Hypertension Treating Patents (Class 607/44)
-
Patent number: 12257434Abstract: Methods and systems for stimulating nerve fibers to treat a condition in a patient are disclosed herein. Such methods can include stimulating, via an electrode device, afferent fibers associated with baroreceptors and/or a carotid sinus nerve of a patient; sensing a heart rate of the patient; and adjusting a stimulation frequency of the afferent fibers based on the sensed heart rate. The heart rate can be indicative of an activity level of the patient, and an increase in the sensed heart rate can cause an increase in the stimulation frequency.Type: GrantFiled: August 15, 2024Date of Patent: March 25, 2025Assignee: BAROLOGICS, INC.Inventors: Dimitrios Georgakopoulos, Molly Wade
-
Patent number: 12251555Abstract: A method of treating hypertension includes an implantable stimulator generating stimulation sessions at a duty cycle that is less than 0.05 and applying the stimulation sessions by way of the central electrode and the annular electrode to a location associated with the hypertension and within a patient.Type: GrantFiled: June 27, 2022Date of Patent: March 18, 2025Assignee: Valencia Bioscience, Inc.Inventors: Jeffrey H. Greiner, David K. L. Peterson, Chuladatta Thenuwara
-
Patent number: 12233265Abstract: Systems and methods are disclosed for the treatment and prevention of cardiac dysrhythmias and/or hypertension, and more specifically to systems and methods of treating cardiac dysrhythmias, including atrial fibrillation, as well as hypertension through noninvasive peripheral nerve stimulation.Type: GrantFiled: August 24, 2017Date of Patent: February 25, 2025Assignee: Cala Health, Inc.Inventors: Samuel Richard Hamner, Kathryn H. Rosenbluth, Serena HanYing Wong, Erika Kristine Ross
-
Patent number: 12193753Abstract: A system is provided for stimulating renal nerves. The system includes an interstitial device to provide stimulation and denervation of the renal nerves from outside the renal artery. The interstitial device extends through non-vascular tissue and into a periarterial space. The system also includes a control unit in communication with the interstitial device, configured to: obtain, from a sensor, first information pertaining to a blood pressure or heart rate; stimulate, using one or more electrodes of the interstitial device, renal sympathetic nerves associated with the renal artery; and obtain, from the sensor, second information pertaining to the blood pressure or heart rate of the subject. Based on a difference between the first information and the second information, the control unit determines whether the subject is suitable for a sympathetic denervation procedure and causes the interstitial device to perform the sympathetic denervation procedure if the subject is suitable.Type: GrantFiled: January 9, 2023Date of Patent: January 14, 2025Assignee: KONINKLIJKE PHILIPS N.V.Inventor: Steffen Weiss
-
Patent number: 12150699Abstract: Methods for treating depression and for reducing a risk associated with developing depression in patients via therapeutic renal neuromodulation and associated systems are disclosed herein. Sympathetic nerve activity can contribute to several cellular and physiological conditions associated with depression as well as an increased risk of developing depression. One aspect of the present technology is directed to methods for improving a patient's calculated risk score corresponding to a depression status in the patient. Other aspects are directed to reducing a likelihood of developing depression in patients presenting one or more depression risk factors. Renal sympathetic nerve activity can be attenuated to improve a patient's depression status or risk of developing depression. The attenuation can be achieved, for example, using an intravascularly positioned catheter carrying a therapeutic assembly configured to use, e.g.Type: GrantFiled: February 18, 2021Date of Patent: November 26, 2024Assignee: Medtronic Ireland Manufacturing Unlimited CompanyInventors: Marcia Gallagher, Douglas Hettrick
-
Patent number: 12070604Abstract: This disclosure relates to implantable neuromodulation systems and methods, and in particular to systems and methods for sensing blood-based parameter changes triggered by neural stimulation and subsequently optimizing the stimulation parameters based on feedback from the sensed blood-based parameter changes. Embodiments are directed to a method that includes delivering neural stimulation to a nerve or artery/nerve plexus based on a first set of stimulation parameters, monitoring a response to the neural stimulation that includes monitoring responses of the nerve or artery/nerve plexus and blood-based parameters of the artery, modifying the first set of the stimulation parameters based on the blood-based parameters to create a second set of stimulation parameters, and delivering the neural stimulation based on the second set of the stimulation parameters.Type: GrantFiled: October 8, 2021Date of Patent: August 27, 2024Assignee: GALVANI BIOELECTRONICS LIMITEDInventors: Brian Pepin, Shiv Sabesan
-
Patent number: 12070602Abstract: An electrical stimulation device is provided. The electrical stimulation device includes a power management circuit and an electrical stimulation generation circuit. The power management circuit generates a first voltage and a second voltage to power the electrical stimulation generation circuit. The electrical stimulation generation circuit includes a working-electrode contact and a reference-electrode contact. The electrical stimulation generation circuit generates a first electrical signal at the working-electrode contact and further generates a second electrical signal at the reference-electrode contact. The first electrical signal comprises a plurality of first alternating-current (AC) pulses configuring to for electrically stimulate a target region of a target object.Type: GrantFiled: May 17, 2021Date of Patent: August 27, 2024Assignee: GIMER MEDICAL. CO. LTD.Inventors: Chi-Heng Chang, Jian-Hao Pan
-
Patent number: 12029899Abstract: A method and device for controlling nausea, anxiety and stress. The device includes a wristwatch-like housing, electrical circuitry for generating electrical impulses of which low-frequency of which direct current (DC) electrical pulses are preferred, a metal ground plate, three adjustable metal contact points, indicator lights, function buttons on the housing, and a strap for securing the housing to the wrist. There may also be a screen display for visualizations of different functions. An internal processor controls all device functions and can optionally communicate via USB or short-range communications with a telephone App. The method allows simultaneous application of a pulse voltage output to acupuncture points H7, Lu9 and P6 (Buddha's Triangle). An alternate embodiment uses three permanent magnets to simultaneously stimulate the three points of Buddha's Triangle.Type: GrantFiled: June 27, 2022Date of Patent: July 9, 2024Inventor: Larry Kostopoulos
-
Patent number: 11890047Abstract: Methods for treating anxiety disorders and for reducing a risk associated with developing an anxiety disorder in patients via therapeutic renal neuromodulation and associated systems are disclosed herein. Sympathetic nerve activity can contribute to several cellular and physiological conditions associated with anxiety disorders as well as an increased risk of developing an anxiety disorder. One aspect of the present technology is directed to methods for improving a patient's calculated risk score corresponding to an anxiety disorder status in the patient. Other aspects are directed to reducing a likelihood of developing an anxiety disorder in patients presenting one or more anxiety disorder risk factors. Renal sympathetic nerve activity can be attenuated to improve a patient's anxiety disorder status or risk of developing an anxiety disorder. The attenuation can be achieved, for example, using an intravascularly positioned catheter carrying a therapeutic assembly configured to use, e.g.Type: GrantFiled: May 19, 2021Date of Patent: February 6, 2024Assignee: Medtronic Ireland Manufacturing Unlimited CompanyInventors: Gabriel Lazarus, Douglas A. Hettrick
-
Patent number: 11865067Abstract: Energy stimulated acupuncture, directed to a novel set of acupoints, is implemented to treat hypertension. Methods and systems apply electrical stimulation, or other forms of energy, to specific acupuncture points, using devices such as transcutaneous electrical stimulation electroacupuncture devices, laser acupuncture devices or ultrasound acupuncture devices, to treat hypertension, particularly in middle-aged women.Type: GrantFiled: January 20, 2022Date of Patent: January 9, 2024Inventor: Shaista Malik
-
Patent number: 11426589Abstract: Systems and methods for controlling blood pressure via electrical stimulation of the heart are disclosed. Embodiments may include at least two different stimulation patterns, each configured to reduce blood pressure to a different degree, and may alternate between stimulation patterns based on the need of a patient, for example, alternating between day and night or between periods of strenuous and light activity. Some embodiments may take advantage of a slow baroreflex response that occurs after treatment is stopped, suspending treatment for extended periods, and then resuming treatment before blood pressure levels reach pretreatment values. Embodiments may control blood pressure by controlling atrial pressure and atrial stretch.Type: GrantFiled: October 25, 2019Date of Patent: August 30, 2022Assignee: BackBeat Medical, LLCInventors: Yuval Mika, Darren Sherman, Robert S. Schwartz, Robert A. Van Tassel, Daniel Burkhoff
-
Patent number: 11357981Abstract: A system for controlling blood pressure includes a wearable interface having an internal contact surface, the wearable interface configured to at least partially encircle a first portion of a first limb of a subject, a sensing module carried by the wearable interface and configured to determine at least a change in blood pressure of the first limb of the subject, and an energy application module carried by the wearable interface and configured to apply energy of two or more types to the first limb of the subject.Type: GrantFiled: February 28, 2019Date of Patent: June 14, 2022Assignee: Adventus Ventures, LLCInventors: Shahram Moaddeb, Faizal Abdeen, Rinda Sama
-
Patent number: 11235154Abstract: A device and algorithm for controlling an autonomic function in an individual. In particular, a controller device that utilizes physiological measurements (such as blood pressure) to regulate spinal cord electrical stimulation to stabilize blood pressure. A control interface and algorithm for controlling an autonomic function in a subject. In particular, an algorithm that utilizes physiological measurements (such as blood pressure) to regulate spinal cord electrical stimulation to stabilize blood pressure.Type: GrantFiled: February 16, 2018Date of Patent: February 1, 2022Assignee: THE UNIVERSITY OF BRITISH COLUMBIAInventors: Aaron Phillips, Andrei Krassioukov, Jordan Squair
-
Patent number: 11185698Abstract: Systems and methods are provided for delivering neurostimulation therapies to patients for treating chronic heart failure. A titration process is used to gradually increase the stimulation intensity to a desired therapeutic level. This titration process can minimize the amount of time required to complete titration so as to begin delivery of the stimulation at therapeutically desirable levels.Type: GrantFiled: March 1, 2019Date of Patent: November 30, 2021Assignee: LivaNova USA, Inc.Inventors: Imad Libbus, Bruce H. KenKnight, Badri Amurthur
-
Patent number: 11167141Abstract: Described are a system and method that utilize bioelectric signaling to balance electrical potentials in a subject's body via neuro-hormonal circuit loops, to increase elasticity of the subject's arteries to promote protein release to dampen arterial blood pressure, and to change arterial electrical charges to reduce narrowing of the arteries. The described system is designed to localize and stimulate the fibers inside the vagus nerve without inadvertent stimulation of non-baroreceptive fibers causing side effects like bradycardia and bradypnea. The system also controls release of specific proteins known to lower blood pressures including tropoelastin (known to increase elasticity in the aorta and other peripheral blood vessels).Type: GrantFiled: September 20, 2018Date of Patent: November 9, 2021Assignee: LEONHARDT VENTURES LLCInventor: Howard J. Leonhardt
-
Patent number: 11135425Abstract: Provided is a new means for suppressing inflammation or suppressing inflammatory cytokine production. Provided is a device in which a weak pulse current is passed through a living body or living tissue to suppress inflammation in the living body or the living tissue. This device is provided with a power supply means, and a current control means for receiving a supply of power to intermittently apply a direct current at prescribed intervals, and is configured such that the current control means includes a pulse width modulation control means, and the pulse width modulation control means generates a pulse wave that is a rectangular wave, and in which the time indicating a peak value for rising in one cycle of the pulse wave (“pulse duration”) is at least 0.1 millisecond, the peak value is 1.0-20 V, inclusive, and the duty ratio of the pulse wave is at least 5.5%.Type: GrantFiled: October 13, 2016Date of Patent: October 5, 2021Assignee: NATIONAL UNIVERSITY CORPORATION KUMAMOTO UNIVERSITYInventors: Hirofumi Kai, Tsuyoshi Shuto, Ann Soten Mary Suico, Eiichi Araki, Tatsuya Kondo
-
Patent number: 11116564Abstract: Methods for treating anxiety disorders and for reducing a risk associated with developing an anxiety disorder in patients via therapeutic renal neuromodulation and associated systems are disclosed herein. Sympathetic nerve activity can contribute to several cellular and physiological conditions associated with anxiety disorders as well as an increased risk of developing an anxiety disorder. One aspect of the present technology is directed to methods for improving a patient's calculated risk score corresponding to an anxiety disorder status in the patient. Other aspects are directed to reducing a likelihood of developing an anxiety disorder in patients presenting one or more anxiety disorder risk factors. Renal sympathetic nerve activity can be attenuated to improve a patient's anxiety disorder status or risk of developing an anxiety disorder. The attenuation can be achieved, for example, using an intravascularly positioned catheter carrying a therapeutic assembly configured to use, e.g.Type: GrantFiled: July 3, 2018Date of Patent: September 14, 2021Assignee: MEDTRONIC ARDIAN LUXEMBOURG S.A.R.L.Inventors: Gabriel Lazarus, Douglas Hettrick
-
Patent number: 10945788Abstract: Methods for treating depression and for reducing a risk associated with developing depression in patients via therapeutic renal neuromodulation and associated systems are disclosed herein. Sympathetic nerve activity can contribute to several cellular and physiological conditions associated with depression as well as an increased risk of developing depression. One aspect of the present technology is directed to methods for improving a patient's calculated risk score corresponding to a depression status in the patient. Other aspects are directed to reducing a likelihood of developing depression in patients presenting one or more depression risk factors. Renal sympathetic nerve activity can be attenuated to improve a patient's depression status or risk of developing depression. The attenuation can be achieved, for example, using an intravascularly positioned catheter carrying a therapeutic assembly configured to use, e.g.Type: GrantFiled: July 3, 2018Date of Patent: March 16, 2021Assignee: MEDTRONIC ARDIAN LUXEMBOURG S.A.R.L.Inventors: Marcia Gallagher, Douglas Hettrick
-
Patent number: 10898715Abstract: The present invention relates to an implantable probe comprising a sleeve adapted to be wound around an elongated cylindrical organ, such as a vagus nerve. The sleeve comprises a sheet of elastically deformable material carrying a detection/stimulation electrode being prestressed so as to allow its self-winding from an initial position where the sheet is held under stress in the deployed state to a final position where the sheet is freely spirally wound forming a sleeve around the organ. The sheet is delimited by inner and outer lateral edges of the sleeve after winding, a first transverse edge joining the first homologous ends of the first lateral edge and the second lateral edge, and a second opposite transversal edge joining homologous second ends of the first lateral edge and the second lateral edge. In the final position of the sleeve, the sheet comprises at least one area having a constraint near the first and/or second transverse edge.Type: GrantFiled: December 12, 2016Date of Patent: January 26, 2021Assignee: Sorin CRM SASInventors: Stéphane Befahy, Hervé Mevel, Vincent Callegari
-
Patent number: 10722716Abstract: The present disclosure provides for a method for treating a patient in which a catheter having an electrode array is moved through the pulmonary trunk of the patient towards a branch point that helps to define the beginning of a left pulmonary artery and a right pulmonary artery of the heart. The electrode array is positioned in the right pulmonary artery where the electrodes contact a posterior surface, a superior surface and/or an inferior surface of the right pulmonary artery. The one or more electrodes can be positioned to contact the posterior surface, the superior surface and/or the inferior surface of the right pulmonary artery at a position superior to the branch point. The electrode array can also be positioned in the right pulmonary artery no more than three times the diameter of the pulmonary trunk to the right of the branch point.Type: GrantFiled: March 1, 2017Date of Patent: July 28, 2020Assignee: Cardionomia Inc.Inventors: Steven L. Waldhauser, Steven D. Goedeke
-
Patent number: 10661081Abstract: A non-invasive method and device for treating gastroesophageal reflux disease (GERD) in a patient are disclosed. The method calls for positioning electrodes, and applying electrical symmetrical bursts. In particular, positioning step requires positioning a plurality of electrodes in electrical contact with the skin of a target region of the abdomen of the patient. The application step calls for applying a series of electrical symmetrical bursts to said electrodes. That application step generates contractions of abdominal muscles thereby generating movements of a digestive system of said patient wherein said movements are for causing the content of the esophagus to return to the stomach and to relieve GERD symptoms of said patient.Type: GrantFiled: March 8, 2018Date of Patent: May 26, 2020Assignee: GERDCARE MEDICAL LTD.Inventors: Mordechay Esh, Giora Arbel
-
Patent number: 10610689Abstract: Systems and methods for reducing ventricle filling volume are disclosed. In some embodiments, a stimulation circuit may be used to stimulate a patient's heart to reduce ventricle filling volume or even blood pressure. When the heart is stimulated at a consistent rate to reduce blood pressure, the cardiovascular system may over time adapt to the stimulation and revert back to the higher blood pressure. In some embodiments, the stimulation pattern may be configured to be inconsistent such that the adaptation response of the heart is reduced or even prevented. In some embodiments, a stimulation circuit may be used to stimulate a patient's heart to cause at least a portion of an atrial contraction to occur while the atrioventricular valve is closed. Such an atrial contraction may deposit less blood into the corresponding ventricle than when the atrioventricular valve is opened throughout an atrial contraction.Type: GrantFiled: March 5, 2018Date of Patent: April 7, 2020Assignee: BackBeat Medical, Inc.Inventors: Yuval Mika, Darren Sherman, Robert S. Schwartz, Robert A. Van Tassel, Daniel Burkhoff
-
Patent number: 10603489Abstract: Methods of preventing, treating, and/or controlling a hemorrhage in an organ of a patient include providing electrical stimulation to the arteries, veins, nerves innervating the arteries or veins, or walls of the organ. The apparatus has at least one electrode operably connected to a stimulus generator and placed in electrical communication with an artery, vein, nerve, or organ wall. An electrical stimulus generator causes an electrical stimulus to be administered to the artery, vein, nerve, or wall through the at least one electrode, where the electrical stimulus is effective for preventing, treating, and/or controlling a hemorrhage.Type: GrantFiled: March 7, 2017Date of Patent: March 31, 2020Inventor: Virender K. Sharma
-
Patent number: 10485658Abstract: Systems and methods for controlling blood pressure via electrical stimulation of the heart are disclosed. Embodiments may include at least two different stimulation patterns, each configured to reduce blood pressure to a different degree, and may alternate between stimulation patterns based on the need of a patient, for example, alternating between day and night or between periods of strenuous and light activity. Some embodiments may take advantage of a slow baroreflex response that occurs after treatment is stopped, suspending treatment for extended periods, and then resuming treatment before blood pressure levels reach pretreatment values. Embodiments may control blood pressure by controlling atrial pressure and atrial stretch.Type: GrantFiled: April 20, 2017Date of Patent: November 26, 2019Assignee: BackBeat Medical, Inc.Inventors: Yuval Mika, Darren Sherman, Robert S. Schwartz, Robert A. Van Tassel, Daniel Burkhoff
-
Patent number: 10420606Abstract: Methods and apparatus are provided for non-continuous circumferential treatment of a body lumen. Apparatus may be positioned within a body lumen of a patient and may deliver energy at a first lengthwise and angular position to create a less-than-full circumferential treatment zone at the first position. The apparatus also may deliver energy at one or more additional lengthwise and angular positions within the body lumen to create less-than-full circumferential treatment zone(s) at the one or more additional positions that are offset lengthwise and angularly from the first treatment zone. Superimposition of the first treatment zone and the one or more additional treatment zones defines a non-continuous circumferential treatment zone without formation of a continuous circumferential lesion. Various embodiments of methods and apparatus for achieving such non-continuous circumferential treatment are provided.Type: GrantFiled: October 25, 2017Date of Patent: September 24, 2019Assignee: Medtronic Ardian Luxembourg S.a.r.l.Inventors: Denise Zarins, Hanson Gifford, III, Mark Deem, Nicolas Zadno, Benjamin J. Clark, Andrew Wu, Kenneth J. Michlitsch
-
Patent number: 10314739Abstract: A method in which a location is determined on the skin that is proximate to a sensory nerve that is associated with a painful condition. At least one needle of a cryogenic device is inserted into the location on the skin such that the needle is proximate to the sensory nerve. The device is activated such that the at least one needle creates a cooling zone about the sensory nerve, thereby eliminating or reducing severity of the painful condition.Type: GrantFiled: February 17, 2016Date of Patent: June 11, 2019Assignee: MyoScience, Inc.Inventors: John Allison, Richard Radnovich, Jason Reynolds
-
Patent number: 10220212Abstract: Systems and methods are provided for delivering neurostimulation therapies to patients for treating chronic heart failure. A titration process is used to gradually increase the stimulation intensity to a desired therapeutic level. This titration process can minimize the amount of time required to complete titration so as to begin delivery of the stimulation at therapeutically desirable levels.Type: GrantFiled: December 30, 2016Date of Patent: March 5, 2019Assignee: LivaNova USA, Inc.Inventors: Imad Libbus, Bruce H. Kenknight, Badri Amurthur
-
Patent number: 10194979Abstract: Methods for treating preventing or decreasing the likelihood of a human patient developing hypertension and associated systems and methods are disclosed herein. One aspect of the present technology, for example, is directed to methods for therapeutic renal neuromodulation that partially inhibit sympathetic neural activity in renal nerves proximate a renal blood vessel of a human patient. This reduction in sympathetic neural activity is expected to therapeutically treat one or more conditions associated with hypertension or prehypertension of the patient. Renal sympathetic nerve activity can be modulated, for example, using an intravascularly positioned catheter carrying a neuromodulation assembly, e.g., a neuromodulation assembly configured to use electrically-induced, thermally-induced, and/or chemically-induced approaches to modulate the renal nerves.Type: GrantFiled: March 13, 2015Date of Patent: February 5, 2019Assignee: Medtronic Ardian Luxembourg S.a.r.l.Inventors: Sandeep S. Brar, Minglei Liu, Manuela Negoita
-
Patent number: 10064674Abstract: According to some embodiments, a method of treating a subject having diabetes or symptoms associated with diabetes is provided. The method includes delivering a neuromodulation catheter within a vessel (e.g., hepatic artery) having surrounding nerves that innervate the liver (e.g., sympathetic nerves of the hepatic plexus). The method may also include modulating (e.g., disrupting, ablating, stimulating) the nerves by mechanical compression, energy delivery, or fluid delivery.Type: GrantFiled: August 21, 2015Date of Patent: September 4, 2018Assignee: Metavention, Inc.Inventors: Bobak Robert Azamian, Scott Bradley Vafai
-
Patent number: 9814395Abstract: Implanted electrodes can be used to deliver electrical stimulation signals to areas near blood vessels, nerves, or other internal body locations. In an example, an electrode can be implanted in a cervical location and can be used to measure dimensional changes in an artery using impedance plethysmography. Measured artery dimensional changes can be used to determine one or more physiological parameters associated with a patient's health status, such as pulse transit time, relative pulse pressure, or aterial compliance, among others. These parameters can be used to monitor a patient health status or to modulate a patient's therapy, among other uses. In some examples, an electrode configured to deliver an electrostimulation signal to nerve tissue can be used to provide non-neurostimulating electrical stimulation plethysmography signals near a blood vessel.Type: GrantFiled: August 7, 2012Date of Patent: November 14, 2017Assignee: Cardiac Pacemakers, Inc.Inventors: Jeffrey E. Stahmann, David J. Ternes, Barun Maskara, Shantha Arcot-Krishnamurthy, Juan Gabriel Hincapie Ordonez, Scott Vanderlinde
-
Patent number: 9744351Abstract: The present invention is related to an implantable medical device for treating breathing disorders and cardiac disorders by delivering stimulation energy to the phrenic nerve, hypoglossal nerves and cardiac muscle tissues.Type: GrantFiled: October 23, 2014Date of Patent: August 29, 2017Assignee: Respicardia, Inc.Inventors: Mark Gelfand, Howard R. Levin
-
Patent number: 9731132Abstract: Methods and apparatus are provided for renal neuromodulation using a pulsed electric field to effectuate electroporation or electrofusion. It is expected that renal neuromodulation (e.g., denervation) may, among other things, reduce expansion of an acute myocardial infarction, reduce or prevent the onset of morphological changes that are affiliated with congestive heart failure, and/or be efficacious in the treatment of end stage renal disease. Embodiments of the present invention are configured for extravascular delivery of pulsed electric fields to achieve such neuromodulation.Type: GrantFiled: September 1, 2016Date of Patent: August 15, 2017Assignee: Medtronic Ardian Luxembourg S.a.r.l.Inventors: Mark Deem, Denise Zarins, Douglas Sutton, Hanson Gifford, III, Howard R. Levin, Mark Gelfand, Benjamin J. Clark
-
Patent number: 9687376Abstract: A knee brace for continual electro-acupuncture stimulation system comprises a first circuit having a first circuit having a first electrode configured to electrically coupled to acupuncture point “Heting (S 156)” and a second electrode configured to electrically coupled to acupuncture point “Bladder 40”, a second circuit having a third electrode configured to electrically coupled to acupuncture point “Spleen 10” and a fourth electrode configured to electrically coupled to acupuncture point “Hsiyen (S 145)”, and a third circuit having a fifth electrode configured to electrically coupled to acupuncture point “Stomach 34” and a sixth electrode configured to electrically coupled to acupuncture point “Stomach 35”. The first, third, and fifth electrodes are connected to a polarity of voltage, and the second, fourth, and sixth electrodes are connected to an opposite polarity of voltage, such that electric currents flow in a body of a patient to achieve analgesia, cartilage repair and regeneration in the knee joint.Type: GrantFiled: August 6, 2013Date of Patent: June 27, 2017Inventor: Y. King Liu
-
Patent number: 9656079Abstract: A method and apparatus are used to provide therapy to a patient experiencing ventricular dysfunction or heart failure. At least one electrode is located in a region associated with nervous tissue, such as nerve bundles T1-T4, in a patient's body. Electrical stimulation is applied to the at least one electrode to improve the cardiac efficiency of the patient's heart. One or more predetermined physiologic parameters of the patient are monitored, and the electrical stimulation is adjusted based on the one or more predetermined physiologic parameters.Type: GrantFiled: September 24, 2009Date of Patent: May 23, 2017Assignee: Medtronic, Inc.Inventors: Michael R. S. Hill, Gary W. King, Thomas J. Mullen, Xiaohong Zhou
-
Patent number: 9656086Abstract: Methods and devices for reducing ventricle filling volume are disclosed. In some embodiments, an electrical stimulator may be used to stimulate a patient's heart to reduce ventricle filling volume or even blood pressure. When the heart is stimulated in a consistent way to reduce blood pressure, the cardiovascular system may over time adapt to the stimulation and revert back to the higher blood pressure. In some embodiments, the stimulation pattern may be configured to be inconsistent such that the adaptation response of the heart is reduced or even prevented. In some embodiments, an electrical stimulator may be used to stimulate a patient's heart to cause at least a portion of an atrial contraction to occur while the atrioventricular valve is closed. Such an atrial contraction may deposit less blood into the corresponding ventricle than when the atrioventricular valve is opened throughout an atrial contraction.Type: GrantFiled: May 2, 2016Date of Patent: May 23, 2017Assignee: BackBeat Medical, Inc.Inventors: Yuval Mika, Darren Sherman, Robert S. Schwartz, Robert A. Van Tassel, Daniel Burkhoff
-
Patent number: 9649156Abstract: A first spacing structure is provided at a distal end of a first catheter. The first spacing structure is configured to position at least one arterial electrode at a predefined distance away from a wall of the renal artery. A second spacing structure is provided at the distal end of the first catheter or at a distal end of a second catheter. The second spacing structure is configured to position at least one aortal electrode at a predefined distance away from a wall of the aorta. The arterial and aortal electrodes are operable as a bipolar electrode arrangement. The first and second spacing structures respectively maintain the arterial and aortal electrodes at a predefined distance away from the renal artery and aortal walls while electrical energy sufficient to ablate perivascular nerve tissue adjacent the renal artery and aortal walls is delivered by the bipolar electrode arrangement.Type: GrantFiled: February 12, 2015Date of Patent: May 16, 2017Assignee: Boston Scientific Scimed, Inc.Inventors: Mark L. Jenson, Scott R. Smith
-
Patent number: 9636174Abstract: Methods and apparatus are provided for treating hypertension, e.g., via a pulsed electric field, via a stimulation electric field, via localized drug delivery, via high frequency ultrasound, via thermal techniques, etc. Such neuromodulation may effectuate irreversible electroporation or electrofusion, necrosis and/or inducement of apoptosis, alteration of gene expression, action potential attenuation or blockade, changes in cytokine up-regulation and other conditions in target neural fibers. In some embodiments, neuromodulation is applied to neural fibers that contribute to renal function. In some embodiments, such neuromodulation is performed in a bilateral fashion. Bilateral renal neuromodulation may provide enhanced therapeutic effect in some patients as compared to renal neuromodulation performed unilaterally, i.e., as compared to renal neuromodulation performed on neural tissue innervating a single kidney.Type: GrantFiled: March 3, 2016Date of Patent: May 2, 2017Assignee: Medtronic Ardian Luxembourg S.a.r.l.Inventors: Denise Zarins, Hanson Gifford, III, Mark Deem, Douglas Sutton, Howard R. Levin, Mark Gelfand
-
Patent number: 9629742Abstract: A knee brace for continual electro-acupuncture stimulation system comprises: a first electrode configured to electrically coupled to acupuncture point Heting “(S 156)”; a second electrode configured to electrically coupled to acupuncture point “Spleen 10 ”; a third electrode configured to electrically coupled to acupuncture point “Stomach 34 ”; a fourth electrode configured to electrically coupled to acupuncture point “Hsiyen (S 145)”; a fifth electrode configured to electrically coupled to acupuncture point “Stomach 35 ”; a sixth electrode configured to electrically coupled to acupuncture point “Bladder 40 ”. The first, second, and third electrodes are connected to a polarity of voltage, and the fourth, fifth, and sixth electrodes are connected to an opposite polarity of voltage, such that electric currents flow in a body of a patient to achieve analgesia, cartilage repair and regeneration in the knee joint.Type: GrantFiled: December 24, 2012Date of Patent: April 25, 2017Inventor: Y. King Liu
-
Patent number: 9533153Abstract: Systems and methods are provided for delivering neurostimulation therapies to patients for treating chronic heart failure. A titration process is used to gradually increase the stimulation intensity to a desired therapeutic level. This titration process can minimize the amount of time required to complete titration so as to begin delivery of the stimulation at therapeutically desirable levels.Type: GrantFiled: August 12, 2014Date of Patent: January 3, 2017Assignee: CYBERONICS, INC.Inventors: Imad Libbus, Bruce H. KenKnight, Badri Amurthur
-
Patent number: 9511228Abstract: A method for managing hypertension through renal nerve denervation and vagus nerve stimulation is provided. Renal nerves are disrupted to inhibit a sympathetic nervous system. Thereafter, an implantable neurostimulator, including a pulse generator, is configured to deliver electrical therapeutic stimulation in a manner that results in creation and propagation (in both afferent and efferent directions) of action potentials within neuronal fibers of a patient's cervical vagus nerve. A maintenance dose of the electrical therapeutic stimulation is delivered to the vagus nerve via the pulse generator to restore cardiac autonomic balance through continuously-cycling, intermittent and periodic electrical pulses.Type: GrantFiled: January 14, 2014Date of Patent: December 6, 2016Assignee: CYBERONICS, INC.Inventors: Badri Amurthur, Imad Libbus, Bruce H. KenKnight
-
Patent number: 9463066Abstract: Methods and apparatus are provided for renal neuromodulation using a pulsed electric field to effectuate electroporation or electrofusion. It is expected that renal neuromodulation (e.g., denervation) may, among other things, reduce expansion of an acute myocardial infarction, reduce or prevent the onset of morphological changes that are affiliated with congestive heart failure, and/or be efficacious in the treatment of end stage renal disease. Embodiments of the present invention are configured for extravascular delivery of pulsed electric fields to achieve such neuromodulation.Type: GrantFiled: October 8, 2015Date of Patent: October 11, 2016Assignee: Medtronic Ardian Luxembourg S.a.r.l.Inventors: Mark Deem, Denise Zarins, Douglas Sutton, Hanson Gifford, III, Howard R. Levin, Mark Gelfand, Benjamin J. Clark
-
Patent number: 9457189Abstract: An implantable baroreflex activation device administers a special electrotherapy program that causes the device to apply electrotherapy to limit a rate of change of blood pressure increase associated with a blood pressure surge event such as a morning blood pressure surge (MBPS).Type: GrantFiled: May 5, 2015Date of Patent: October 4, 2016Assignee: CVRx, Inc.Inventor: Martin A. Rossing
-
Patent number: 9452290Abstract: An implantable neurostimulator-implemented method for managing tachyarrhythmias through vagus nerve stimulation is provided. An implantable neurostimulator, including a pulse generator, is configured to deliver electrical therapeutic stimulation in a manner that results in creation and propagation (in both afferent and efferent directions) of action potentials within neuronal fibers of a patient's cervical vagus nerve. Operating modes of the pulse generator are stored. A maintenance dose of the electrical therapeutic stimulation is delivered to the vagus nerve via the pulse generator to restore cardiac autonomic balance through continuously-cycling, intermittent and periodic electrical pulses. A restorative dose of the electrical therapeutic stimulation is delivered to prevent initiation of or disrupt tachyarrhythmia through periodic electrical pulses delivered at higher intensity than the maintenance dose.Type: GrantFiled: November 9, 2012Date of Patent: September 27, 2016Assignee: CYBERONICS, INC.Inventors: Imad Libbus, Badri Amurthur, Bruce H. Kenknight
-
Patent number: 9427579Abstract: A renal denervation feedback method is described that performs a baseline measurement of renal nerve plexus electrical activity at a renal vessel; denervates at least some tissue proximate the renal vessel after performing the baseline measurement; performs a post-denervation measurement of renal nerve plexus electrical activity at the renal vessel, after the denervating; and assesses denervation of the renal vessel based on a comparison of the baseline measurement and the post-denervation measurement of renal nerve plexus electrical activity at the renal vessel.Type: GrantFiled: September 29, 2011Date of Patent: August 30, 2016Assignee: PACESETTER, INC.Inventors: Eric S. Fain, Martin Cholette, Gary R. Dulak, Gene A. Bornzin, John W. Poore
-
Patent number: 9421366Abstract: The present invention generally relates to patterned intensity modulation of neural tissue. Certain embodiments provide a method of treating medical conditions by providing an electrode and modulating stimulation parameters delivered by the electrode. The stimulation parameters that are modulated relate to stimulation intensity and are varied according to a stimulation input parameter or time. The stimulation input parameter can be a choice of an individual waveform (i.e. ? or psi), which may be varied for each pulse.Type: GrantFiled: December 16, 2013Date of Patent: August 23, 2016Assignee: Case Western Reserve UniversityInventors: Dustin Tyler, Daniel Tan, Matthew Schiefer
-
Patent number: 9403007Abstract: Some embodiments, by way of example, provide a system, comprising a posture change detector configured to detect a posture transition indicative of an increased risk of syncope, and a neural stimulator configured to deliver a neural stimulation therapy. The neural stimulator may include a syncope avoidance module configured to respond to a detected posture transition by temporarily overriding the neural stimulation therapy to ameliorate the risk of increased syncope.Type: GrantFiled: May 14, 2013Date of Patent: August 2, 2016Assignee: Cardiac Pacemakers, Inc.Inventors: Eric A. Mokelke, Shibaji Shome, Guy Alvarez, Harlan Bos, Kenneth Martin Stein, John D. Hatlestad
-
Patent number: 9399136Abstract: An implantable medical device is powered by a battery to deliver one or more therapies including at least one non-life-sustaining therapy such as neural stimulation for enhancing quality of life of a patient. When the battery approaches its end of life, the implantable medical device reduces power consumption of the neural stimulation (e.g., intensity of the neural stimulation) for extending the remaining battery life while maintaining a certain amount of therapeutic benefits for the patient. In one embodiment, the intensity of the neural stimulation is reduced in a tiered manner. In one embodiment in which the implantable medical device also delivers at least one life-sustaining cardiac stimulation therapy, the neural stimulation is disabled or adjusted to reduce its power consumption (e.g., intensity) while the intensity of the cardiac stimulation therapy is maintained when the battery is near its end of life.Type: GrantFiled: March 24, 2015Date of Patent: July 26, 2016Assignee: Cardiac Pacemakers, Inc.Inventors: Jason J. Hamann, Scott Vanderlinde, David J. Ternes
-
Patent number: 9386927Abstract: A method for monitoring blood pressure includes sensing and storing sympathetic nerve activity data of a patient via a recording lead of an implantable medical device. Changes in sympathetic nerve activity from the nerve activity data are determined. Corresponding changes in blood pressure are determined from the changes in sympathetic nerve activity. An alert signal and/or modification of therapy can be provided.Type: GrantFiled: July 28, 2009Date of Patent: July 12, 2016Assignee: Medtronic, Inc.Inventor: Daniel R. Kaiser
-
Patent number: 9364284Abstract: A method of making a spacer cage is disclosed. The method may include providing a tube having an outer diameter, a first second, a second section and a middle section having a first end connected to the first section and a second end connected to the second section, cutting the middle section to form strut elements of the spacer cage and cutting a plurality of longitudinal slits in the first and second sections to allow radial expansion of the first and second sections, expanding the tube using a mandrel, heat setting the tube while on the mandrel, and subsequent the heat setting, removing the first and second sections from the tube.Type: GrantFiled: October 10, 2012Date of Patent: June 14, 2016Assignee: Boston Scientific Scimed, Inc.Inventors: Joel N. Groff, Scott R. Smith
-
Patent number: 9289255Abstract: Methods and apparatus are provided for renal neuromodulation using a pulsed electric field to effectuate electroporation or electrofusion. It is expected that renal neuromodulation (e.g., denervation) may, among other things, reduce expansion of an acute myocardial infarction, reduce or prevent the onset of morphological changes that are affiliated with congestive heart failure, and/or be efficacious in the treatment of end stage renal disease. Embodiments of the present invention are configured for percutaneous intravascular delivery of pulsed electric fields to achieve such neuromodulation.Type: GrantFiled: March 3, 2015Date of Patent: March 22, 2016Assignee: Medtronic Ardian Luxembourg S.a.r.l.Inventors: Mark E. Deem, Hanson Gifford, III, Denise Zarins, Douglas Sutton, Erik Thai, Mark Gelfand, Howard R. Levin