Combined Cardioverting/defibrillating And Pacing Patents (Class 607/4)
  • Patent number: 11938325
    Abstract: The present disclosure pertains to cardiac pacing methods and systems, and, more particularly, to cardiac resynchronization therapy (CRT). In particular, the present disclosure pertains to determining whether a patient is experiencing atrial fibrillation (AF). If the patient is experiencing AF, the efficacy of CRT is determined. A signal is sensed in response to a ventricular pacing stimulus. Through signal processing, a number of features are parsed from the signal and a determination is made as to whether the ventricular pacing stimulus evoked a response from the ventricle.
    Type: Grant
    Filed: June 3, 2021
    Date of Patent: March 26, 2024
    Assignee: Medtronic, Inc.
    Inventors: Richard M. T. Lu, Subham Ghosh, Robert W. Stadler
  • Patent number: 11931568
    Abstract: A subcutaneous implantable medical device and method (SIMD) provided. A pulse generator (PG) is configured to be positioned subcutaneously within a lateral region of a chest of a patient. The PG has a housing that includes a PG electrode. The PG has an electronics module. An elongated lead is electrically coupled to the pulse generator. The elongated lead includes a first electrode that is configured to be positioned along a first parasternal region proximate a sternum of the patient and a second electrode that is configured to be positioned at an anterior region of the patient. The first and second electrodes are coupled to be electrically common with one another. The electronics module is configured to provide electrical shocks for antiarrhythmic therapy along at least one shocking vector between the PG electrode and the first and second electrodes.
    Type: Grant
    Filed: February 28, 2022
    Date of Patent: March 19, 2024
    Assignee: Pacesetter, Inc.
    Inventors: Xiaoyi Min, Kyungmoo Ryu, Keith Victorine, Stuart Rosenberg, Gene A. Bornzin
  • Patent number: 11878174
    Abstract: Certain embodiments of the present technology described herein relate to detecting atrial oversensing in a His intracardiac electrogram (His IEGM), characterizing atrial oversensing, determining when atrial oversensing is likely to occur, and or reducing the chance of atrial oversensing occurring. Some such embodiments characterize and/or avoid atrial oversensing within a His IEGM. Other embodiments of the present technology described herein relate to determining whether atrial capture occurs in response to His bundle pacing (HBP). Still other embodiments of the present technology described herein relate to determining whether AV node capture occurs in response to HBP.
    Type: Grant
    Filed: February 9, 2021
    Date of Patent: January 23, 2024
    Assignee: Pacesetter, Inc.
    Inventors: Yun Qiao, Wenwen Li, Jan Mangual, Luke C. McSpadden
  • Patent number: 11793440
    Abstract: In one embodiment, a method to detect noise levels in electrocardiogram (ECG) signals is described. The method includes connecting to at least three sensing electrodes and obtaining a signal from each of the at least three sensing electrodes. The method also includes defining at least three channels between the at least three electrodes. The method includes calculating a morphological similarity value of at least one combination of the at least three channels based at least in part on the obtained signal from each of the at least three sensing electrodes and determining a noise level based at least in part on the calculated morphological similarity value.
    Type: Grant
    Filed: August 5, 2020
    Date of Patent: October 24, 2023
    Assignee: WEST AFFUM HOLDINGS DAC
    Inventor: Jaeho Kim
  • Patent number: 11794022
    Abstract: An implantable system includes a first leadless pacemaker (LP1) implanted in or on a first chamber of a heart and a second leadless pacemaker (LP2) implanted in or on a second chamber of the heart. The LP1 is configured to time delivery of one or more pacing pulses delivered to the first chamber of the heart based on timing of cardiac activity associated with the second chamber of the heart detected by the LP1 itself. The LP1 is also configured to transmit implant-to-implant (i2i) messages to the LP2. The LP2 is configured to time delivery of one or more pacing pulses delivered to the second chamber of the heart based on timing of cardiac activity associated with the second chamber of the heart as determined based on one or more i2i messages received by the LP2 from the LP1.
    Type: Grant
    Filed: May 26, 2021
    Date of Patent: October 24, 2023
    Assignee: Pacesetter, Inc.
    Inventors: Xiaoyi Min, Matthew G. Fishler
  • Patent number: 11771886
    Abstract: Techniques that enable medical devices to quickly recover from loss of sensory functions are provided. In some examples, a medical device is configured to advantageously leverage differences between a first type of sensing electrode and a second type of sensing electrode that has a shorter recovery time than the first type of sensing electrode. In some examples, a medical device is configured to reference data generated by a first conditioning circuit that is configured to process signals acquired under a first set of environmental conditions and to reference data generated by a second conditioning circuit that is configured to process signal acquired under a second set of environmental conditions. In some examples, a medical device is configured to arrange electrodes used by the medical device to acquire signals in at specific locations to reduce the amount of disruptive power the electrodes encounter.
    Type: Grant
    Filed: March 27, 2020
    Date of Patent: October 3, 2023
    Assignee: ZOLL Medical Corporation
    Inventors: Kent Volosin, Shane S. Volpe, Gary A. Freeman
  • Patent number: 11744503
    Abstract: This document discusses, among other things, systems and methods to detect an initial arrhythmia event indication and, after a threshold amount of detection window intervals detecting the initial arrhythmia event indication, adjust a set of arrhythmia parameters or at least one of a respective set of parameter thresholds to increase sensitivity of an extended arrhythmia event indication detection.
    Type: Grant
    Filed: April 10, 2020
    Date of Patent: September 5, 2023
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Sunipa Saha, David L. Perschbacher, Deepa Mahajan
  • Patent number: 11660035
    Abstract: Long-term electrocardiographic and physiological monitoring over a period lasting up to several years in duration can be provided through a continuously-recording insertable cardiac monitor. The sensing circuitry and the physical layout of the electrodes are specifically optimized to capture electrical signals from the propagation of low amplitude, relatively low frequency content cardiac action potentials, particularly the P-waves that are generated during atrial activation and storing samples of captured signals. In general, the ICM is intended to be implanted centrally and positioned axially and either over the sternum or slightly to either the left or right of the sternal midline in the parasternal region of the chest.
    Type: Grant
    Filed: April 20, 2020
    Date of Patent: May 30, 2023
    Assignee: Bardy Diagnostics, Inc.
    Inventors: Gust H. Bardy, Jason Felix
  • Patent number: 11559696
    Abstract: A computer implemented method for determining heart arrhythmias based on cardiac activity that includes under control of one or more processors of an implantable medical device (IMD) configured with specific executable instructions to obtain far field cardiac activity (CA) signals at electrodes located remote from the heart, and obtain acceleration signatures, at an accelerometer of the IMD, indicative of heart sounds generated during the cardiac beats. The IMD is also configured with specific executable instructions to declare a candidate arrhythmia based on a characteristic of at least one R-R interval from the cardiac beats, and evaluate the acceleration signatures for ventricular events (VEs) to re-assess a presence or absence of at least one R-wave from the cardiac beats and based thereon confirming or denying the candidate arrhythmia.
    Type: Grant
    Filed: August 9, 2021
    Date of Patent: January 24, 2023
    Assignee: Pacesetter, Inc.
    Inventors: Jong Gill, Gene Bornzin
  • Patent number: 11559235
    Abstract: In an example, an apparatus is described that includes an implantable housing, a heart signal sensing circuit configured to sense intrinsic electrical heart signals, a ventricular tachyarrhythmia (VT) detector circuit, operatively coupled to the heart signal sensing circuit, the detector circuit operable to detect a VT based on the sensed heart signals, a processor configured to control delivery of an anti-tachyarrhythmia pacing (ATP) therapy based on the detected VT, and an energy delivery circuit configured to deliver the ATP therapy in response to the detected VT, wherein the apparatus does not include a shock circuit capable of delivering a therapeutically-effective cardioverting or defibrillating shock.
    Type: Grant
    Filed: July 3, 2019
    Date of Patent: January 24, 2023
    Assignee: Cardiac Pacemakers, Inc.
    Inventor: Jacob M. Ludwig
  • Patent number: 11547864
    Abstract: An implantable medical device system is configured to sense cardiac events in response to a cardiac electrical signal crossing a cardiac event sensing threshold. A control circuit is configured to determine a drop time interval based on a heart rate and control a sensing circuit to hold the cardiac event sensing threshold at a threshold value during the drop time interval.
    Type: Grant
    Filed: October 12, 2020
    Date of Patent: January 10, 2023
    Assignee: Medtronic, Inc.
    Inventors: Jian Cao, Gerald P. Arne, Timothy A. Ebeling, Yanina Grinberg, Michael W. Heinks, Paul R. Solheim, Xusheng Zhang
  • Patent number: 11534098
    Abstract: A physiological signal monitoring system includes a single set of sensing electrodes to provide conditioned physiological signals to a primary monitoring device and a secondary monitoring device. The monitoring system includes pre-processing circuitry configured to receive a raw physiological signal. The pre-processing circuitry is configured to produce a primary physiological signal and a secondary physiological signal. Each of the primary and secondary physiological signals are conditioned. The primary conditioned physiological signal is directed to a primary monitoring device such as a hospital wearable defibrillator device. The secondary conditioned physiological signal is directed to telemetry modeling circuitry where it is further processed to output one or more telemetry signals. The one or more telemetry signals are output to a secondary monitoring device such as a three lead ECG monitoring device.
    Type: Grant
    Filed: February 19, 2020
    Date of Patent: December 27, 2022
    Assignee: ZOLL Medical Corporation
    Inventors: Shane S. Volpe, Gary A. Freeman
  • Patent number: 11534616
    Abstract: A subcutaneous cardiac defibrillation system implantable comprising a housing and a subcutaneous implantable lead comprising a proximal end connected to the housing and a distal free end. The subcutaneous implantable lead comprises at least one defibrillation electrode and at least three detection electrodes. The first detection electrode and the second detection electrode form a first dipole, and the third detection electrode and the first detection electrode, or the third detection electrode and the second detection electrode, or the housing and one of said detection electrodes, form a second dipole. The defibrillation electrode is positioned between the second detection electrode and the third detection electrode, the first dipole is positioned between the housing and the defibrillation electrode, the third electrode is positioned between the free distal end of the lead and the defibrillation electrode, and the length of the first dipole is shorter than the length of the second dipole.
    Type: Grant
    Filed: July 2, 2020
    Date of Patent: December 27, 2022
    Assignee: Sorin CRM SAS
    Inventors: Thierry Legay, Rafael Cordero Alvarez, Delphine Feuerstein
  • Patent number: 11534603
    Abstract: Implantable medical electrical leads having electrodes arranged such that a defibrillation coil electrode and a pace/sense electrode(s) are concurrently positioned substantially over the ventricle when implanted as described. The leads include an elongated lead body having a distal portion and a proximal end, a connector at the proximal end of the lead body, a defibrillation electrode located along the distal portion of the lead body, wherein the defibrillation electrode includes a first electrode segment and a second electrode segment proximal to the first electrode segment by a distance. The leads may include at least one pace/sense electrode, which in some instances, is located between the first defibrillation electrode segment and the second defibrillation electrode segment.
    Type: Grant
    Filed: May 20, 2020
    Date of Patent: December 27, 2022
    Assignee: MEDTRONIC, INC.
    Inventors: Mark T. Marshall, Jian Cao, Melissa G. T. Christie, Paul J. DeGroot, Vladimir P. Nikolski, Amy E. Thompson-Nauman
  • Patent number: 11529088
    Abstract: Methods and systems for use of the Q-wave to R-wave interval to guide placement of a leadless cardiac pacemaker are disclosed. An implant delivery device is equipped with sensing electrodes to sense R-wave onset in a ventricle of a patient's heart to allow placement at a location of last or latest onset of the R-wave. Guidance tools are provided to assist in determination of the Q-wave to R-wave interval during implantation. For a chronic system, a cooperative approach is disclosed in which an implantable medical device and a leadless cardiac pacemaker exchange data to determine Q-wave to R-wave intervals and enhance cardiac resynchronization therapy delivery by the leadless cardiac pacemaker.
    Type: Grant
    Filed: October 26, 2020
    Date of Patent: December 20, 2022
    Assignee: CARDIAC PACEMAKERS, INC.
    Inventors: Steven Lee Eddy, Brendan Early Koop, Yinghong Yu
  • Patent number: 11524166
    Abstract: An extra-cardiovascular implantable cardioverter defibrillator (ICD) having a low voltage therapy module and a high voltage therapy module is configured to select, by a control module of the ICD, a pacing output configuration from at least a low-voltage pacing output configuration of the low voltage therapy module and a high-voltage pacing output configuration of the high voltage therapy module. The high voltage therapy module includes a high voltage capacitor having a first capacitance and the low voltage therapy module includes a plurality of low voltage capacitors each having up to a second capacitance that is less than the first capacitance. The ICD control module controls a respective one of the low voltage therapy module or the high voltage therapy module to deliver extra-cardiovascular pacing pulses in the selected pacing output configuration via extra-cardiovascular electrodes coupled to the ICD.
    Type: Grant
    Filed: February 10, 2020
    Date of Patent: December 13, 2022
    Assignee: Medtronic, Inc.
    Inventors: David A. Anderson, Mark T. Marshall, Vladimir P. Nikolski, Robert T. Sawchuk, Amy E. Thompson-Nauman, John D. Wahlstrand, Gregory A. Younker
  • Patent number: 11491327
    Abstract: A bio electrode and a method of forming the same are provided. The bio electrode comprises a first core-shell nanowire/polymer composite comprising a first core-shell nanowire and a first polymer. The method of forming a bio electrode comprises a step of forming a core-shell nanowire by carrying out epitaxial growth of a biocompatible metal on a surface of a core comprising a conductive metal.
    Type: Grant
    Filed: September 4, 2018
    Date of Patent: November 8, 2022
    Assignees: Seoul National University R&DB Foundation, INSTITUTE FOR BASIC SCIENCE
    Inventors: Daehyeong Kim, Taeghwan Hyeon, Suji Choi, Sangihn Han, Dongjun Jung
  • Patent number: 11478148
    Abstract: Infusion pumps having a fluid pump and a processor are disclosed. The processor is configured to transmit a signal to make a medical facility network aware that the infusion pump is within a wireless network range of a medical treatment area of a medical facility, receive a request for device identity information specific to the infusion pump, transmit the device identity information specific to the infusion pump, receive, if the infusion pump is authenticated by the medical facility network, an initialization signal from the medical facility network, wherein the initialization signal causes initialization of the infusion pump within the medical treatment area, receive, from a sensor via the medical facility network after receiving the initialization signal, a measurement, and control the adjustable rate of the fluid pump based at least in part on the measurement. Systems having infusion pumps are also disclosed.
    Type: Grant
    Filed: January 12, 2021
    Date of Patent: October 25, 2022
    Assignee: CAREFUSION 303, INC.
    Inventor: Robert A. Sobie
  • Patent number: 11420069
    Abstract: Embodiments describe herein generally pertain to implantable medical device (IMDs), and methods for use therewith, that can be used to automatically switch an IMD from its normal operational mode to an MRI safe mode, and vice versa, within increased specificity. In certain embodiments, a controller of the IMD uses a magnetic field sensor to determine whether a first magnetic field condition is detected, and uses an accelerometer to determine whether a positional condition is detected. In response to the first magnetic field condition being detected, and the positional condition being detected, the controller can use the magnetic field sensor to determine whether a second magnetic field condition is detected, which differs from the first magnetic field condition. The controller can then cause the IMD to enter the MRI safe mode based at least in part on the first and second magnetic field conditions and the positional condition being detected.
    Type: Grant
    Filed: February 24, 2020
    Date of Patent: August 23, 2022
    Assignee: Pacesetter, Inc.
    Inventors: Xing Pei, Brad Lindevig, Stuart Rosenberg, Nima Badie
  • Patent number: 11375936
    Abstract: A wearable medical system configured to be worn by a person, comprising a support structure configured to be worn by the person, a monitoring device configured to monitor at least one physiological parameter of the person, wherein the at least one physiological parameter includes an electrocardiogram (ECG) reading of the person, an electrode coupled to the support structure, an energy storage device configured to store an electric charge for use in delivering a shock to the person through the electrode, and a biasing mechanism comprising at least one of an inflatable device, a hydraulic device, an electromagnetic device, and/or a screw gun device, the biasing mechanism configured to transition from the unbiased state to the biased state responsive to a value of the at least one physiological parameter reaching a threshold. The electrode is more movable with respect to the person's body in the unbiased state than the biased state.
    Type: Grant
    Filed: January 28, 2020
    Date of Patent: July 5, 2022
    Assignee: West Affum Holdings Corp.
    Inventors: Fred W. Chapman, Gregory T. Kavounas
  • Patent number: 11357441
    Abstract: Systems and methods for managing cardiac arrhythmias are discussed. A data management system receives a first detection algorithm including a detection criterion for detecting a cardiac arrhythmia. An arrhythmia detector detects arrhythmia episodes from a physiologic signal using a second detection algorithm that is different from and has a higher sensitivity for detecting the cardiac arrhythmia than the first detection algorithm. The arrhythmia detector assigns a detection indicator to each of the detected arrhythmia episodes. The detection indicator indicates a likelihood that the detected arrhythmia episode satisfies the detection criterion of the first detection algorithm. The system prioritizes the detected arrhythmia episodes according to the assigned detection indicators, and outputs the arrhythmia episodes to a user or a process according to the episode prioritization.
    Type: Grant
    Filed: January 29, 2019
    Date of Patent: June 14, 2022
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: David L. Perschbacher, Sunipa Saha, Deepa Mahajan
  • Patent number: 11357440
    Abstract: An apparatus comprises a magnetic field detection circuit, a cardiac signal sensing circuit, a memory circuit, a control circuit, and an arrhythmia detection circuit. The cardiac signal sensing circuit generates a cardiac signal representative of cardiac activity of a subject when coupled to sensing electrodes. The control circuit is operatively coupled to the magnetic field detection circuit; the cardiac signal sensing circuit, and the memory circuit. The control circuit stores cardiac signal data determined using the sensed cardiac signal, receives an indication of magnetic field detection by the magnetic field detection circuit, stores data obtained using the sensed cardiac signal during the magnetic field detection, and stores an identifier indicating the magnetic field detection in association with the data. The arrhythmia detection circuit processes the cardiac signal data to detect a cardiac arrhythmia event and confirm the cardiac arrhythmia event according to the magnetic field indication.
    Type: Grant
    Filed: January 29, 2019
    Date of Patent: June 14, 2022
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Binh C. Tran, Mitchell D. Lanz, Scott R. Vanderlinde
  • Patent number: 11331035
    Abstract: A medical device is configured to deliver an electrical stimulation pulse to a heart of a patient, determine a pre-stimulation cardiac event amplitude prior to delivering the electrical stimulation pulse and adjust a cardiac event sensing threshold according to a first post-stimulation decay sequence in response to the electrical stimulation pulse delivery. The first post-stimulation decay sequence is controlled by a sensing module of the medical device according to a first set of sensing control parameters including at least one sensing control parameter based on the pre-stimulation cardiac event amplitude.
    Type: Grant
    Filed: August 5, 2019
    Date of Patent: May 17, 2022
    Assignee: MEDTRONIC, INC.
    Inventors: Robert W. Stadler, Jian Cao
  • Patent number: 11311737
    Abstract: An implantable system for stimulating a heart contains a processor, a memory, a stimulator, and a first detection unit for detecting a cardiac rhythm disturbance of a cardiac region. The memory includes a computer-readable program, which prompts the processor to carry out the following steps: a) detecting via the first detection unit whether a cardiac rhythm disturbance is present in a cardiac region of a heart of a patient; b) when a cardiac rhythm disturbance is present, selecting a stimulation strategy based on a selection criterion; c) stimulating the cardiac region in which the cardiac rhythm disturbance was detected by way of the stimulator, using the selected stimulation strategy; d) detecting a success and/or an efficiency of the conducted stimulation; e) comparing the success and/or the efficiency to a predefinable success and/or efficiency criterion; and f) if the predefinable success and/or efficiency criterion was not achieved, optimizing the stimulation strategy.
    Type: Grant
    Filed: March 31, 2020
    Date of Patent: April 26, 2022
    Assignee: BIOTRONIK SE & Co. KG
    Inventors: Thomas Doerr, Sergey Ershov, Torsten Radtke, Martin Roemer, Ingo Weiss
  • Patent number: 11305125
    Abstract: An implantable medical device (IMD) that includes a housing, a first electrode secured relative to the housing, a second electrode secured relative to the housing, and a gyroscope secured relative to the housing. The IMD may include circuitry in the housing in communication with the first electrode, the second electrode, and the gyroscope. The circuitry may be configured to determine and store a plurality of torsion data measurements, from which a representation of a twist profile may be determined.
    Type: Grant
    Filed: August 8, 2019
    Date of Patent: April 19, 2022
    Assignee: CARDIAC PACEMAKERS, INC.
    Inventors: Bin Mi, Pramodsingh Hirasingh Thakur, Jeffrey E. Stahmann, Keith R. Maile, Qi An, Brendan Early Koop, Yinghong Yu, Viktoria A. Averina, Michael J. Kane, Krzysztof Z. Siejko
  • Patent number: 11234601
    Abstract: An Integrated CardioRespiratory (ICR) System is provided for continuous Ejection Fraction (EF) measurement using a wearable device comprising a plurality of acoustic sensors. The ICR system performs signal processing computations to characterize cardiac acoustic signals that are generated by cardiac hemodynamic flow, cardiac valve, and tissue motion, and may use advanced machine learning methods to provide accurate computation of EF.
    Type: Grant
    Filed: August 10, 2018
    Date of Patent: February 1, 2022
    Assignee: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: William Kaiser, Nils Peter Borgstrom, Per Henrik Borgstrom, Aman Mahajan
  • Patent number: 11235143
    Abstract: A WCD system is configured to detect when a therapy administered to a patient by the WCD system is unsuccessful, and in response determine whether to send notifications to remote non-witness responders. The WCD system may be configured to decide to send such notifications after the WCD system determines it has administered a predetermined number of unsuccessful shocks to the patient. The predetermined number of unsuccessful shocks may be the maximum number of unsuccessful shocks the WCD system will administer to a patient, or every Xth shock (e.g., 3rd shock). The WCD system can be configured to periodically resend the notification. The notifications may be in form of SMS, voice messages, emails, app notifications, etc. sent to cell phones, smartphones, computers, laptops, tablets etc. of the responders either directly, via a server, or via a CAD-coupled server.
    Type: Grant
    Filed: November 10, 2017
    Date of Patent: February 1, 2022
    Assignee: WEST AFFUM HOLDINGS CORP.
    Inventors: Douglas K. Medema, Steven E. Sjoquist
  • Patent number: 11224751
    Abstract: Systems and methods for treating arrhythmias are disclosed. In one embodiment an LCP comprises a housing, a plurality of electrodes for sensing electrical signals emanating from outside of the housing, an energy storage module disposed within the housing, and a control module disposed within the housing and operatively coupled to the plurality of electrodes. The control module may be configured to receive electrical signals via two or more of the plurality of electrodes and determine if the received electrical signals are indicative of a command for the LCP to deliver ATP therapy. If the received electrical signals are indicative of a command for the LCP to deliver ATP therapy, the control module may additionally determine whether a triggered ATP therapy mode of the LCP is enabled. If the triggered ATP therapy mode is enabled, the control module may cause the LCP to deliver ATP therapy via the plurality of electrodes.
    Type: Grant
    Filed: January 31, 2019
    Date of Patent: January 18, 2022
    Assignee: CARDIAC PACEMAKERS, INC.
    Inventors: Paul Huelskamp, Jacob M. Ludwig, Lance E. Juffer, Keith R. Maile
  • Patent number: 11213682
    Abstract: Methods and apparatuses for setting a therapeutic dose of a neuromodulator implanted into a patient are described. The therapeutic dose typically includes a therapeutic dose duration including a ramp-up time to reach a peak modulation voltage and a sustained peak modulation time during which the voltage is sustained at the peak modulation voltage. The methods and apparatuses described herein may use a testing ramp to identify a peak modulation voltage that is patient-specific and provides a maximized therapeutic effect while remaining comfortably tolerable by the patient during the application of energy by the neuromodulator.
    Type: Grant
    Filed: April 9, 2019
    Date of Patent: January 4, 2022
    Assignee: Neuros Medical, Inc.
    Inventors: Nemath Syed Shah, Zi-Ping Fang
  • Patent number: 11213684
    Abstract: A device is configured to transmit tissue conductance communication (TCC) signals by generating multiple TCC signals by a TCC transmitter of the IMD. The generated TCC signals are coupled to a transmitting electrode vector via a coupling capacitor to transmit the plurality of TCC signals to a receiving medical device via a conductive tissue pathway. A voltage holding circuit holds the coupling capacitor at a DC voltage for a time interval between two consecutively transmitted TCC signals.
    Type: Grant
    Filed: November 29, 2018
    Date of Patent: January 4, 2022
    Assignee: Medtronic, Inc.
    Inventors: David J. Peichel, James D. Reinke, Jonathan P. Roberts, Michael B. Terry
  • Patent number: 11169010
    Abstract: An implant includes a processor, RF communication circuitry, optical communication circuitry, a power source and a memory, all of which being hermetically sealed within a housing having a transparent window. Sensor readings are transmitted by RF using the RF communication circuitry to a remote reader after receiving interrogation signals from the reader. During calibration of the sensor, corrective coefficients are calculated by comparing actual sensor pressure readings with known pressure readings. The corrective coefficients are transmitted to the memory of the control circuitry using optical communication wherein modulated light is transmitted through the transparent window of the housing to the photo-detector.
    Type: Grant
    Filed: July 27, 2009
    Date of Patent: November 9, 2021
    Assignee: INTEGRA LIFESCIENCES SWITZERLAND SÀRL
    Inventors: Rocco Crivelli, Danillo Roth, Alec Ginggen
  • Patent number: 11135433
    Abstract: Approaches to rank potential left ventricular (LV) pacing vectors are described. Early elimination tests are performed to determine the viability of LV cathode electrodes. Some LV cathodes are eliminated from further testing based on the early elimination tests. LV cathodes identified as viable cathodes are tested further. Viable LV cathode electrodes are tested for hemodynamic efficacy. Cardiac capture and phrenic nerve activation thresholds are then measured for potential LV pacing vectors comprising a viable LV cathode electrode and an anode electrode. The potential LV pacing vectors are ranked based on one or more of the hemodynamic efficacy of the LV cathodes, the cardiac capture thresholds, and the phrenic nerve activation thresholds.
    Type: Grant
    Filed: December 27, 2018
    Date of Patent: October 5, 2021
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Krzysztof Z. Siejko, Shibaji Shome, Jiang Ding
  • Patent number: 11139899
    Abstract: Aspects of the subject disclosure may include, for example, receiving, by a receiver through a medium from a transmitter, signals over an acoustic channel, where the receiving over the acoustic channel utilizes a high center frequency and provides for a high data rate, and where the medium is a fluid or a semi-solid medium. The device can receive power from the transmitter over the acoustic channel. Other embodiments are disclosed.
    Type: Grant
    Filed: May 26, 2016
    Date of Patent: October 5, 2021
    Assignee: The Board of Trustees of the University of Illinois
    Inventors: Michael L. Oelze, Thomas Riedl, Andrew Singer
  • Patent number: 11122985
    Abstract: A stimulating section applies stimulation to a living body. A first lead electrode and a second lead electrode are attached on the living body. A first amplifier circuit amplifies potential difference that is evoked between the first lead electrode and the second lead electrode due to the stimulation. A first switch cancels electrical connection between the first amplifier circuit and each of the first lead electrode and the second lead electrode at least while the stimulation is applied. A high-pass filter includes a capacitor (C) and filters a frequency component of an output from the first amplifier circuit that is no less than a predetermined value. A second amplifier circuit amplifies the output from the first amplifier circuit. A second switch stops charging/discharging of the capacitor (C) and decreases a gain of the second amplifier circuit at least while the first switch cancels the electrical connection.
    Type: Grant
    Filed: May 12, 2017
    Date of Patent: September 21, 2021
    Assignee: NIHON KOHDEN CORPORATION
    Inventors: Makoto Sato, Toshiki Maeda
  • Patent number: 11123570
    Abstract: A leadless pacing device may include a housing having a proximal end and a distal end, and a set of one or more electrodes supported by the housing. The housing may include a first a distal extension extending distally from the distal end thereof. The distal extension may include a retractable and/or rotatable distal electrode. The distal electrode may be configured to be delivered to and pace at the Bundle of His. The leadless pacing device may be releasably coupled to an expandable anchor mechanism.
    Type: Grant
    Filed: December 19, 2018
    Date of Patent: September 21, 2021
    Assignee: CARDIAC PACEMAKERS, INC.
    Inventors: Brendan Early Koop, Benjamin J. Haasl, Allan Charles Shuros, James O. Gilkerson, Lili Liu, Keith R. Maile, Brian Soltis, Brandon Christopher Fellows
  • Patent number: 11083886
    Abstract: A wearable defibrillator includes a plurality of ECG electrodes configured to be removably attached to a patient and sense ECG information of the patient, and at least one therapy pad configured to deliver electrical therapy to the patient. The wearable defibrillator includes at least one audio device including a microphone configured to receive an audio input and an audio output device configured to provide an audio output. At least one processor of the wearable defibrillator is operatively connected to the plurality of ECG electrodes, the at least one therapy pad, a memory, and the at least one audio device. The at least one processor is configured to in a set up phase, receive by the microphone and store in the memory, the audio input comprising a voice recording, and cause the audio output device to provide the audio output by to playing back the voice recording to the patient.
    Type: Grant
    Filed: August 16, 2019
    Date of Patent: August 10, 2021
    Assignee: ZOLL Medical Corporation
    Inventors: John D Macho, Shane S Volpe, Richard A Rattanni, Philip C Skalos, Thomas E Kaib, Marshal W Linder
  • Patent number: 11065464
    Abstract: A wearable system includes a support structure with optionally one or more electrodes in an unbiased state. Different sensor modules may monitor, for the long-term, different patient parameters such as the patient's motion, a physiological parameter, a patient sound etc., other than the patient's ECG. The sensor modules can be worn by the patient concurrently, or only one at a time as convenient, and may provide respective sensor signals. The system may determine from one or more of the available received signals whether a certain threshold has been reached, such as when the patient is having an actionable episode. If so, at least one electrode may become mechanically biased against the patient's body, for making good electrical contact. Then, an ECG reading may be taken and/or therapy may be administered.
    Type: Grant
    Filed: June 9, 2018
    Date of Patent: July 20, 2021
    Assignee: West Affum Holdings Corp.
    Inventor: Gregory T. Kavounas
  • Patent number: 11058885
    Abstract: A wearable cardioverter defibrillator (WCD) system according to embodiments is configured to be worn by an ambulatory patient, and to sense ECG signals of the patient. The WCD system includes a processor that extracts heart rate values from the ECG signals. If a heart rate value exceeds a decision threshold then, for subsequent heart rate values, the decision threshold may be lowered for administering a certain shock to the patient. In some embodiments the lowering is due to a cancel input being received, an intermediate shock having been administered, and so on. In some embodiments the decision threshold is lowered only temporarily. This may help with detecting a tachycardic event, and in particular with preventing the inhibiting of detecting such an event, as the patient's heart rate during such events may decrease while the heart's condition is deteriorating.
    Type: Grant
    Filed: November 21, 2018
    Date of Patent: July 13, 2021
    Assignee: West Affum Holdings Corp.
    Inventor: Jaeho Kim
  • Patent number: 11033744
    Abstract: Brugada syndrome and related forms of ion channelopathies, including ventricular asynchrony of contraction, originate in the region near the His bundle or para-Hisian regions of the heart. Manifestations of Brugada syndrome can be corrected by delivering endocardial electrical stimulation coincident to the activation wave front propagated from the atrioventricular (AV) node. By performing the start of the activation of the HIS bundle or para-Hisian region early enough, electrical stimulation can be delivered fast enough to compensate for the conduction problems that start in those region, such that the activation wave front, as stimulated, transitions from the AV node to the His bundle in a normal, albeit electrically-supplemented, fashion. This stimulation not only helps resolve the conditions that trigger Brugada syndrome, but also resolves the asynchrony of the contraction of the heart.
    Type: Grant
    Filed: July 1, 2019
    Date of Patent: June 15, 2021
    Assignee: NEWSTIM, INC.
    Inventors: Daniel Felipe Ortega, Luis Dante Barja
  • Patent number: 11027137
    Abstract: The present disclosure pertains to cardiac pacing methods and systems, and, more particularly, to cardiac resynchronization therapy (CRT). In particular, the present disclosure pertains to determining whether a patient is experiencing atrial fibrillation (AF). If the patient is experiencing AF, the efficacy of CRT is determined. A signal is sensed in response to a ventricular pacing stimulus. Through signal processing, a number of features are parsed from the signal and a determination is made as to whether the ventricular pacing stimulus evoked a response from the ventricle.
    Type: Grant
    Filed: October 4, 2018
    Date of Patent: June 8, 2021
    Assignee: Medtronic, Inc.
    Inventors: Richard M. T. Lu, Subham Ghosh, Robert W. Stadler
  • Patent number: 11020595
    Abstract: Systems and methods for treating cardiac arrhythmias are disclosed. In one embodiment, an SICD comprises two or more electrodes, a charge storage device, and a controller operatively coupled to two or more of the electrodes and the charge storage device. In some embodiments, the controller is configured to monitor cardiac activity of the heart of the patient, detect an occurrence of a cardiac arrhythmia based on the cardiac activity, and determine a type of the detected cardiac arrhythmia from two or more types of cardiac arrhythmias. If the determined type of cardiac arrhythmia is one of a first set of cardiac arrhythmia types, the controller sends an instruction for reception by an LCP to initiate the application of ATP therapy by the LCP. If the determined type of cardiac arrhythmia is not one of the first set cardiac arrhythmia types, the controller does not send the instruction.
    Type: Grant
    Filed: February 19, 2019
    Date of Patent: June 1, 2021
    Assignee: CARDIAC PACEMAKERS, INC.
    Inventor: Brendan E. Koop
  • Patent number: 11013409
    Abstract: A wearable medical device includes an electrode assembly having a plurality of ECG sensing electrodes configured to monitor a cardiac condition of a patient using the device, a call button to initiate a call with a remote location and a transceiver configured to communicate information to and from the wearable medical device. The device includes a memory and a controller having at least one processor configured to execute instructions stored in the memory. The instructions include receiving, via actuation of the call button, a request to initiate a communication link with the remote location, providing, via a user interface, a confirmatory prompt that the patient indicate confirmation to proceed with the request to initiate the communication link with the remote location, and initiating, via the transceiver, the communication link to the remote location responsive to the indication of the confirmation to proceed with the request to initiate the communication link.
    Type: Grant
    Filed: March 26, 2020
    Date of Patent: May 25, 2021
    Assignee: ZOLL Medical Corporation
    Inventors: Thomas E. Kaib, Shane Volpe, Marshal Linder, Patrick Hresko
  • Patent number: 10946202
    Abstract: Methods and devices for testing and configuring implantable medical device systems. A first medical device and a second medical device communicate with one another using test signals configured to provide data related to the quality of the communication signal to facilitate optimization of the communication approach. Some methods may be performed during surgery to implant one of the medical devices to ensure adequate communication availability.
    Type: Grant
    Filed: January 14, 2019
    Date of Patent: March 16, 2021
    Assignee: CARDIAC PACEMAKERS, INC.
    Inventors: Keith R. Maile, Brendan E. Koop, Brian L. Schmidt, Michael J. Kane, Jacob M. Ludwig, Jeffrey E. Stahmann, Lance E. Juffer
  • Patent number: 10939843
    Abstract: A method and medical device for determining a cardiac episode that includes sensing a cardiac signal, identifying the signal sensed during a predetermined time interval as one of a cardiac event, a non-cardiac event, and an unclassified event, determining a number of identified cardiac events, determining a number of identified unclassified events, and determining whether the cardiac episode is occurring in response to the number of identified cardiac events being greater than a cardiac event count threshold and the number of identified unclassified events being less than an unclassified event count threshold.
    Type: Grant
    Filed: March 4, 2019
    Date of Patent: March 9, 2021
    Assignee: Medtronic, Inc.
    Inventors: Jian Cao, Elise Higgins
  • Patent number: 10905884
    Abstract: Devices and methods of use for treating atrial arrhythmias. A single-pass lead includes a body portion having at least two electrodes configured to be positioned within or adjacent a right atrium of a heart of a patient, and a distal portion having at least two electrodes configured to be positioned within a blood vessel proximate the left atrium. The lead is configured to operated by an implantable therapy generator programmed to deliver a multi-stage therapy by activating various combinations of at least one electrode of the body portion of the lead and at least one electrode of the distal portion of the lead.
    Type: Grant
    Filed: July 22, 2013
    Date of Patent: February 2, 2021
    Assignee: Cardialen, Inc.
    Inventor: Michael Brent Shelton
  • Patent number: 10898095
    Abstract: A non-invasive medical device includes a garment; at least one therapy electrode and a plurality of ECG sensing electrodes disposed in the garment; a memory storing ECG information of the patient; a therapy delivery interface; and at least one processor configured to identify, within the ECG information, at least one cardiac arrhythmia condition; determine at least one pacing routine corresponding to the detected cardiac arrhythmia condition; cause the therapy delivery interface to execute the at least one pacing routine by delivering a first pacing pulse; determine, subsequent to the first pacing pulse, that a first interval has passed without detection of an intrinsic heartbeat, and in response, cause the therapy delivery interface to continue executing the at least one pacing routine by delivering a second pacing pulse; and responsive to determining that the intrinsic heartbeat is detected within the first interval, suspend execution of the at least one pacing routine.
    Type: Grant
    Filed: July 3, 2019
    Date of Patent: January 26, 2021
    Assignee: ZOLL MEDICAL CORPORATION
    Inventors: Jason T. Whiting, Thomas E. Kaib, Rachel H. Carlson, Gregory R. Frank
  • Patent number: 10856762
    Abstract: An atrial fibrillation detecting device includes a processor and a memory that stores a computer-readable command. When the computer-readable command is executed by the processor, the atrial fibrillation detecting device is configured to acquire pulse data representing a plurality of pulses, calculate a pulse rate based on the pulse data, calculate respective pulse amplitude indices of the plurality of pluses based on the pulse data, calculate an amplitude dispersion of the pulse amplitude indices based on the calculated pulse amplitude indices, calculate respective pulse interval indices of the plurality of pluses based on the pulse data, calculate an interval dispersion of the pulse interval indices based on the calculated pulse interval indices, and determine whether the pulse data is atrial fibrillation, based on the calculated pulse rate, the calculated amplitude dispersion, and the calculated interval dispersion.
    Type: Grant
    Filed: December 22, 2017
    Date of Patent: December 8, 2020
    Assignee: NIHON KOHDEN CORPORATION
    Inventor: Takashi Kaiami
  • Patent number: 10849560
    Abstract: There is provided a physiological detection system including a physiological detection device and a host. The physiological detection device is configured to transmit a physiological data series to the host according to a local oscillation frequency. The host is configured to calculate a physiological value according to the physiological data series and determine a correction parameter according to a receiving data parameter and a reference data parameter, wherein the correction parameter is configured to correct the physiological value, process the physiological data series or adjust the local oscillation frequency of the physiological detection device.
    Type: Grant
    Filed: April 16, 2019
    Date of Patent: December 1, 2020
    Assignee: PIXART IMAGING INC.
    Inventors: Ren-Hau Gu, Chih-Hsin Lin, Yung-Chang Lin, Chien-Lung Liao
  • Patent number: 10850093
    Abstract: A system for lead integrity monitoring includes an implantable medical device (IMD) having a housing enclosing a control circuit; and a lead, having a first sensor. The lead is coupled to the housing and electrically coupled to the control circuit. The system also includes at least one processing device configured to identify a first lead failure alert based on a first set of information; obtain a second set of information generated by a second sensor; perform an evaluation of the first set of information in the context of the second set of information; and confirm or cancel the first lead failure alert based on the evaluation.
    Type: Grant
    Filed: April 12, 2017
    Date of Patent: December 1, 2020
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Pramodsingh H. Thakur, Deepa Mahajan, Qi An, Keith R. Maile, David J. Ternes, Zhe Shen
  • Patent number: 10842999
    Abstract: A method and system for delivering a cardiac pacing therapy that includes a cardiac signal being sensed via electrodes of an atrial lead, and an occurrence of one of an intrinsic and a paced atrial depolarization event of a current cardiac cycle being determined in response to the sensed cardiac signal. A first pacing therapy is delivered during the current cardiac cycle in response to the determined occurrence of the depolarization event, and an amplitude of the cardiac signal within the current cardiac cycle subsequent to the delivered first pacing therapy is compared to a predetermined amplitude threshold. A second pacing therapy is delivered, via a left ventricular lead, within the same cardiac cycle and subsequent to the delivered first pacing therapy in response to the amplitude not being more negative than the predetermined amplitude threshold and is not delivered in response to the amplitude being more negative than the predetermined amplitude threshold.
    Type: Grant
    Filed: March 22, 2018
    Date of Patent: November 24, 2020
    Assignee: Medtronic, Inc.
    Inventor: Subham Ghosh