Hyperthermia Patents (Class 601/3)
  • Patent number: 11957697
    Abstract: Disclosed is a viral receptor that contains a sialic acid compound at one side thereof to provide binding affinity to a virus, and contains a lipid at the other side thereof, and that can be widely used for the treatment of viral infections based on this characteristic.
    Type: Grant
    Filed: September 17, 2021
    Date of Patent: April 16, 2024
    Assignee: MVRIX CO., LTD.
    Inventors: Woo Jae Chung, Dae Hyuk Kweon, Jinhyo Chung, Caleb Hong
  • Patent number: 11944848
    Abstract: The system and process of therapeutic and effective cavitation by using ultrasound to collapse gas vesicles as well as cavitate the bubbles produced from the collapsed gas vesicles. Therapeutic effect includes, but is not limited to lysing cells by cavitation. The cells expressing the gas vesicles can optionally be used as delivery cells to preform tasks such as transporting the gas vesicles into deep tissue areas, releasing compounds at the cavitation site, and more. The gas vesicles can optionally be modified to facilitate getting the bubbles near the cavitation targets by functionalizing the gas vesicles.
    Type: Grant
    Filed: July 29, 2022
    Date of Patent: April 2, 2024
    Assignee: CALIFORNIA INSTITUTE OF TECHNOLOGY
    Inventors: Avinoam D. Bar-Zion, Atousa Nourmahnad, David Maresca, Mikhail Shapiro
  • Patent number: 11918652
    Abstract: An acoustic wave medical treatment of a body part of an individual in which nanoparticles are administered to the body part of the individual and the acoustic wave is applied on the body part. The acoustic wave is sequentially applied on the body part, and/or the nanoparticles are magnetosomes. Also, compositions that include these nanoparticles.
    Type: Grant
    Filed: November 29, 2018
    Date of Patent: March 5, 2024
    Assignee: NANOBACTERIE
    Inventor: Edouard Alphandery
  • Patent number: 11896821
    Abstract: A method for aesthetic soft tissue treatment includes placing at least one applicator in contact with the patient's body. The applicator has at least one electrode. Electrotherapy and radio frequency therapy are provided to the soft tissue, optionally with overlay or sequentially. A handheld applicator may be used, with the applicator moving during the therapy, which may provide muscle stimulation in the patient, or provide an analgesic effect during the treatment. A spacing object may be positioned between the skin of the patient and the applicator.
    Type: Grant
    Filed: April 7, 2023
    Date of Patent: February 13, 2024
    Assignee: BTL Healthcare Technologies A.S.
    Inventor: Tomás Schwarz
  • Patent number: 11890493
    Abstract: Systems and methods for transvaginal high intensity concentrated ultrasound. Urinary incontinence is treated through application of high intensity ultrasound to tissue structures to affect a change in the tissue.
    Type: Grant
    Filed: May 15, 2019
    Date of Patent: February 6, 2024
    Assignee: Acoustic Medsystems, Inc.
    Inventor: Everette C. Burdette
  • Patent number: 11844722
    Abstract: Systems, methods and devices for utilizing heat transfer parameters or energy expenditure of devices providing controlled hypothermia, normothermia or hyperthermia to detect changes, or the absence of changes, a patient's endogenous set-point temperature; which is not available during exogenously induced targeted temperature management. A particular embodiment would allow detection of fever in patients undergoing targeted temperature managed.
    Type: Grant
    Filed: March 31, 2021
    Date of Patent: December 19, 2023
    Assignee: ZOLL Circulation, Inc.
    Inventors: Norman A. Paradis, B. Stuart Trembly
  • Patent number: 11819881
    Abstract: A micromachined ultrasonic transducer (MUT) which comprises a first piezoelectric layer and a second piezoelectric layer. The first piezoelectric layer is disposed between a first electrode and a second electrode. The second piezoelectric layer is disposed between the second electrode and a third electrode. At least the first electrode has first and second ends along a first axis, one or more of which is defined by a radius of curvature R. A second axis normal to the first passes through a midpoint of the first axis. A half-width of the first electrode is defined by a length L measured from the midpoint, in the direction of the second axis, to an outer perimeter of the first electrode. A total width of the first electrode at its narrowest point along the first axis is at most 2L such that the first electrode has a concave shape. R/L, is greater than 1.
    Type: Grant
    Filed: June 30, 2021
    Date of Patent: November 21, 2023
    Assignee: Exo Imaging, Inc.
    Inventors: Haesung Kwon, Brian Bircumshaw, Sandeep Akkaraju
  • Patent number: 11813485
    Abstract: Systems and methods for histotripsy and immunotherapy are provided. In some embodiments, histotripsy can be applied to a target tissue volume to lyse and solubilize the target tissue volume to release tumor antigens. In some embodiments, an immune response of the treatment can be evaluated. In other embodiments, an immune therapy can be applied after applying the histotripsy. In one embodiment, the lysed and solubilized cells can be extracted from the tissue. The extracted cells can be used to create immune therapies, including vaccines.
    Type: Grant
    Filed: January 28, 2021
    Date of Patent: November 14, 2023
    Assignees: The Regents of the University of Michigan, The United States Government as represented by the Department of Veterans Affairs
    Inventors: Zhen Xu, Clifford Suhyun Cho
  • Patent number: 11806874
    Abstract: A robot system includes a robot including rotary joints to be rotated and driven about axes by a motor, and a control device that controls the motor based on external force torque about the axes that acts on each of the respective rotary joints, a force point to apply external force is preset to the robot, and the control device calculates distances from the axes of the rotary joints to the force point based on angles of the rotary joints of the robot, and adjusts and increases an operation amount to the motor as the calculated distances decrease.
    Type: Grant
    Filed: September 11, 2020
    Date of Patent: November 7, 2023
    Assignee: FANUC CORPORATION
    Inventor: Shintarou Hori
  • Patent number: 11786259
    Abstract: Systems and methods for ultrasonically-assisted placement of orthopedic implants is described herein. An example method may comprise delivering ultrasonic energy to a surgical instrument such as a screw driver, Jamshidi needle, awl, probe, or tap that is in contact with the bone region targeted for removal and/or being prepared for implant placement. The method may further comprise delivering the ultrasonic energy via a probe passed through a cannulated surgical instrument and/or implant. An example system may comprise an ultrasonic generator coupled to a transducer, a probe or surgical instrument coupled to the transducer, a cannulated surgical instrument that allows passage of the probe, and a computing device configured to control the ultrasonic generator and take input from the user.
    Type: Grant
    Filed: May 27, 2020
    Date of Patent: October 17, 2023
    Assignee: MiRus LLC
    Inventors: Angad Singh, Jay Yadav
  • Patent number: 11770816
    Abstract: A communication system includes multiple nodes of a time-sensitive network and a scheduler device. At least one of the nodes is configured to obtain a first signal that is represented in a frequency domain by multiple frequency components. The scheduler device generates a schedule for transmission of signals including the first signal within the time-sensitive network. The schedule defines multiple slots assigned to different discrete frequency sub-bands within a frequency band. The slots have designated transmission intervals. The nodes are configured to transmit the first signal through the time-sensitive network to a listening device such that the first signal is received at the listening device within a designated time window according to the schedule. At least some of the frequency components of the first signal are transmitted through the time-sensitive network within different slots of the schedule based on the frequency sub-bands assigned to the slots.
    Type: Grant
    Filed: December 23, 2020
    Date of Patent: September 26, 2023
    Assignee: General Electric Company
    Inventors: Stephen Francis Bush, Guillaume Mantelet
  • Patent number: 11730058
    Abstract: In some embodiments, a piezoelectric device is provided. The piezoelectric device includes a semiconductor substrate. A first electrode is disposed over the semiconductor substrate. A piezoelectric structure is disposed on the first electrode. A second electrode is disposed on the piezoelectric structure. A heating element is disposed over the semiconductor substrate. The heating element is configured to heat the piezoelectric structure to a recovery temperature for a period of time, where heating the piezoelectric structure to the recovery temperature for the period of time improves a degraded electrical property of the piezoelectric device.
    Type: Grant
    Filed: May 16, 2019
    Date of Patent: August 15, 2023
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Alexander Kalnitsky, Chun-Ren Cheng, Chi-Yuan Shih, Kai-Fung Chang, Shih-Fen Huang, Yi-Chuan Teng, Yi Heng Tsai, You-Ru Lin, Yan-Jie Liao
  • Patent number: 11717365
    Abstract: A LUS robotic surgical system is trainable by a surgeon to automatically move a LUS probe in a desired fashion upon command so that the surgeon does not have to do so manually during a minimally invasive surgical procedure. A sequence of 2D ultrasound image slices captured by the LUS probe according to stored instructions are processable into a 3D ultrasound computer model of an anatomic structure, which may be displayed as a 3D or 2D overlay to a camera view or in a PIP as selected by the surgeon or programmed to assist the surgeon in inspecting an anatomic structure for abnormalities. Virtual fixtures are definable so as to assist the surgeon in accurately guiding a tool to a target on the displayed ultrasound image.
    Type: Grant
    Filed: July 11, 2022
    Date of Patent: August 8, 2023
    Assignee: Intuitive Surgical Operations, Inc.
    Inventors: Christopher J. Hasser, Russell H. Taylor, Joshua Leven, Michael Choti
  • Patent number: 11696791
    Abstract: A surgical instrument connectable to a surgical energy module that is configured to provide a first drive signal at a first frequency range for driving a first energy modality and a second drive signal at a second frequency range for driving a second energy modality is provided. The surgical instrument can comprise a surgical instrument component configured to receive power from a direct current (DC) power source, an end effector, and a circuit. The circuit can be configured to convert the first electrical signal to a DC voltage, apply the DC voltage to the surgical instrument component, and deliver the second energy modality to the end effector according to the second drive signal. Alternatively, the circuit can be disposed within a cable assembly configured to connect the surgical instrument to the surgical energy module.
    Type: Grant
    Filed: September 5, 2019
    Date of Patent: July 11, 2023
    Assignee: Cilag GmbH International
    Inventors: Joshua Henderson, Joshua P. Morgan, Andrew W. Carroll, Jeffrey L. Aldridge, Eitan T. Wiener
  • Patent number: 11590370
    Abstract: Systems and methods for treating skin and subcutaneous tissue with energy such as ultrasound energy are disclosed. In various embodiments, ultrasound energy is applied at a region of interest to affect tissue by cutting, ablating, micro-ablating, coagulating, or otherwise affecting the subcutaneous tissue to conduct numerous procedures that are traditionally done invasively in a non-invasive manner. Lifting sagging tissue on a face, neck, and/or body are described. Treatment with heat is provided in several embodiments.
    Type: Grant
    Filed: October 27, 2020
    Date of Patent: February 28, 2023
    Assignee: Guided Therapy Systems, LLC
    Inventors: Peter G. Barthe, Michael H. Slayton, Inder Raj S. Makin
  • Patent number: 11531207
    Abstract: According to exemplary embodiments of the present disclosure, it is possible to provide method, system, arrangement, computer-accessible medium and device to stimulate individual neurons in brain slices in any arbitrary spatio-temporal pattern, using two-photon uncaging of photo-sensitive compounds such as MNI-glutamate and/or RuBi-Glutamate with beam multiplexing. Such exemplary method and device can have single-cell and three-dimensional precision. For example, by sequentially stimulating up to a thousand potential presynaptic neurons, it is possible to generate detailed functional maps of inputs to a cell. In addition, it is possible to combine this exemplary approach with two-photon calcium imaging in an all-optical method to image and manipulate circuit activity. Further exemplary embodiments of the present disclosure can include a light-weight, compact portable device providing for uses in a wide variety of applications.
    Type: Grant
    Filed: December 18, 2017
    Date of Patent: December 20, 2022
    Assignee: The Trustees of Columbia University in the City of New York
    Inventors: Volodymyr Nikolenko, Rafael Yuste, Brendon O. Watson, Darcy Peterka
  • Patent number: 11490601
    Abstract: Methods, systems, and apparatus, including computer programs encoded on computer-storage media, for self-calibrating ultrasonic removal of sea lice. In some implementations, a method includes generating, by transducers distributed in a sea lice treatment station, a first set of ultrasonic signals, detecting a second set of ultrasonic signals in response to propagation of the first set of ultrasonic signals through water, determining propagation parameters of the sea lice treatment station based on the second set of ultrasonic signals that were detected, obtaining an image of a sea louse on a fish in the sea lice treatment station, determining, from the image, a location of the sea louse in the sea lice treatment station, and generating a third set of ultrasonic signals that focuses energy at the sea louse.
    Type: Grant
    Filed: December 23, 2020
    Date of Patent: November 8, 2022
    Assignee: X Development LLC
    Inventors: Grace Calvert Young, Matthew Aaron Knoll, Bryce Jason Remesch, Peter Kimball
  • Patent number: 11446523
    Abstract: The system and process of therapeutic and effective cavitation by using ultrasound to collapse gas vesicles as well as cavitate the bubbles produced from the collapsed gas vesicles. Therapeutic effect includes, but is not limited to lysing cells by cavitation. The cells expressing the gas vesicles can optionally be used as delivery cells to preform tasks such as transporting the gas vesicles into deep tissue areas, releasing compounds at the cavitation site, and more. The gas vesicles can optionally be modified to facilitate getting the bubbles near the cavitation targets by functionalizing the gas vesicles.
    Type: Grant
    Filed: March 29, 2020
    Date of Patent: September 20, 2022
    Assignee: CALIFORNIA INSTITUTE OF TECHNOLOGY
    Inventors: Avinoam D. Bar-Zion, Atousa Nourmahnad, David Maresca, Mikhail Shapiro
  • Patent number: 11439462
    Abstract: A system and method for laser skin resurfacing is provided. The system comprises a topical numbing composition, cryogenically cooled air, a fractional laser, and one or more topical compositions. The topical numbing composition and the cryogenically cooled air are operative to reduce patient pain and discomfort. The cryogenically cooled air is further operative to protect the patient's skin from thermal damage. The fractional laser is operative to ablate the patient's skin cells. The method comprises the steps of applying a topical numbing composition to an area of a patient's skin comprising the treatment area; directing cryogenically cooled air and a fractional laser to the treatment area; and applying one or more topical compositions to the treatment area.
    Type: Grant
    Filed: October 15, 2019
    Date of Patent: September 13, 2022
    Inventor: Simon Ourian
  • Patent number: 11428808
    Abstract: Some embodiments of the present disclosure relate to the technical field of ultrasonic detection, and disclose an ultrasonic detection method, an ultrasonic detection system, and a related apparatus. The ultrasonic detection method includes: acquiring a reflected ultrasonic signal transmitted by an ultrasonic detector; generating an ultrasonic image according to the reflected ultrasonic signal, and displaying the ultrasonic image; acquiring information of a mark input by an operator based on the ultrasonic image; determining a marking position according to the information of the mark; transmitting the marking position to the ultrasonic detector, for the ultrasonic detector to indicate a corresponding position of the marking position on a surface of a detected object. The present disclosure resolves problems such as difficulty in operating on the surface of the detected object during ultrasonic detection and a low success rate of operation.
    Type: Grant
    Filed: September 13, 2019
    Date of Patent: August 30, 2022
    Assignee: CLOUDMINDS (SHENZHEN) HOLDINGS CO., LTD.
    Inventors: Lei Luo, Qingwei Ji
  • Patent number: 11419693
    Abstract: A multi-layer, super-planar laminate structure can be formed from distinctly patterned layers. The layers in the structure can include at least one rigid layer and at least one flexible layer; the rigid layer includes a plurality of rigid segments, and the flexible layer can extend between the rigid segments to serve as a joint. The layers are then stacked and bonded at selected locations to form a laminate structure with inter-layer bonds, and the laminate structure is flexed at the flexible layer between rigid segments to produce an expanded three-dimensional structure, wherein the layers are joined at the selected bonding locations and separated at other locations. A layer with electrical wiring can be included in the structure for delivering electric current to devices on or in the laminate structure.
    Type: Grant
    Filed: July 30, 2019
    Date of Patent: August 23, 2022
    Assignee: President and Fellows of Harvard College
    Inventors: Joshua B. Gafford, Samuel B. Kesner, Conor J. Walsh, Michael Karpelson, Robert J. Wood, Zivthan Dubrovsky, Benjamin I. Goldberg, Kathleen O'Donnell, Michael J. Smith
  • Patent number: 11235179
    Abstract: A method and system for energy-based (e.g., ultrasound treatment and/or other modalities) of skin glands are provided. An exemplary method and system for targeted treatment of skin glands, such as sweat and/or sebaceous glands, can be configured in various manners, such as through use of therapy only, therapy and monitoring, imaging and therapy, or therapy, imaging, and monitoring, and/or through use of focused, unfocused, or defocused ultrasound (or other energy) through control of various spatial and temporal parameters. As a result, ablative energy can be deposited at the particular depth at which the skin gland population is located below the skin surface.
    Type: Grant
    Filed: March 23, 2021
    Date of Patent: February 1, 2022
    Assignee: Guided Therapy Systems, LLC
    Inventors: Peter G. Barthe, Michael H. Slayton, Inder Raj S. Makin
  • Patent number: 11235180
    Abstract: A method and system for noninvasive face lifts and deep tissue tightening are disclosed. An exemplary method and treatment system are configured for the imaging, monitoring, and thermal injury to treat the SMAS region. In accordance with an exemplary embodiment, the exemplary method and system are configured for treating the SMAS region by first, imaging of the region of interest for localization of the treatment area and surrounding structures, second, delivery of ultrasound energy at a depth, distribution, timing, and energy level to achieve the desired therapeutic effect, and third to monitor the treatment area before, during, and after therapy to plan and assess the results and/or provide feedback.
    Type: Grant
    Filed: March 23, 2021
    Date of Patent: February 1, 2022
    Assignee: Guided Therapy Systems, LLC
    Inventors: Michael H. Slayton, Peter G. Barthe, Inder Raj S. Makin, Brian D. O'Connor
  • Patent number: 11103731
    Abstract: Various approaches for heating a target region substantially uniformly include identifying one or more locations of one or more hot spots in the target region and/or surrounding regions of the target region during an ultrasound sonication process; computing a temporal variation to an output parameter of at least one of the transducer elements based at least in part on the identified location(s) of the hot spot(s); and operating the at least one transducer element to achieve the temporal variation of the output parameter so as to minimize the hot spot(s).
    Type: Grant
    Filed: January 12, 2017
    Date of Patent: August 31, 2021
    Assignee: INSIGHTEC, LTD.
    Inventors: Kobi Vortman, Shuki Vitek, Eyal Zadicario, Yoav Levy
  • Patent number: 11076839
    Abstract: An ultrasonic inspection phantom includes ultrasonic inspection phantom including a hydrogel including water, a polymer, and a mineral.
    Type: Grant
    Filed: November 28, 2018
    Date of Patent: August 3, 2021
    Assignee: Ricoh Company, Ltd.
    Inventors: Tatsuya Niimi, Takashi Matsumura, Takuya Saito
  • Patent number: 11058447
    Abstract: A surgical instrument includes a transducer configured to produce vibrations at a predetermined frequency. An ultrasonic end effector extends along a longitudinal axis and is coupled to the transducer. The ultrasonic end effector comprises an ultrasonic blade and a clamping mechanism. A controller receives a feedback signal from the ultrasonic end effector and the feedback signal is measured by the controller. A lumen is adapted to couple to a pump. The controller is configured to control fluid flow through the lumen based on the feedback signal, and the lumen is located within the ultrasonic end effector.
    Type: Grant
    Filed: June 1, 2015
    Date of Patent: July 13, 2021
    Assignee: Cilag GmbH International
    Inventor: Kevin L. Houser
  • Patent number: 11058449
    Abstract: An ultrasonic surgical device including an elongate waveguide having a longitudinal axis and a distal end, and a blade extending away from the distal end of the waveguide, the blade including a curved portion that has at least five faces extending lengthwise along at least a portion of the length of the blade. Each of the faces has a width that extends perpendicular to the longitudinal axis of the waveguide and a length that extends orthogonal to the width. Each of the faces is flat across its width and is either flat along its entire length or includes one or more curved segments along its length, with each of the curved segments of an individual face being curved in the same direction. A method of fabricating an ultrasonic surgical device is also provided.
    Type: Grant
    Filed: August 12, 2016
    Date of Patent: July 13, 2021
    Assignee: REACH SURGICAL, INC.
    Inventor: Jean Beaupre
  • Patent number: 11013629
    Abstract: An intraluminal device and method of fixation of an intraluminal device in a mammalian lumen or hollow organ that experiences peristalsis includes a fixation system that is adapted to resist distal migration of the intraluminal device in the lumen or hollow organ. The intraluminal device has a wall surface configured to the size and shape of a mammalian lumen or hollow organ. A fixation system is adapted to resist distal migration of the body in the lumen or hollow organ. The fixation system includes a bio-absorbable material around at least one of the elongated members.
    Type: Grant
    Filed: May 1, 2019
    Date of Patent: May 25, 2021
    Assignee: BFKW, LLC
    Inventor: Randal S. Baker
  • Patent number: 10960236
    Abstract: A method and system for noninvasive face lifts and deep tissue tightening are disclosed. An exemplary method and treatment system are configured for the imaging, monitoring, and thermal injury to treat the SMAS region. In accordance with an exemplary embodiment, the exemplary method and system are configured for treating the SMAS region by first, imaging of the region of interest for localization of the treatment area and surrounding structures, second, delivery of ultrasound energy at a depth, distribution, timing, and energy level to achieve the desired therapeutic effect, and third to monitor the treatment area before, during, and after therapy to plan and assess the results and/or provide feedback.
    Type: Grant
    Filed: November 27, 2019
    Date of Patent: March 30, 2021
    Assignee: Guided Therapy Systems, LLC
    Inventors: Michael H. Slayton, Peter G. Barthe, Inder Raj S. Makin, Brian D. O'Connor
  • Patent number: 10933259
    Abstract: The present invention, in some embodiments thereof, relates to a devices and methods for intravascular denervation and assessment thereof and, more particularly, but not exclusively, to devices and methods for renal denervation. Some embodiments of the invention relate to an intravascular catheter configured for ultrasonic ablation of the tissue, comprising a plurality of piezoelectric transceivers. In some embodiments, an intravascular distancing device is provided, the device adapted for obtaining at least a minimal distance between an ultrasound emitting element and a tissue, such as the blood vessel wall. Some embodiments of the invention relate to assessment of renal sympathetic denervation (RSD) treatment effectiveness. Some embodiments of the invention relate to processing echo of signals, such as processing of signals to characterize physical and/or mechanical properties of the blood vessel.
    Type: Grant
    Filed: May 22, 2014
    Date of Patent: March 2, 2021
    Assignee: CardioSonic Ltd.
    Inventors: Ariel Sverdlik, Or Shabtay, Ronen Neeman, Giora Beit-Yaakov, Lilah Marziano, Avital Schauder, Marina Dubinsky, Yehuda Zadok, Jonathan Yalom
  • Patent number: 10835172
    Abstract: A device for assessing sunscreen coverage on a person includes a casing a lens assembly extending from about a front facing surface of the casing and allowing transmissivity to light energy in a wavelength range of about 300 to about 400 nm. A filter is in optical communication with the lens assembly and having a high optical density above about 390 nm and a low optical density below about 390 nm. A sensor is in optical communication with the filter, the sensor having a signal/noise ratio that is greater than about 36 db. A controller is configured for receiving input from a user to control the device. A display screen may be in communication with a controller for displaying an image associated with the filtered light.
    Type: Grant
    Filed: October 29, 2018
    Date of Patent: November 17, 2020
    Assignee: Voxelight, LLC
    Inventors: David S. Cohen, Jonathan Meyer, Wolfgang Wagner, Connie Tran, Andrew Meyer
  • Patent number: 10695135
    Abstract: The present invention relates to a non-invasive positioning system for screwing and fixing a bone, where a intramedullary nail is inserted to marrow of the bone, and the intramedullary nail comprises a wall and at least one through-hole through the wall for screwing and fixing by at least one corresponding set screw, the system comprises: an in vitro locator having at least one light source to emit a laser with a wavelength to the muscle tissue to form an incident light and running through the muscle tissue and the bone to form a penetrated light, an optical holder having an optical lens and a positioning ring portion for removably disposing the optical lens, wherein the focusing spot of the incident light, the focusing spot of the penetrated light, and the at least one through-hole are aligned in a line to confirm a linear position for screwing and fixing the intramedullary nail.
    Type: Grant
    Filed: November 7, 2017
    Date of Patent: June 30, 2020
    Assignee: KAOHSIUNG MEDICAL UNIVERSITY
    Inventors: Yin-Chih Fu, Jau-Sheng Wang, Tien-Ching Lee, Mei-Ling Ho, Wei-Chi Chen
  • Patent number: 10561862
    Abstract: In some embodiments, an ultrasound treatment system can comprise: a ultrasound transducer comprising a subdivided surface comprising a plurality of electronically isolated pieces; a power source coupled to at least two of the pieces, wherein the power supply is configured to independently shape a temporal delay or a spatial delay, as compared to each other, of acoustic energy emitted from the at least two pieces; wherein each of the at least two pieces shape the acoustic energy, independently, into a thermal zone in subcutaneous tissue.
    Type: Grant
    Filed: March 17, 2014
    Date of Patent: February 18, 2020
    Assignee: Guided Therapy Systems, LLC
    Inventor: Michael H Slayton
  • Patent number: 10525288
    Abstract: A method and system for noninvasive face lifts and deep tissue tightening are disclosed. An exemplary method and treatment system are configured for the imaging, monitoring, and thermal injury to treat the SMAS region. In accordance with an exemplary embodiment, the exemplary method and system are configured for treating the SMAS region by first, imaging of the region of interest for localization of the treatment area and surrounding structures, second, delivery of ultrasound energy at a depth, distribution, timing, and energy level to achieve the desired therapeutic effect, and third to monitor the treatment area before, during, and after therapy to plan and assess the results and/or provide feedback.
    Type: Grant
    Filed: April 20, 2018
    Date of Patent: January 7, 2020
    Assignee: Guided Therapy Systems, LLC
    Inventors: Michael H. Slayton, Peter G. Barthe, Inder Raj S. Makin, Brian D. O'Connor
  • Patent number: 10500128
    Abstract: An apparatus for generating an acoustic energy pulse and delivering it into a body is described. The apparatus includes a generator for creating an acoustic energy pulse having an energy density field that can be measured at all points within a space in the shape of an imaginary cylinder having a length greater than or equal to 2 cm and a diameter. The cylindrically shaped space has a cylinder longitudinal axis oriented relative to a longitudinal axis of the energy pulse at an angle in the range from zero to twenty degrees. A minimum energy density for the pulse at all locations within the cylindrically shaped space is at least 50% of a maximum energy density for the pulse within the space.
    Type: Grant
    Filed: September 19, 2018
    Date of Patent: December 10, 2019
    Assignee: Acoustic Wave Cell Therapy, Inc.
    Inventors: Charles R. Engles, Yung Chen Su
  • Patent number: 10390877
    Abstract: Systems and methods are disclosed for treating back pain associated with a vertebral body of a patient. The system may include an external energy source configured to be positioned at a location external to the body of the patient, a linear configured to drive translation of the external source in one or more axes, a computer coupled to the external source and linear drive and programming executable on said computer for determining a target treatment site within or near the vertebral body based on acquired imaging data, positioning a focal point of the external energy source to substantially coincide with the target treatment site, and delivering a treatment dose of therapeutic energy at said target treatment site, wherein the treatment dose is configured to modulate a nerve within or near the vertebral body.
    Type: Grant
    Filed: December 21, 2012
    Date of Patent: August 27, 2019
    Assignee: Relievant Medsystems, Inc.
    Inventors: Michael H Heggeness, Richard C Pellegrino, Rex Peters
  • Patent number: 10300306
    Abstract: The present invention provides n ultrasonic treatment device (10) for heating a portion of a subject of interest, comprising a ultrasonic irradiation unit (12) for generating high-intensity focused ultrasonic irradiation, whereby a beam path of the ultrasonic irradiation is movable along a trajectory for depositing ultrasonic energy within a target zone (22) of the subject of interest, and a control unit (20) for controlling the ultrasonic irradiation unit (12) to move the beam path of the ultrasonic irradiation along the trajectory and to apply an ultrasonic dose to the target zone (22), wherein the control unit (20) is adapted to receive temperature information of the target zone (22) and to control the ultrasonic irradiation unit (12) based on the received temperature information, and the control unit (20) is adapted to control the ultrasonic irradiation unit (12) based on the temperature of a current (26) and at least one previous direction (28) of the beam path of the ultrasonic irradiation along the tra
    Type: Grant
    Filed: February 11, 2014
    Date of Patent: May 28, 2019
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventor: Charles Mougenot
  • Patent number: 10299818
    Abstract: A device (1) for treatments of endoscopic resection/removal of tissues, includes: a handpiece apt to be held by an user; an external tubular element (3) having a proximal end, a distal end and a cutting aperture disposed at the distal end; an internal tubular element (4) apt to be pivotally housed in the external tubular element (3) and having a proximal end, a distal end and a cutting tip at its distal end. The device also includes guide elements (5) for rotating and/or oscillating the internal tubular element (4) with respect to the external tubular element (3). The guide elements (5) include an electric motor (19) and electric feeding element for the electric motor (19) and are contained completely inside the handpiece (2).
    Type: Grant
    Filed: June 14, 2010
    Date of Patent: May 28, 2019
    Assignee: FRII SA
    Inventor: Raffaele Riva
  • Patent number: 10251657
    Abstract: Methods, computing devices, and a computer-readable medium are described herein related to fragmenting or comminuting an object in a subject using a burst wave lithotripsy (BWL) waveform. A computing device, such a computing device coupled to a transducer, may carry out functions for producing a BWL waveform. The computing device may determine a burst frequency for a number of bursts in the BWL waveform, where the number of bursts includes a number of cycles. Further, the computing device may determine a cycle frequency for the number of cycles. Yet further, the computing device may determine a pressure amplitude for the BWL waveform, where the pressure amplitude is less than or equal to 8 MPa. In addition, the computing device may determine a time period for producing the BWL waveform.
    Type: Grant
    Filed: May 2, 2014
    Date of Patent: April 9, 2019
    Assignee: University of Washington through its Center for Commercialization
    Inventors: Adam D. Maxwell, Bryan W. Cunitz, Wayne Kreider, Oleg A. Sapozhnikov, Ryan S. Hsi, Michael R. Bailey
  • Patent number: 10232161
    Abstract: An ultrasonic device for transversely manipulating drug delivery carriers includes a driving unit and a transducer. The transducer is electrically connected to the driving unit and has a piezoelectric sheet in a curved shape. The piezoelectric sheet includes a plurality of channels, and a phase difference is generated between every two of the channels by the driving unit for producing an acoustic vortex.
    Type: Grant
    Filed: September 13, 2016
    Date of Patent: March 19, 2019
    Assignee: NATIONAL TSING HUA UNIVERSITY
    Inventors: Wei-Chen Lo, Chih-Kuang Yeh, Shih-Tsung Kang, Zong-Han Hsieh
  • Patent number: 10143489
    Abstract: A treatment method and medical device are disclosed for cutting a substance inside a body lumen. The medical device includes a drive shaft that is rotatable; a strut that is rotatably connected to a distal side of the drive shaft, that extends along a rotation axis, and whose central portion is expandable radially outward; and a support portion that is rotatably connected to the distal side of the drive shaft, that is formed in a mesh shape and a tubular shape while including multiple gaps, at least a portion of which is positioned on a radially inner side of the strut, and that is expandable radially outward by a central portion in a direction extending along the rotation axis being bent.
    Type: Grant
    Filed: November 3, 2015
    Date of Patent: December 4, 2018
    Assignee: TERUMO KABUSHIKI KAISHA
    Inventors: Junichi Kobayashi, Tomonori Hatta, Taiga Nakano
  • Patent number: 10117669
    Abstract: A treatment medical and medical device are disclosed for cutting a substance inside a body lumen. The medical device includes a drive shaft that is rotatable; a strut that is rotatably connected to a distal side of the drive shaft, that extends along a rotation axis, and whose central portion is expandable radially outward; and a support portion that is rotatably connected to the distal side of the drive shaft, that is formed in a mesh shape and a tubular shape while including multiple gaps, at least a portion of which is positioned on a radially inner side of the strut, and that is expandable radially outward by a central portion in a direction extending along the rotation axis being bent.
    Type: Grant
    Filed: November 3, 2015
    Date of Patent: November 6, 2018
    Assignee: TERUMO KABUSHIKI KAISHA
    Inventors: Junichi Kobayashi, Tomonori Hatta, Taiga Nakano
  • Patent number: 10099044
    Abstract: A device for delivery of a substance (144) using energy to protect, at a site of activation, against a side effect of another substance (156) that was delivered, is being delivered, and/or will be delivered, at another site. The activation may be non-invasive, remote and the energy beam (140) may be an ultrasound beam. A first of the substances can be activated at a particular energy level, and the second is then activated at a lower level so that a population of particles bearing the first substance is not inadvertently activated during activation of the second substance. The device may comprise a system to control the levels of energy applied.
    Type: Grant
    Filed: September 27, 2012
    Date of Patent: October 16, 2018
    Assignee: Koninklijke Philips N.V.
    Inventors: Balasundar Iyyavu Raju, Christopher Stephen Hall, Ralf Seip, Todd Nicholas Erpelding
  • Patent number: 10039599
    Abstract: Medical devices and methods for making and using the same are disclosed. An example method may include a method for treating tissue near a body passageway using an apparatus including a catheter having a plurality of electrodes, a radio-frequency energy generator, and a controller coupling the energy generator to the plurality of electrodes and configured to selectively energize the electrodes. The method may include using the apparatus to subject the tissue near the body passageway to a plurality of energy treatment cycles. The treatment cycle may include determining desired voltages for at least a subset of the electrodes for maintaining a predetermined target temperature profile proximate the subset of electrodes, setting an output voltage of the energy generator to correspond to the desired voltage determined for one of the electrodes, and energizing at least some of the electrodes at the output voltage to deliver energy to the body passageway.
    Type: Grant
    Filed: December 20, 2016
    Date of Patent: August 7, 2018
    Assignee: Vessix Vascular, Inc.
    Inventor: Prabodh Mathur
  • Patent number: 9981148
    Abstract: Disclosed are thermal treatment methods that involve monitoring and/or actively adjusting the temperature of targeted and/or non-targeted tissues.
    Type: Grant
    Filed: October 22, 2010
    Date of Patent: May 29, 2018
    Assignee: INSIGHTEC, LTD.
    Inventors: Kobi Vortman, Shuki Vitek, Yoav Levy
  • Patent number: 9888881
    Abstract: Methods and structures for detecting a physiologic parameter of a target anatomical environment. The device including a housing with a distal portion first port couplable to a probe and a proximal portion; and a sensing unit, a processing unit, and an output unit carried by the housing, the output unit configured to output a reporting signal based on the determined physiologic parameter value such as pressure; the sensing unit, processing unit, and output unit being disposed substantially between the first port and the proximal portion of the housing.
    Type: Grant
    Filed: October 24, 2014
    Date of Patent: February 13, 2018
    Assignee: Mirador Biomedical
    Inventors: Justin Hulvershorn, Karl Schmidt, Douglas Swartz
  • Patent number: 9852619
    Abstract: A method for operating an ultrasonic appliance (1), which ultrasonic appliance has an ultrasonic generator (2) and an ultrasonic oscillator (4) that has an electrical operative connection to the ultrasonic generator, wherein the ultrasonic generator supplies electric power to an ultrasonic transducer that the ultrasonic oscillator contains and stimulates said ultrasonic transducer to produce ultrasound. The proposed method is distinguished in that the ultrasonic oscillator and the ultrasonic generator communicate with one another (K1, K2), preferably digitally, via an operative data and/or signal connection, wherein the ultrasonic oscillator transmits identification data to the ultrasonic generator, which identification data allow the ultrasonic generator to recognize the ultrasonic oscillator. Furthermore, a communication device—suitable for carrying out said method—for an ultrasonic appliance and an ultrasonic appliance having such a communication device are provided.
    Type: Grant
    Filed: September 9, 2013
    Date of Patent: December 26, 2017
    Assignee: Weber Ultrasonics GmbH
    Inventor: Ralf Broszeit
  • Patent number: 9833640
    Abstract: Methods and systems for treating skin, such as stretch marks through deep tissue tightening with ultrasound are provided. An exemplary method and system comprise a therapeutic ultrasound system configured for providing ultrasound treatment to a shallow tissue region, such as a region comprising an epidermis, a dermis or a deep dermis. In accordance with various exemplary embodiments, a therapeutic ultrasound system can be configured to achieve depth with a conformal selective deposition of ultrasound energy without damaging an intervening tissue. In addition, a therapeutic ultrasound can also be configured in combination with ultrasound imaging or imaging/monitoring capabilities, either separately configured with imaging, therapy and monitoring systems or any level of integration thereof.
    Type: Grant
    Filed: June 16, 2017
    Date of Patent: December 5, 2017
    Assignee: Guided Therapy Systems, L.L.C.
    Inventors: Peter G. Barthe, Michael H. Slayton, Inder Raj S. Makin
  • Patent number: 9833165
    Abstract: Cardiac ablation is monitored to detect hemopericardium by iteratively acquiring magnetic resonance imaging (MRI) data that includes the pericardium, measuring the pericardium by analyzing the sets of MRI data, making a determination that a measurement of the pericardium in consecutive sets of MRI data differ, and responsively to the determination reporting a change in configuration of the pericardium.
    Type: Grant
    Filed: April 29, 2014
    Date of Patent: December 5, 2017
    Assignee: Biosense Webster (ISRAEL) Ltd.
    Inventors: Yitzhack Schwartz, Assaf Govari, Vadim Gliner
  • Patent number: 9808239
    Abstract: A device for the transosseous insertion of suture threads comprises: —a main body (1), equipped with a grip (2), supporting a protruding cannula (3) provided with an active end (30); —a flexible thread-like element (4) which is housed in a coaxially sliding manner inside the cannula (3) and is suitable, on command, for exiting from the active end (30) of the cannula (3). The thread-like element (4) is made of a super-elastic, shape-memory material and thus has the property of freely assuming, at least in an adequate temperature range for which its operative use is foreseen, a natural and predetermined curved form at least in a determined portion of the terminal part thereof. Means are provided for producing the coaxial movement of the thread-like element (4) in the two directions relative to the cannula (3).
    Type: Grant
    Filed: June 29, 2012
    Date of Patent: November 7, 2017
    Assignee: NCS LAB S.R.L.
    Inventor: Matteo Mantovani