
    Date of Patent: December 3, 2019
    Assignee: THE CLEVELAND CLINIC FOUNDATION
    Inventors: Georges-Pascal Haber, Vishnuvardhan Ganesan
  • Patent number: 10478624
    Abstract: Apparatus and methods for managing pain uses separate varying electromagnetic fields, with a variety of temporal and amplitude characteristics, which are applied to a particular neural structure to modulate glial and neuronal interactions as a mechanism for relieving chronic pain. In another embodiment, a single composite modulation/stimulation signal which has rhythmically varying characteristics is used to achieve the same results as separate varying electromagnetic fields. Also, disclosed is an apparatus and method for modulating the expression of genes involved in diverse pathways including inflammatory/immune system mediators, ion channels and neurotransmitters, in both the Spinal Cord (SC) and Dorsal Root Ganglion (DRG) where such expression modulation is caused by spinal cord stimulation or peripheral nerve stimulation using the disclosed apparatus and techniques.
    Type: Grant
    Filed: April 30, 2018
    Date of Patent: November 19, 2019
    Assignee: StimGenics, LLC
    Inventors: Ricardo Vallejo, David Leonardo Cedeno, Ramsin M. Benyamin
  • Patent number: 10470678
    Abstract: Improved assemblies, systems, and methods provide safeguarding against tissue injury during surgical procedures and/or identify nerve damage occurring prior to surgery and/or verify range of motion or attributes of muscle contraction during reconstructive surgery. A stimulation control device may incorporate a range of low and high intensity stimulation to provide a stimulation and evaluation of both nerves and muscles. A stimulation control device is removably coupled to a surgical device or is imbedded within the medical device to provide a stimulation and treatment medical device. A disposable hand held stimulation system includes an operative element extending from the housing, the housing includes a visual indication to provide feedback or status to the user.
    Type: Grant
    Filed: July 3, 2013
    Date of Patent: November 12, 2019
    Assignee: CHECKPOINT SURGICAL, INC.
    Inventors: Robert B. Strother, Geoffrey B. Thrope, Joseph J. Mrva, Steven M. Galecki, Danny R. Pack, Christopher A. Thierfelder, James Coburn
  • Patent number: 10470707
    Abstract: The present invention involves systems and related methods for performing percutaneous pedicle integrity assessments involving the use of neurophysiology.
    Type: Grant
    Filed: April 21, 2009
    Date of Patent: November 12, 2019
    Assignee: NuVasive, Inc.
    Inventors: Patrick Miles, Scot Martinelli, Eric Finley, Jamil Elbanna, James Gharib, Allen Farquhar, Norbert Kaula, Jeffrey Blewett, Goretti Medeiros
  • Patent number: 10463852
    Abstract: Via a pulse generator, a trigger signal is generated. The trigger signal indicates one or more stimulation pulses are about to be delivered, or is being delivered, to a patient. The trigger signal is sent to a measurement instrument. Via the pulse generator, the one or more stimulation pulses are generated. The one or more stimulation pulses are delivered to the patient. With the measurement instrument and in response to the trigger signal, one or more action potentials are measured. The one or more action potentials are produced by the patient in response to the one or more stimulation pulses.
    Type: Grant
    Filed: July 24, 2017
    Date of Patent: November 5, 2019
    Assignee: GREATBATCH, LTD
    Inventors: Kerry Bradley, Leslie Halberg
  • Patent number: 10456187
    Abstract: Methods of using hardware (e.g., bone screws, anchors or other devices) previously inserted within the body to facilitate energy delivery are disclosed. The energy delivery (e.g., thermal energy) may be used for neuromodulation (such as stimulation or denervation), tissue heating and ablation, curing, and other applications in the spine and non-spine orthopedic locations.
    Type: Grant
    Filed: August 4, 2017
    Date of Patent: October 29, 2019
    Assignee: Relievant Medsystems, Inc.
    Inventor: Avram Allan Edidin
  • Patent number: 10449002
    Abstract: A method of modeling a nerve disposed within an intracorporeal treatment area of a patient includes locating an electrode at a plurality of locations within a virtual workspace and providing an electrical stimulus from the electrode to the intracorporeal treatment area. The response of a muscle to the electrical stimulus is monitored and used to determine a distance to the nerve from each of the plurality of locations. A virtual model of the nerve is then constructed within the virtual workspace using the determined distance to the nerve from each of the different positions, and the plurality of locations within the virtual workspace.
    Type: Grant
    Filed: October 5, 2016
    Date of Patent: October 22, 2019
    Assignee: Innovative Surgical Solutions, LLC
    Inventor: Christopher Wybo
  • Patent number: 10448889
    Abstract: An implantable nerve stimulator is implanted in a patient near a nerve target. The implantable nerve stimulator has a plurality of electrodes through which stimulation is provided to the nerve target. The relative location of the nerve target and the electrodes may be determined by applying stimulation to the nerves via each of the electrodes, determining an effect of the stimulation for each of the electrodes, and mapping a location of the nerve relative to the electrodes based on the effect of the stimulation for each of the electrodes.
    Type: Grant
    Filed: April 26, 2012
    Date of Patent: October 22, 2019
    Assignee: Medtronic, Inc.
    Inventors: Martin T. Gerber, Steven M. Goetz, Christopher Poletto
  • Patent number: 10441786
    Abstract: A stimulation electrode assembly configured to be positioned relative to a patient for an operative procedure is disclosed. An evoked stimulation response may be sensed by a sensor near a portion of a subject. The evoked response may be sensed by an electrode and determined with a monitoring system.
    Type: Grant
    Filed: April 27, 2017
    Date of Patent: October 15, 2019
    Assignee: Medtronic Xomed, Inc.
    Inventor: Richard Brandmeier
  • Patent number: 10441800
    Abstract: Methods and systems for selecting stimulation parameters using targeting and steering techniques are presented. For example, a method or system (via actions performed by a processor) can include receiving a name of an anatomical or physiological target or a name of a disease or disorder; receiving a clinical goal; and using at least 1) the anatomical or physiological target or disease or disorder and 2) the clinical goal, selecting a set of stimulation parameters. Another method or system (via actions performed by its processor) can include receiving a first set of stimulation parameters; receiving a command to alter the first set of stimulation parameters that does not include, or is not composed exclusively of, a numerical value for any of the stimulation parameters; and modifying the first set of stimulation parameters to create a second set of stimulation parameters based on the command.
    Type: Grant
    Filed: June 27, 2016
    Date of Patent: October 15, 2019
    Assignee: BOSTON SCIENTIFIC NEUROMODULATION CORPORATION
    Inventor: G. Karl Steinke
  • Patent number: 10398371
    Abstract: A problem to be solved is to use a measured pain degree for comparison with a pain degree of another subject or for diagnosis of a disease. A pain measuring device has an electrode to be attached to a subject and a stimulation current generation means generating a stimulation current to be supplied to the electrode. Then, the pain measuring device measures pain felt by the subject based on the stimulation current applied from the electrode to the subject. The pain measuring device has a means to display a relation between a pain measurement value being a logarithmic value or a logarithmic-type value of a value founded on the stimulation current and a value of a VAS or a face scale which the subject selects.
    Type: Grant
    Filed: March 29, 2016
    Date of Patent: September 3, 2019
    Assignee: OSACHI CO., LTD.
    Inventors: Hideaki Shimazu, Futoshi Shirakawa, Yasuyuki Yaguchi
  • Patent number: 10384052
    Abstract: Systems, methods and devices, for stimulating one or more esophageal muscle contractions are provided. The system, methods, and devices may be designed to evoke motion and/or restore function in one or more organs that are located distal to the lower esophageal sphincter. A controller and a generator may be used to transmit signals to one or more electrodes in a tube placed in a patient's GI tract. In some aspect, the generator is configures to generate a series of pulses for one or more periods of time. In some aspects, a preliminary pulse is transmitted to narrow and esophageal portion such that an esophageal wall is in contact with at least one electrode thus lowering the nominal stimulation threshold.
    Type: Grant
    Filed: December 20, 2013
    Date of Patent: August 20, 2019
    Assignee: E-MOTION MEDICAL, LTD
    Inventors: Michael Gabriel Tal, Amichay Haim Gross, Yuri Shpolansky
  • Patent number: 10376209
    Abstract: A method of locating a nerve within an intracorporeal space includes advancing a distal end portion of a stimulator toward an anatomical target within the intracorporeal space, and periodically applying a first electrical stimulus from a first electrode disposed on a central axis of the stimulator. If a muscular response to the first electrical stimulus is detected, a locating electrical stimulus is then applied from a plurality of locations offset from the central axis of the stimulator, and a magnitude of the response of the muscle is monitored. A distance between the nerve and each of the plurality of locations is determined from the magnitude of the muscular response, and from a magnitude of the locating electrical stimulus provided at each of the plurality of locations. The location of the nerve is then triangulated from the determined distance at each of the plurality of locations.
    Type: Grant
    Filed: October 5, 2016
    Date of Patent: August 13, 2019
    Assignee: Innovative Surgical Solutions, LLC
    Inventor: Christopher Wybo
  • Patent number: 10376208
    Abstract: A nerve mapping system includes a plurality of electrodes, a sensor, and a processor in communication with each of the plurality of electrodes and the sensor. Each electrode is disposed on the distal end portion of one or more elongate medical devices configured to extend within an intracorporeal treatment area of a subject. The sensor is in communication with a muscle of a subject, and is configured to provide an output signal corresponding to a monitored response of the muscle. The processor receives an indication of the location of each electrode and an indication of a magnitude of the monitored muscular response. Using these parameters, the processor determines a distance to the nerve from the location of each of the plurality of electrodes, and constructs a virtual model of the nerve using the determined distance to the nerve at each of the plurality of locations.
    Type: Grant
    Filed: October 5, 2016
    Date of Patent: August 13, 2019
    Assignee: Innovative Surgical Solutions, LLC
    Inventor: Christopher Wybo
  • Patent number: 10321833
    Abstract: A method of locating a nerve within an intracorporeal treatment area of a subject includes providing a first electrical stimulus at a first location within the intracorporeal treatment area, providing a second electrical stimulus at a second location within the intracorporeal treatment area, and providing one or more additional electrical stimuli at the second location. The first electrical stimulus does not induce a threshold response of a muscle innervated by the nerve, whereas the second electrical stimulus does induce a response of the muscle. The one or more additional stimuli each have a current magnitude less than the first stimulus and are used to determine a minimum current magnitude that is required to induce the threshold response of the muscle at the second location. This minimum current magnitude is then used to determine a distance from the second location to the nerve.
    Type: Grant
    Filed: October 5, 2016
    Date of Patent: June 18, 2019
    Assignee: Innovative Surgical Solutions.
    Inventor: Christopher Wybo
  • Patent number: 10307593
    Abstract: A neuromodulation system executes a set of startup operations. In response to completion of the startup operations, a priming field is automatically initiated. The priming field is to produce a priming effect in priming-targeted neural tissue, with the priming effect causing a change in sensitization to a therapeutic neuromodulation field of the priming-targeted neural tissue. The system also generates the therapeutic neuromodulation field to produce a therapeutic effect in therapy-targeted neural tissue.
    Type: Grant
    Filed: June 1, 2017
    Date of Patent: June 4, 2019
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Que T. Doan, Bradley Lawrence Hershey, Changfang Zhu
  • Patent number: 10278600
    Abstract: A method for measuring a neural response to a stimulus. Measurement circuitry is settled prior to a stimulus, by connecting a sense electrode to the measurement circuitry to allow the measurement circuitry to settle towards a bio-electrically defined steady state. Charge is recovered on stimulus electrodes by short circuiting the stimulus electrodes to each other. An electrical stimulus is then applied from the stimulus electrodes to neural tissue, while keeping the sense electrode disconnected from the measurement circuitry. After the stimulus, a delay is imposed during which the stimulus electrodes are open circuited and the sense electrode is disconnected from the measurement circuitry and from the stimulus electrodes. After the delay, a neural response signal present at the sense electrode is measured by connecting the sense electrode to the measurement circuitry.
    Type: Grant
    Filed: June 16, 2016
    Date of Patent: May 7, 2019
    Assignee: Saluda Medical Pty Ltd.
    Inventors: John Louis Parker, Peter Scott Vallack Single, Dean Michael Karantonis
  • Patent number: 10255527
    Abstract: The present disclosure is directed toward systems and methods that enable more accurate digital object classification. In particular, disclosed systems and methods address inaccuracies in digital object classification introduced by variations in classification scores. Specifically, in one or more embodiments, disclosed systems and methods generate probability functions utilizing digital test objects and transform classifications scores into normalized classification scores utilizing probability functions. Disclosed systems and methods utilize normalized classification scores to more accurately classify and identify digital objects in a variety of applications.
    Type: Grant
    Filed: September 21, 2017
    Date of Patent: April 9, 2019
    Assignee: DROPBOX, INC.
    Inventors: David J. Kriegman, Peter N. Belhumeur, Thomas Berg, Nils Peter Welinder
  • Patent number: 10238312
    Abstract: Provided is a wrist-type body component measuring apparatus. The wrist-type body component measuring apparatus includes: a band configured to be worn on a wrist of a user; a first input electrode and a first output electrode disposed on an inside surface of the band and configured to be in contact with the wrist of the user; a second input electrode and a second output electrode disposed on an outside surface of the band; a measuring unit configured to apply a current to the first and second input electrodes and detect a voltage from the first and second output electrodes to measure a body impedance of the user; and an electrode converter configured to convert a disposition of the first and second input electrodes and the first and second output electrodes based on a determination of whether the band is worn on a left wrist or a right wrist of the user.
    Type: Grant
    Filed: July 21, 2015
    Date of Patent: March 26, 2019
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Kunsun Eom, Yeolho Lee, Kak Namkoong, Myounghoon Jung, Seongho Cho
  • Patent number: 10231666
    Abstract: Device and method for determining an efficacy of chronic pain treatment including providing a first set of at least one stimulus to a subject, obtaining first measurements of at least two physiological parameters in response to the first set of at least one stimulus, providing chronic pain treatment to the subject, providing a second set of at least one stimulus to the subject, obtaining second measurements of the at least two physiological parameters in response to the second set of at least one stimulus; and determining an efficacy of the chronic pain treatment by applying a classification algorithm on the first and second measurements of the at least two physiological parameters.
    Type: Grant
    Filed: September 29, 2014
    Date of Patent: March 19, 2019
    Assignee: Medasense Biometrics Ltd.
    Inventors: Galit Zuckerman-Stark, Noam Racheli, Nir Ben-Israel
  • Patent number: 10226627
    Abstract: An example a system includes a neuromodulation generator that may be configured to use electrodes to generate a first modulation field over a test region of neural tissue along the electrodes to prime the neural tissue throughout the test region and a second modulation field to test targeted locations within the test region for therapeutic effectiveness. A memory may be configured to store a first modulation field parameter for generating the first modulation field and a second modulation field parameter set for generating the second modulation field to modulate a targeted location within the test region. The second modulation field parameter set is programmable for modulating other targeted locations. The controller may be configured to control the neuromodulation generator to use the first modulation field parameter set to deliver the first modulation field and to use the second modulation field parameter set to deliver the second modulation field.
    Type: Grant
    Filed: April 28, 2016
    Date of Patent: March 12, 2019
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Que T. Doan, Bradley Lawrence Hershey, Changfang Zhu
  • Patent number: 10111708
    Abstract: System and method for locating and identifying nerves innervating the wall of arteries such as the renal artery are disclosed. The present invention identifies areas on vessel walls that are innervated with nerves; provides indication on whether energy is delivered accurately to a targeted nerve; and provides immediate post-procedural assessment of the effect of energy delivered to the nerve. The method includes at least the steps to evaluate a change in physiological parameters after energy is delivered to an arterial wall; and to determine the type of nerve that the energy was directed to (none, sympathetic or parasympathetic) based on the evaluated results. The system includes at least a device for delivering energy to the wall of blood vessel; sensors for detecting physiological signals from a subject; and indicators to display results obtained using said method. Also provided are catheters for performing the mapping and ablating functions.
    Type: Grant
    Filed: June 29, 2017
    Date of Patent: October 30, 2018
    Assignee: SYMAP MEDICAL (SUZHOU), LTD
    Inventor: Jie Wang
  • Patent number: 10098585
    Abstract: Systems, devices and methods are provided for neuromonitoring, particularly neuromonitoring to reduce the risks of contacting or damaging nerves or causing patient discomfort during and after surgical procedures, including spinal surgeries. The neuromonitoring procedures include monitoring for the presence of or damage to sensory nerves, and optionally includes additional monitoring for motor nerves. In some systems, including systems that monitor for both sensory and motor nerves, components of the monitoring systems (e.g., stimulating electrodes and response sensors), may be combined with one or more surgical instruments. The systems, devices, and methods provide for pre-surgical assessment of neural anatomy and surgical planning, intraoperative monitoring of nerve condition, and post-operative assessment of nerve position and health.
    Type: Grant
    Filed: March 12, 2014
    Date of Patent: October 16, 2018
    Assignee: Cadwell Laboratories, Inc.
    Inventors: Justin Scott, John Cadwell
  • Patent number: 10045714
    Abstract: The present disclosure relates to various methods for determining a neuromuscular blockade status and systems suitable for performing such methods. The present disclosure further relates to electro-stimulation electrodes for stimulating a muscle of a patient, optionally in the context of at least some of the mentioned methods. The present disclosure still further relates to hybrid air-signal connectors for use in an electro-stimulation cuff which can be used in the context of at least some of the cited methods. The present disclosure also relates to electro-stimulation circuits comprising an electrode portion and a track portion suitable for pressure cuffs for electro-stimulation, and to pressure cuffs configured to be arranged around a limb of a patient and comprising an active electro-stimulation electrode and a passive electro-stimulation electrode. These electro-stimulation circuits and pressure cuffs may also be used in the context of at least some of the mentioned methods.
    Type: Grant
    Filed: June 23, 2016
    Date of Patent: August 14, 2018
    Assignees: RGB Medical Devices S.A., Fundació Eurecat
    Inventors: José Javier Rodiera Olivé, Antonio González Martínez, Francisco Javier Corral Herranz, Ricardo Ruiz Nolasco
  • Patent number: 10046160
    Abstract: Disclosed is a method for treating dermis and hypodermis by placing at least a first electrode at the surface of a to-be-treated skin region and contacting a second electrode at another position on the body to be treated then applying between the electrodes a current with pulse component, said current being sufficient to produce electro-osmotic pressure/velocity wavefronts corresponding to the fundamental frequency in blood vessels in the dermis and hypodermis of the skin region.
    Type: Grant
    Filed: September 28, 2012
    Date of Patent: August 14, 2018
    Assignee: NSE Products, Inc.
    Inventor: Dale G. Kern
  • Patent number: 10004445
    Abstract: The invention relates to apparatus and methods for stimulating living tissues to determine nerve conduction properties using a pair of stimulator probes and a plurality of detection electrodes. The invention overcomes the problem of reporting potentially inaccurate nerve conduction results by detecting a stimulator probe short or shunt condition during nerve conduction tests. Detection of a short or shunt condition between two stimulator probes is accomplished by monitoring the magnitude of the stimulus artifact waveform acquired from the detection electrodes and the voltage difference between the stimulator probes. A test is flagged when magnitude of the stimulus artifact waveform is below a first threshold and voltage difference between the two stimulator probes is below a second threshold. The first and second threshold values are determined based on the known spatial relationship between the stimulator probes and detection electrodes. Feedback is provided to the tester to alert defective test conditions.
    Type: Grant
    Filed: October 2, 2014
    Date of Patent: June 26, 2018
    Assignee: NeuroMetrix, Inc.
    Inventors: Bonniejean Boettcher, Glenn Herb, Xuan Kong
  • Patent number: 9999766
    Abstract: A device and method verifies the electrical output of a microcurrent therapy device. The current and/or voltage of an electrical pulse, being supplied to an electrode adapted to contact tissue, is measured by a control unit. The current and/or voltage is supplied by the control unit according to a predefined waveform. Any difference in the current or voltage of the electrical pulse being supplied with respect to the current or voltage of the predefined waveform is detected.
    Type: Grant
    Filed: November 20, 2009
    Date of Patent: June 19, 2018
    Assignee: Synapse Electroceutical Limited
    Inventor: Charles Richard Elliott
  • Patent number: 9949651
    Abstract: A surgical system kit is described. The surgical system kit includes a peripheral electrode, a surgical access instrument configured to be placed in a surgical target site, and a control unit. The surgical access instrument has a body with a proximal end, and a distal end, two or more electrodes on the distal end at fixed locations and spaced apart a known distance. The control unit is configured to send a signal to the peripheral electrode, receive information indicative of a neural response from at least one electrode of the surgical access instrument, and interpret the information according to a nerve conduction velocity modality to measure the nerve conduction velocity through the segment of the nerve.
    Type: Grant
    Filed: October 31, 2012
    Date of Patent: April 24, 2018
    Assignee: DEPUY SYNTHES PRODUCTS, INC.
    Inventors: Corbett Stone, Robin Vaughan, Kabir Gambhir
  • Patent number: 9936889
    Abstract: A method of controlling a threshold for detecting peaks of physiological signals includes: obtaining a physiological signal measured from a person being examined; determining whether a peak of the physiological signals is detected based on a result of comparing the physiological signals with a threshold; and controlling the threshold based on a minimum threshold and either the threshold or a feature value of the detected peak based on a result of the determining. When a threshold for detecting peaks of physiological signals is controlled, even if an interval between the peaks is irregular or there is a large difference in values of the peaks, the peaks can be accurately detected.
    Type: Grant
    Filed: March 1, 2013
    Date of Patent: April 10, 2018
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Chang-mok Choi, Youn-ho Kim, Kun-soo Shin
  • Patent number: 9931077
    Abstract: The present invention involves systems and methods for determining nerve proximity, nerve direction, and pathology relative to a surgical instrument based on an identified relationship between neuromuscular responses and the stimulation signal that caused the neuromuscular responses.
    Type: Grant
    Filed: September 7, 2016
    Date of Patent: April 3, 2018
    Assignee: NuVasive, Inc.
    Inventors: Norbert F. Kaula, Jeffrey J. Blewett, James Gharib, Allen Farquhar
  • Patent number: 9919152
    Abstract: Systems and methods for gastrointestinal electrical stimulation to treat abnormalities in gastrointestinal motility are provided. In some embodiments, a system for relieving ileus includes an intraluminal catheter comprising: a catheter body having a proximal tip and a distal tip and a duodenal portion proximal to the distal tip of the catheter; and at least one electrode pair disposed along the duodenal portion of the intraluminal catheter, the at least one electrode pair being configured to detect a sensing information indicative of myoelectric activity of a patient and to provide stimulation energy; a sensing system in communication with the at least one electrode pair to receive the sensing information; and an energy delivery system in communication with the at least one electrode pair and the sensing system, the electrical energy delivery system being configured to delivery energy to the patient through the at least one second electrode pair based on the sensing information from the sensing system.
    Type: Grant
    Filed: November 5, 2015
    Date of Patent: March 20, 2018
    Assignee: Enterastim, Inc.
    Inventors: Andy H. Levine, Michael Partsch, Jay Pasricha, Jiande Chen
  • Patent number: 9846822
    Abstract: The present disclosure is directed toward systems and methods that enable more accurate digital object classification. In particular, disclosed systems and methods address inaccuracies in digital object classification introduced by variations in classification scores. Specifically, in one or more embodiments, disclosed systems and methods generate probability functions utilizing digital test objects and transform classifications scores into normalized classification scores utilizing probability functions. Disclosed systems and methods utilize normalized classification scores to more accurately classify and identify digital objects in a variety of applications.
    Type: Grant
    Filed: December 31, 2015
    Date of Patent: December 19, 2017
    Assignee: DROPBOX, INC.
    Inventors: David J. Kriegman, Peter N. Belhumeur, Thomas Berg, Nils Peter Welinder
  • Patent number: 9814858
    Abstract: Apparatus for administering certain nerve blocks includes a sheath constructed from a flexible ultrasound echogenic material, a more rigid introducer/dilator for introducing the sheath into the patient, and an ultrasound echogenic catheter for inserting through the sheath once the distal end of the sheath is in place adjacent the nerve(s) to be blocked and the introducer/dilator has been withdrawn. The catheter has provisions at its proximal end for connecting to a source of local anesthetic. Methods for use of this apparatus are also described.
    Type: Grant
    Filed: January 21, 2016
    Date of Patent: November 14, 2017
    Assignee: Avent, Inc.
    Inventor: Michael F. Guzman
  • Patent number: 9808208
    Abstract: A device, system and method for monitoring carpal tunnel syndrome (“CTS”). The device comprises a body configured to be worn by a user, sensors, a processor, a vibration mechanism, and a power source. The sensors monitor a position of the user's hand to prevent CTS. The processor of the device is configured to determine if the user's hand is in a CTS position and the processor is configured to generate an alert signal to alert the user to the CTS position.
    Type: Grant
    Filed: April 5, 2017
    Date of Patent: November 7, 2017
    Assignee: Focal Wellness, Inc.
    Inventor: Randal Erman