With Optical Fiber Patents (Class 606/16)
  • Patent number: 10292863
    Abstract: The patient interface may comprise an axis for alignment with an axis of the eye such as an optical axis of the eye. The interface may comprise a guide to allow the interface to move along the axis with the eye, which can inhibit increases in intraocular pressure when the patient is aligned with the laser. The interface may comprise a lock to hold the patient interface at a location along the axis, which can maintain alignment of the patient with the laser eye surgery system. The interface may comprise a plurality of transducers to measure forces to the eye during surgery. The laser eye surgery system can be configured in one or more of many ways to respond to the measured forces. For example, the system may offset the position of laser beam pulses to increase the accuracy of the placement of the beam pulses on the eye.
    Type: Grant
    Filed: November 1, 2013
    Date of Patent: May 21, 2019
    Assignee: OPTIMEDICA CORPORATION
    Inventors: Phillip Gooding, Bruce Robert Woodley
  • Patent number: 10219947
    Abstract: A system and process for treating retinal diseases includes passing a plurality of radiant beams, i.e., laser light beams, through an optical lens or mask to optically shape the beams. The shaped beams are applied to at least a portion of the retina. Due to the selected parameters of the beams—pulse length, power and duty cycle—the beams can be applied to substantially the entire retina, including the fovea, without damaging retinal or foveal tissue, while still attaining the benefits of retinal phototherapy or photostimulation.
    Type: Grant
    Filed: March 13, 2013
    Date of Patent: March 5, 2019
    Assignee: Ojai Retinal Technology, LLC
    Inventors: Jeffrey K. Luttrull, Benjamin Margolis
  • Patent number: 10213259
    Abstract: The present invention relates to a medical laser treatment device and a method for operating same, which aim to treat a curved area on the skin of a patient. The medical laser treatment device, according to the present invention, comprises: a main body portion having a laser oscillation portion for oscillating the laser; a hand piece, which is connected to the main body, for irradiating the laser onto the skin of the patient; and a laser tip, which is positioned between the skin of the patient and the hand piece and comes into contact with the skin of the patient so as to guide the laser, wherein the laser tip applies pressure to one side of a blood vessel on the inside of an irradiation area.
    Type: Grant
    Filed: November 26, 2012
    Date of Patent: February 26, 2019
    Assignee: LUTRONIC CORPORATION
    Inventor: Bon Cheol Goo
  • Patent number: 10085887
    Abstract: A method for preparing an endothelial corneal graft is provided. The method comprises: providing a donor cornea; irradiating the donor cornea from an endothelial side thereof with laser radiation to cause a photodisruption in tissue of the donor cornea at a focal point of the radiation; and moving the focal point of the radiation to form an endothelial graft in the donor cornea. By irradiating the donor cornea from the endothelial side thereof, instead of the epithelial side, to cut the endothelial graft, optical inhomogeneities which may develop after death in stromal tissue of the donor cornea leave the laser cutting process substantially unaffected.
    Type: Grant
    Filed: October 28, 2013
    Date of Patent: October 2, 2018
    Assignee: Novartis AG
    Inventors: Christof Donitzky, Theo Seiler
  • Patent number: 10045882
    Abstract: A surgical instrument has a surgical tool that has a proximal end and a distal end, and an optical sensor that has at least a portion attached to the surgical tool. The surgical tool has a portion that is suitable to provide a reference portion of the surgical tool, and the optical sensor has an end fixed relative to the reference portion of the surgical tool such that the reference portion of the surgical tool can be detected along with tissue that is proximate or in contact with the distal end of the surgical tool while in use.
    Type: Grant
    Filed: November 1, 2010
    Date of Patent: August 14, 2018
    Assignee: The Johns Hopkins University
    Inventors: Marcin A. Balicki, Russell H. Taylor, Jin U. Kang, Peter L. Gehlbach, James T. Handa, Jaeho Han
  • Patent number: 9980698
    Abstract: Re-calibration of pre-recorded images during interventions uses an interventional system including an imaging device providing images of an object, a needle device, and a processing device. The needle device includes a sensor for providing data corresponding to tissue properties. The processing device is configured to perform an overlay registration of pre-recorded images and live images provided by the imaging device, utilizing the data from the sensor. Thus, the accuracy of an overlay of images is increased.
    Type: Grant
    Filed: May 7, 2010
    Date of Patent: May 29, 2018
    Assignee: Koninklijke Philips N.V.
    Inventors: Levinus Pieter Bakker, Bernardus Hendrikus Wilhelmus Hendriks, Adrian Emmanuel Desjardins
  • Patent number: 9814392
    Abstract: A visual tracking and annotation system for surgical intervention includes an image acquisition and display system arranged to obtain image streams of a surgical region of interest and of a surgical instrument proximate the surgical region of interest and to display acquired images to a user; a tracking system configured to track the surgical instrument relative to the surgical region of interest; a data storage system in communication with the image acquisition and display system and the tracking system; and a data processing system in communication with the data storage system, the image acquisition and display system and the tracking system. The data processing system is configured to annotate images displayed to the user in response to an input signal from the user.
    Type: Grant
    Filed: November 1, 2010
    Date of Patent: November 14, 2017
    Assignee: THE JOHNS HOPKINS UNIVERSITY
    Inventors: Marcin A. Balicki, Russell H. Taylor, Gregory D. Hager, Peter L. Gehlbach, James T. Handa, Rajesh Kumar
  • Patent number: 9724536
    Abstract: A phototherapy device includes a high intensity light source secured to a leaky light conducting fiber to leak light along the length of the fiber. The light fiber is illuminated at either or both ends by the light source and the light fiber is generally oriented in a 3-D spiral pattern to form a dome of light to provide phototherapy to an area of a patient's scalp to be treated. A generally hemispherical shell is formed of a first or inner translucent diffuser layer secured to a second or outer reflective layer, the first and second layers encapsulating the 3-D non-overlapping spiral pattern light fiber. A control system is also provided to turn off the light source when a break or discontinuity occurs in the fiber.
    Type: Grant
    Filed: April 22, 2015
    Date of Patent: August 8, 2017
    Inventors: Michael I. Rabin, David A. Smith
  • Patent number: 9662509
    Abstract: An intraluminal activation system for activating an inactive agent includes a catheter defining an inflation lumen and a medical device lumen. A longitudinal distal segment of the catheter defines a transparent treatment region. An inflation balloon is disposed at the distal end of the catheter and over at least a portion of the transparent treatment region. An elongate energy transmission wire is configured to transmit activation energy from a proximal end thereof to a distal end thereof. The activation system has a configuration in which the balloon is expanded, the energy transmission wire is received within the medical device lumen such that the distal end of the energy transmission wire is within the transparent treatment region, and activation energy is emitted from the energy transmission wire, through the transparent treatment region, through the balloon, and toward the inactive agent.
    Type: Grant
    Filed: March 5, 2014
    Date of Patent: May 30, 2017
    Assignee: Cook Medical Technologies LLC
    Inventors: Inbal Sarah Lapid, Adam Brian McCullough
  • Patent number: 9539057
    Abstract: A laser irradiation tip has a main body and a tip end portion. The main body is connected with a handpiece and irradiating therapeutic laser with high absorbability in water. The tip end portion being connected with the main body. The main body of the laser irradiation tip has an optical fiber for guiding the therapeutic laser, a water flow path, and an air flow path in a parallel manner. The tip end portion of the laser irradiation tip has a connection portion with the main body, a water guide path communicated with the water flow path of the main body, an air guide path communicated with the air flow path of the main body, a fiber guide portion capable of inserting a tip side portion of the optical fiber, and a mixing chamber of water and air.
    Type: Grant
    Filed: April 25, 2013
    Date of Patent: January 10, 2017
    Assignee: J. Morita Manufacturing Corporation
    Inventors: Kazunori Hamada, Mikinori Nishimura, Masaki Odaka, Tetsuzo Ito
  • Patent number: 9492601
    Abstract: The presence or absence of a suction condition in an implantable blood pump is determined at least in part based on a parameter related to flow, such as a parameter related to thrust on the rotor of the pump. A local extreme of the parameter representing the minimum flow during ventricular diastole in an earlier interval is used to establish a threshold value. A value of the parameter representing the minimum flow during ventricular diastole in a later interval is compared to this threshold. If the comparison indicates a substantial decline in the minimum flow between the earlier and later intervals is associated with a suction condition. During the absence of a suction condition, the threshold is continually updated, so that the system does not indicate presence of a suction condition if the flow decreases gradually.
    Type: Grant
    Filed: July 25, 2013
    Date of Patent: November 15, 2016
    Assignee: HeartWare, Inc.
    Inventors: Fernando Casas, Carlos Reyes
  • Patent number: 9468500
    Abstract: A catheter and a console for a catheter. In one embodiment, the catheter includes: (1) a wall having a substantially annular cross-section and surrounding a bore, (2) a plurality of optical fibers associated with the wall and terminating at a distal end of the wall in end faces of differing, non-perpendicular orientation with respect to longitudinal axes of the plurality of optical fibers and (3) photoacoustic layers coupled to at least some of the end faces and configured to generate an ultrasonic signal in response to laser light transmitted along the plurality of optical fibers.
    Type: Grant
    Filed: December 22, 2005
    Date of Patent: October 18, 2016
    Assignee: TEA TIME PARTNERS, L.P.
    Inventor: Gan Zhou
  • Patent number: 9364371
    Abstract: A steerable laser probe may include a handle having a handle distal end and a handle proximal end, an actuation control of the handle, a housing tube having a housing tube distal end and a housing tube proximal end, a first housing tube portion having a first stiffness, a second housing tube portion having a second stiffness, an optic fiber disposed within an inner portion of the handle and the housing tube, and a cable disposed within the housing tube and the actuation control. A rotation of the actuation control may be configured to gradually curve the housing tube and the optic fiber. A rotation of the actuation control may be configured to gradually straighten the housing tube and the optic fiber.
    Type: Grant
    Filed: November 29, 2015
    Date of Patent: June 14, 2016
    Assignee: Katalyst Surgical, LLC
    Inventors: Gregg D Scheller, Matthew N Zeid, Justin M Raney
  • Patent number: 9289262
    Abstract: A method and an apparatus according to an embodiment includes a distal end portion of an optical fiber core having a multilayer dielectric coating. For side-firing optical fibers, the coating can be disposed on an angled surface at the core distal end to produce total internal reflection of laser energy at the angled surface. The coating can also be disposed on an outer surface of the distal end portion of the core. The coating and the angled surface can be collectively configured to redirect laser energy in a lateral or side-fired direction. For end-firing optical fibers, the coating can be disposed on an outer surface of the distal end portion of the core. The coating and a perpendicular surface at the core distal end can be collectively configured to direct laser energy in a direction substantially parallel to the distal end portion of the optical fiber.
    Type: Grant
    Filed: February 12, 2009
    Date of Patent: March 22, 2016
    Assignee: Boston Scientific Scimed, Inc.
    Inventors: Brian M. Hanley, Jessica Hixon, Christopher L. Oskin, Edward Sinofsky
  • Patent number: 9224583
    Abstract: A substrate support apparatus for a plasma processing system includes a layer of dielectric material having a top surface and a bottom surface. The top surface is defined to support a substrate in exposure to a plasma. The substrate support apparatus also includes a number of optical fibers each having a first end and a second end. The first end of each optical fiber is defined to receive photons from a photon source. The second end of each optical fiber is oriented to project photons received from the photon source onto the bottom surface of the layer of dielectric material.
    Type: Grant
    Filed: March 29, 2013
    Date of Patent: December 29, 2015
    Assignee: Lam Research Corporation
    Inventors: Henry Povolny, Rajinder Dhindsa
  • Patent number: 9168174
    Abstract: A process for restoring responsiveness to medication in eye tissue, namely retinal tissue, that is unresponsive to medication. The process utilizes a laser source for generating a confluent, contiguous laser light beam. The laser light beam is preferably a subthreshold diode micropulse laser beam which is optically shaped through an optical lens or mask. The tissue is then exposed to the confluent, contiguous laser light beam and allowed to recover for thirty days before administering medication to which the tissue was unresponsive.
    Type: Grant
    Filed: January 28, 2015
    Date of Patent: October 27, 2015
    Assignee: Ojai Retinal Technology, LLC
    Inventors: Jeffrey K. Luttrull, Benjamin Margolis, David B. Chang
  • Patent number: 9081143
    Abstract: The invention concerns a fiber-optic component, in particular a fiber coupler, and method for manufacturing thereof. The component comprises a housing (25), at least one first optical element (21) capable of guiding light and having an output end, the first optical element (21) being affixed to said housing (25) at a mounting zone (26A), and at least one second optical element (22, 23) optically coupled to the first optical element (21) at a coupling zone (27) for receiving light from the output end of the first optical element (21). According to the invention, the component comprises at least one zone (29) of light-scattering material arranged in the vicinity of the first optical element (21) at a region between the coupling zone (27) and the mounting zone (26A). By means of the invention, the effect potentially harmful reverse radiation in fiber-optic components can be mitigated.
    Type: Grant
    Filed: October 20, 2011
    Date of Patent: July 14, 2015
    Assignee: Rofin-Sinar Laser GmbH
    Inventor: Arto Salokatve
  • Patent number: 9061109
    Abstract: A portable vein viewer apparatus may be battery powered and hand-held to reveal patient vasculature information to aid in venipuncture processes. The apparatus comprises a first laser diode emitting infrared light, and a second laser diode emitting only visible wavelengths, wherein vasculature absorbs a portion of the infrared light causing reflection of a contrasted infrared image. A pair of silicon PIN photodiodes, responsive to the contrasted infrared image, causes transmission of a corresponding signal. The signal is processed through circuitry to amplify, sum, and filter the outputted signals, and with the use of an image processing algorithm, the contrasted image is projected onto the patient's skin surface using the second laser diode. Revealed information may comprise vein location, depth, diameter, and degree of certainty of vein locations. Projection of vein images may be a positive or a negative image. Venipuncture needles may be coated to provide visibility in projected images.
    Type: Grant
    Filed: February 27, 2013
    Date of Patent: June 23, 2015
    Assignee: AccuVein, Inc.
    Inventors: Fred Wood, Vincent Luciano, Ron Goldman
  • Patent number: 9039685
    Abstract: A surgical instrument is provided, including: at least one articulatable arm having a distal end, a proximal end, and at least one joint region disposed between the distal and proximal ends; an optical fiber bend sensor provided in the at least one joint region of the at least one articulatable arm; a detection system coupled to the optical fiber bend sensor, said detection system comprising a light source and a light detector for detecting light reflected by or transmitted through the optical fiber bend sensor to determine a position of at least one joint region of the at least one articulatable arm based on the detected light reflected by or transmitted through the optical fiber bend sensor; and a control system comprising a servo controller for effectuating movement of the arm.
    Type: Grant
    Filed: March 16, 2011
    Date of Patent: May 26, 2015
    Assignee: INTUITIVE SURGICAL OPERATIONS, INC.
    Inventors: David Q. Larkin, David C. Shafer
  • Publication number: 20150126984
    Abstract: A non-contact laser handpiece, contains optical components modified to provide a high density uniform later beam at a distance from the handpiece that minimizes effects of back reflection.
    Type: Application
    Filed: January 5, 2015
    Publication date: May 7, 2015
    Inventors: Dmitri Boutoussov, Manvel Andriasyan
  • Publication number: 20150126982
    Abstract: Improved/efficient fiber laser systems are provided for medical/cosmetic applications, comprising at least one pump source, optically coupled with at least one fiber laser. The fiber laser comprises an irregularly-shaped single-, double- or multiple-clad fiber of unconventional structure and geometry, and means for partially/completely reflecting the pump radiation, such as Bragg gratings. The fiber laser system further comprises at least one fiber optic delivery device optically coupled with the pump source, with the irregularly-shaped single-, double- or multiple-clad fiber laser, or with both, to convey laser radiation to a treatment site. The fiber optic delivery device comprises one or more waveguides, preferably optical fibers. The irregularly-shaped fiber laser and waveguides of the fiber optic delivery device have the same or different tip configurations to perform the treatment according to therapeutic needs.
    Type: Application
    Filed: April 26, 2013
    Publication date: May 7, 2015
    Inventor: Wolfgang Neuberger
  • Patent number: 9023017
    Abstract: An ophthalmic laser treatment apparatus comprises: a laser source that emits a laser beam for treatment of an affected part of a patient's eye; an optical fiber that transmits the laser beam emitted from the laser source; and a delivery optical system that irradiates the laser beam emitted from the optical fiber to the affected part of the patient's eye, the delivery optical system including: a plurality of diffraction optical elements each being configured to shape a beam profile of the laser beam at an emission end face of the optical fiber into a beam profile having one of a uniform intensity and a lower intensity in the center than on the periphery on the affected part and also to shape the laser beam to have a different spot size on the affected part of the patient's eye; and a changing unit which selectively disposing one of the diffraction optical elements on an optical path.
    Type: Grant
    Filed: March 19, 2008
    Date of Patent: May 5, 2015
    Assignee: Nidek Co., Ltd.
    Inventors: Naho Murakami, Koichi Ito
  • Publication number: 20150119754
    Abstract: A steerable medical device is used to controllably introduce a guidewire or other medical instrument into a body of a patient and direct placement of the guidewire or other medical instrument in the body of the patient. The steerable medical device can include an elongated member, a steering mechanism, and an attachment member. The elongated member extends along a longitudinal axis and comprises a deflectable distal portion that is deflectable off of the longitudinal axis. The steering mechanism is adapted to control longitudinal and rotational movement of the elongated member and to control off-axis deflection of its deflectable portion. The attachment member is removably couplable to another medical device. The attachment member is moveably coupled to the steering mechanism and the elongated member.
    Type: Application
    Filed: January 5, 2015
    Publication date: April 30, 2015
    Applicant: BOSTON SCIENTIFIC SCIMED, INC.
    Inventors: Isaac OSTROVSKY, Victor SHUKHAT, Jianmin LI, Jozef SLANDA
  • Patent number: 9017316
    Abstract: A system and method of estimating a distance between the distal end of an optical fiber and treated tissue, to improve treatment efficiency, is provided herein. The estimation is achieved by modulating the numerical aperture of a light beam transmitted through the fiber to receive reflections from the tissue and distinguish them from other reflections in the fiber, and further by calculating the distance by comparing reflection intensities of beams having different numerical aperture values that illuminate the tissue over a very short period, so that tissue and environment conditions do not change much. Distance estimation may be carried out by modulating the treatment beam itself, or by a light beam transmitted between pulses of a pulsed treatment beam.
    Type: Grant
    Filed: July 25, 2011
    Date of Patent: April 28, 2015
    Assignee: Lumenis Ltd.
    Inventors: Arkady Khatchaturov, Uri Voitsechov, Igal Koifman
  • Publication number: 20150112319
    Abstract: The invention relates to a cable or optical fibre, to which a protective finish has been added, which is formed by a tubular duct, the end parts of which have been mechanized in the form of fingers that have elbowed areas in the vicinity of the tips thereof, which elbowed areas expand toward the outside when the cable and said covering protrude from the catheter, and contract when the cable and finish are introduced into the catheter, avoiding, as is the case at present, a situation in which the fingers are straight and flat, which can produce a tear in walls of the blood vessel in the event of the operator wishing to reinsert the optical fibre through a vein in order to resume treating an already treated area.
    Type: Application
    Filed: March 6, 2012
    Publication date: April 23, 2015
    Applicant: Intermedic Arfran, S.A.
    Inventor: Francisco Javier Arcusa VIillcampa
  • Patent number: 8997297
    Abstract: An oral care implement is described herein. The oral care implement includes a base and a first grip member. The base has a gripping region and an oral engaging region. The base has an aperture extending therethrough. The first grip member at least partially overlays the gripping region of the base and has a plurality of gripping elements. The first grip member also has a at least one opening exposing a guidance element. The guidance element includes a protrusion and a ring surrounding the protrusion.
    Type: Grant
    Filed: November 21, 2011
    Date of Patent: April 7, 2015
    Assignee: Braun GmbH
    Inventors: Juergen Mohr, Martin Vitt, Martin Jay Marotti, Daniel Jay Monroe, Jens Stoerkel
  • Patent number: 8986290
    Abstract: Devices to perform femtolaser ablation and phacoemulsification are physically and/or operationally combined. In some embodiments the femtolaser ablation and phacoemulsification are housed together, and in other embodiments they are housed separately, but operated through a common display screen. At least some software can be shared by the femtolaser ablation and phacoemulsification functionalities. A non-transitory computer-readable memory can provide data that can be used to operate each of at least one femtolaser ablation functionality and at least one phacoemulsification functionality.
    Type: Grant
    Filed: October 9, 2012
    Date of Patent: March 24, 2015
    Inventor: Douglas Patton
  • Patent number: 8979830
    Abstract: An apparatus that will alter the fibrous strands in the fatty layers of the skin to reduce the appearance of cellulite and adipose tissue. Electromagnetic energy is used to selectively shrink or alternatively photoacoustically ablate the collagen in the constricting bands of connective tissue that causes the dimpled appearance of cellulite and adipose tissue while avoiding damage to the surrounding fatty cells.
    Type: Grant
    Filed: January 16, 2012
    Date of Patent: March 17, 2015
    Assignee: New Star Lasers, Inc.
    Inventor: David R. Hennings
  • Patent number: 8974829
    Abstract: A particle includes a ferromagnetic material, a radiopaque material, and/or an MRI-visible material.
    Type: Grant
    Filed: November 20, 2012
    Date of Patent: March 10, 2015
    Assignee: Boston Scientific Scimed, Inc.
    Inventors: Robert F. Rioux, Thomas V. Casey, II, Janel Lanphere
  • Patent number: 8967883
    Abstract: Laser emission systems for surgical and other therapeutic uses are herein disclosed. In the preferred embodiments, different laser control systems are disclosed each capable of multiple, simultaneous emission of lasers of different wavelengths in a single beam. The embodiments feature a handheld wireless laser module or a portable console with a laser tip extending therefrom. The laser module is controlled by wireless footswitch. Fiber extension modules may be used with the later embodiment.
    Type: Grant
    Filed: November 20, 2012
    Date of Patent: March 3, 2015
    Assignee: CAO Group, Inc.
    Inventor: Densen Cao
  • Patent number: 8961040
    Abstract: Laser emission systems for surgical and other therapeutic uses are herein disclosed. In the preferred embodiments, different laser control systems are disclosed each capable of multiple, simultaneous emission of lasers of different wavelengths in a single beam. The embodiments feature a handheld wireless laser module or a portable console with a laser tip extending therefrom. The laser module is controlled by wireless footswitch. Fiber extension modules may be used with the later embodiment.
    Type: Grant
    Filed: November 20, 2012
    Date of Patent: February 24, 2015
    Assignee: CAO Group, Inc.
    Inventor: Densen Cao
  • Patent number: 8961425
    Abstract: An intravascular ultrasound probe is disclosed, incorporating features for utilizing an advanced transducer technology on a rotating transducer shaft. In particular, the probe accommodates the transmission of the multitude of signals across the boundary between the rotary and stationary components of the probe required to support an advanced transducer technology. These advanced transducer technologies offer the potential for increased bandwidth, improved beam profiles, better signal to noise ratio, reduced manufacturing costs, advanced tissue characterization algorithms, and other desirable features. Furthermore, the inclusion of electronic components on the spinning side of the probe can be highly advantageous in terms of preserving maximum signal to noise ratio and signal fidelity, along with other performance benefits.
    Type: Grant
    Filed: March 25, 2013
    Date of Patent: February 24, 2015
    Assignee: Volcano Corporation
    Inventor: Paul Douglas Corl
  • Patent number: 8953912
    Abstract: A simple method of making robust radiation sensor cables using a special fiber cap that holds a scintillating fiber therein directly abutting an end of a fiber optic cable, thus providing a clean and protected connection therebetween.
    Type: Grant
    Filed: August 27, 2014
    Date of Patent: February 10, 2015
    Assignee: RadiaDyne, LLC
    Inventors: Steven C. Lepke, Eric Hyman, John Isham, Randy Dahl
  • Patent number: 8936563
    Abstract: A method for connecting medical tubing or any other type of fluidic circuit conduits (e.g., cannulae) to a ventricular assist device (“VAD”) or any other pumping device used for blood pumping during cardiac circulatory support for vascular surgery. The method prevent air bubbles from entering a cardiac circulatory support system when connecting cannulae to a VAD that may later enter the blood stream of a patient during cardiac surgery, and also provide for purging any air bubbles that may have entered the cardiac circulatory support system during a cannulae-VAD connection.
    Type: Grant
    Filed: October 18, 2011
    Date of Patent: January 20, 2015
    Assignee: Vitalmex International S.A. de C.V.
    Inventor: Benjamin Duenas
  • Publication number: 20150011985
    Abstract: An optical fiber includes an internal fiber, an end surface, a first cap member and a second cap member. The internal fiber terminates at a fiber tip. The end surface transmits laser energy delivered through the internal fiber. The first cap member extends over the end surface and includes a first end on a first side of the end surface and a second end on a second side of the end surface. The second cap member extends over the first cap member and includes a first end on the first side of the end surface and a second end on the second side of the end surface, the second end of the second cap member is attached to the second end of the first cap member.
    Type: Application
    Filed: August 28, 2014
    Publication date: January 8, 2015
    Inventors: Yihlih Peng, Gerald M. Mitchell
  • Patent number: 8926678
    Abstract: Provided is a handpiece of a laser treatment device which can restrict a temperature rise of body tissues in a path from an irradiation portion to a target region more effectively than in the related art. The handpiece 10 includes an optical fiber 16 which guides laser light emitted from a pulse light source, and a revolving holder which holds a tip portion 64 of the optical fiber 16 such that the tip portion 64 is tilted with respect to a rotational axis C0 to direct an optical axis C1 of the laser light towards a target point P located on the rotational axis C0 and revolves the tip portion 64 of the optical fiber 16 about the rotational axis C0. Further, a pulse number of the pulse light source per unit time and a number of revolutions of the tip portion 64 of the optical fiber 16 per unit time are determined such that the pulse number of the pulse light source per unit time is not an integral multiple of the number of rotations of the tip portion 64 of the optical fiber 16 per unit time.
    Type: Grant
    Filed: April 2, 2012
    Date of Patent: January 6, 2015
    Assignee: Altech Corporation
    Inventor: Akira Konno
  • Patent number: 8911432
    Abstract: An apparatus for medical treatment by means of laser light includes an optical conducting fiber which has a curved light emission end and includes a core, a cladding arranged above the core for conducting laser light coupled into the optical conducting fiber, and capillaries arranged in the cladding, wherein the capillaries run in a longitudinal direction of the optical conducting fiber at a radial distance from a longitudinal axis of the optical conducting fiber and form a capillary ring when viewed in cross-section, wherein the capillaries have cavities which are separated by bridges which have a width which is smaller than a wavelength of the laser light, wherein the laser light emerges from a forward surface of the light emission end and is transmitted in a direction which runs transverse to a substantially straight longitudinal section located directly in front of a curvature which defines the curved light emission end.
    Type: Grant
    Filed: October 4, 2012
    Date of Patent: December 16, 2014
    Assignee: Adavanced Fiber Tools GmbH
    Inventors: Georg Kuka, Naim Ashraf, Torsten Hähnel
  • Patent number: 8911391
    Abstract: A system for connecting medical tubing or any other type of fluidic circuit conduits (e.g., cannulae) to a ventricular assist device (“VAD”) or any other pumping device used for blood pumping during cardiac circulatory support for vascular surgery. The system prevents air bubbles from entering a cardiac circulatory support system when connecting cannulae to a VAD that may later enter the blood stream of a patient during cardiac surgery, and also provide for purging any air bubbles that may have entered the cardiac circulatory support system during a cannulae-VAD connection.
    Type: Grant
    Filed: October 18, 2011
    Date of Patent: December 16, 2014
    Assignee: Vitalmex Internacional S.A. de C.V.
    Inventor: Benjamin Duenas
  • Patent number: 8911433
    Abstract: In one embodiment, an apparatus may include a first capillary component. A second capillary component may be disposed outside of the first capillary component and may have an inner surface, wherein a portion of the inner surface may be heat-fused to an outer surface of the first capillary component. The apparatus may also include a portion of an optical fiber disposed inside of the first capillary component and the portion of the optical fiber can have an outer surface. A portion of the outer surface of the optical fiber may be heat-fused to an inner surface of the first capillary component. The optical fiber may have a distal surface configured to reflect electromagnetic radiation propagated along a longitudinal axis of a distal end portion of the optical fiber in a lateral direction through the inner surface of the first capillary component and the inner surface of the second capillary component.
    Type: Grant
    Filed: November 16, 2010
    Date of Patent: December 16, 2014
    Assignees: Boston Scientific Scimed, Inc., Coherent, Inc.
    Inventors: Jessica Hixon, Christopher Oskin, Richard Tumminelli
  • Patent number: 8908740
    Abstract: A light emitting device, comprises: a light source that emits excitation light; a light guide that propagates the excitation light, and in which the refractive index of the center part (core) of a cross section is higher than the refractive index of the peripheral part (cladding); a wavelength conversion member that absorbs the excitation light propagated by the light guide and converts the wavelength thereof, and releases light of a predetermined wavelength band; and a shielding member that blocks the wavelength of at least part of the excitation light and the light emitted from the wavelength conversion member.
    Type: Grant
    Filed: February 6, 2007
    Date of Patent: December 9, 2014
    Assignee: Nichia Corporation
    Inventors: Shinichi Nagahama, Atsutomo Hama, Takafumi Sugiyama, Tomohisa Kishimoto
  • Patent number: 8901590
    Abstract: Phototherapy devices for phototherapy treatment of a patient include a light emitter for emitting light received from a light source. Means may be provided for altering the amount of power to the light source in response to a change in light output to maintain a substantially constant light output. The light source may comprise one or more LEDs that generate a blue light output and at least one other LED that generates a different color light output.
    Type: Grant
    Filed: January 24, 2013
    Date of Patent: December 2, 2014
    Assignee: Lumitex, Inc.
    Inventor: Jeffrey B. Williams
  • Patent number: 8894636
    Abstract: A Minimally Invasive Surgical Laser Hand-piece (“MISLH”) for use with a probe is described. The MISLH has a MISLH proximal end and MISLH distal end, and the MISLH may include an optical coupler located at the MISLH proximal end, a substantially straight central bore within the MISLH, and an internal beam stop aperture within the central bore adjoined to the optical coupler. The central bore may extend from the optical coupler to the MISLH distal end and the central bore may be configured to accept the insertion of the probe within the central bore at the MISLH distal end. Additionally, the central bore may be configured to accept the insertion of the probe such that the probe is adjoined to the internal beam stop aperture.
    Type: Grant
    Filed: March 9, 2010
    Date of Patent: November 25, 2014
    Inventors: Henrick K. Gille, Fritz A. Brauer
  • Patent number: 8894637
    Abstract: Provided herein are devices, systems and methods for imaging of biological tissue. Also provided are devices, systems and methods for surgical manipulation of biological tissue. Further provided are devices, systems and methods for combined imaging and surgical manipulation of biological tissue.
    Type: Grant
    Filed: January 22, 2009
    Date of Patent: November 25, 2014
    Assignees: Board of Regents, The University of Texas System, The Board of Trustees of the Leland Stanford Junior University
    Inventors: Adela Ben-Yakar, Christopher L. Hoy, Olav Solgaard
  • Patent number: 8888767
    Abstract: An improved method and device for safe and efficient medical applications is provided. In a preferred embodiment, based on using the inherent benefits of laser diodes (such as efficient power generation from a reliable and compact solid state device), plasmas and high energy vapors are produced for medical applications with power levels and power densities sufficient to treat medical indications and avoid the creation of extensive damage zones. Transmissions means in different configurations are used to achieve a high power density, which is able to initiate plasma and high-energy vapor at the tip. Once a sparkless plasma and high energy vapor bubbles are formed, it is often found that it will also absorb other wavelengths in addition to the one that initiated it. As a consequence, other wavelengths more efficiently generated by diodes or diode pumped lasers may be added into the beam in order to improve treatment efficiency.
    Type: Grant
    Filed: December 2, 2009
    Date of Patent: November 18, 2014
    Assignee: Biolitec Pharma Marketing Ltd
    Inventors: Wolfgang Neuberger, Walter Cecchetti
  • Patent number: 8888378
    Abstract: In one embodiment, an apparatus includes an optical fiber made of a silica-based material. A proximal end portion of the optical fiber has an outer-layer portion. The proximal end portion can be included in at least a portion of a launch connector configured to receive electromagnetic radiation. The apparatus also includes a component that has a bore therethrough and can be made of a doped silica material. The bore can have an inner-layer portion heat-fused to the outer-layer portion of the optical fiber. The component can also have an index of refraction lower than an index of refraction associated with the outer-layer portion of the optical fiber.
    Type: Grant
    Filed: March 14, 2013
    Date of Patent: November 18, 2014
    Assignee: Boston Scientific Scimed, Inc.
    Inventors: Jeffrey W. Zerfas, Paul Jortberg, Richard P. Tumminelli
  • Patent number: 8885986
    Abstract: A duplex plastic optical fiber may be used to create a dual detector system, which allows for the detection of two distinct areas of radiation in a single sensor cable device. A fiber cap holds a scintillating fiber and slides over an exposed portion of an optical fiber adjacent to an end of the optical fiber to create a concentric connection for a radiation sensor cable used in medical radiation therapy.
    Type: Grant
    Filed: April 11, 2012
    Date of Patent: November 11, 2014
    Assignee: RadiaDyne LLC
    Inventors: Steven Lepke, Eric Hyman, John Isham, Randy Dahl
  • Patent number: 8882753
    Abstract: The invention provides a system and method for percutaneous energy delivery in an effective, manner using one or more probes. Additional variations of the system include array of probes configured to minimize the energy required to produce the desired effect.
    Type: Grant
    Filed: October 10, 2008
    Date of Patent: November 11, 2014
    Assignee: Syneron Medical Ltd
    Inventors: Bankim H. Mehta, Scott A. McGill
  • Patent number: 8882754
    Abstract: Methods and devices are disclosed that, in various embodiments and permutations and combinations of inventions, diagnose and treat Pulmonary Embolism or associated symptoms. In one series of embodiments, the invention consists of methods and devices for identifying patients whose Pulmonary Embolism or associated symptoms are caused or exacerbated, at least in part, by blockages of one or more of the patient's internal pulmonary veins. In some instances, stenoses or other flow limiting structures or lesions in the patient's affected veins are identified. Further, in some instances the nature of such lesions and whether there is a significant disruption of blood pressure, or both, is ascertained. In some embodiments, methods and devices for applying one or more therapies to the blockages in the patient's pulmonary veins are provided.
    Type: Grant
    Filed: December 29, 2011
    Date of Patent: November 11, 2014
    Assignee: Volcano Corporation
    Inventors: Joe E. Brown, Marja Pauliina Margolis, Mary L. Gaddis
  • Patent number: 8876810
    Abstract: A device and method are provided which achieve tissue ablation as well as tissue coagulation substantially simultaneously during the treatment of BPH by utilizing at least two wavelengths of light. The device and method improve urinary flow and minimize post-treatment blood loss and edema while maintaining a nearly blood-free operating field during treatment by irradiating substantially simultaneously with at least two different wavelengths of light. According to the present invention, tissue ablation is affected by having one wavelength that is highly absorbed in the prostatic tissue while another less highly absorbed wavelength coagulates surrounding tissues while maintaining minimal thermal damage to surrounding tissue. In a preferred embodiment the highly absorbed wavelength is about 1460 nm and the less absorbed by water but with some significant hemoglobin absorption is about 980 nm. This combination aids the patient by reducing blood loss and edema.
    Type: Grant
    Filed: March 6, 2007
    Date of Patent: November 4, 2014
    Assignee: Biolitec Pharma Marketing Ltd
    Inventor: Wolfgang Neuberger
  • Patent number: 8876811
    Abstract: Disclosed are apparatus, method, devices and instruments, including an apparatus that includes a flexible waveguide coupled to a supporting structure, and further coupled to a treatment tip. The apparatus also includes a beam controller to control application of a radiation beam emitted from the flexible waveguide to distribute the beam over an area different than an area covered by direct application of the beam to a single location on a target tissue. Further disclosed is an apparatus that includes a waveguide, coupleable to a laser source, and a thermal protection instrument. The thermal protection instrument includes a tissue contacting member to contact a part of an area of a tissue irradiated by laser radiation, and a beam blocking element to absorb at least some of radiation not absorbed by the area of the tissue, the beam blocking element being thermally isolated from the area of the tissue.
    Type: Grant
    Filed: August 17, 2012
    Date of Patent: November 4, 2014
    Assignee: Lumenis Ltd.
    Inventors: Reuven M. Lewinsky, Roee Khen