Producing Aural Effects By Stimulation Patents (Class 607/56)
  • Patent number: 7248926
    Abstract: A status indicator is provided for use with a medical device that employs a power transmitting coil. In one embodiment, the status indicator comprises a receiving coil and feedback element. The feedback element, such as a light emitting diode (LED) or liquid crystal display (LCD), is electrically coupled to the receiving coil. In another embodiment a status indicator is incorporated into the medical device, which status indicator comprises a feedback element and electronic circuitry for detecting device function and program selection. The circuitry and feedback element are incorporated into the medical device such as on the earhook of a behind-the-ear (BTE) hearing device.
    Type: Grant
    Filed: August 29, 2003
    Date of Patent: July 24, 2007
    Assignee: Advanced Bionics Corporation
    Inventors: Carla Mann Woods, Michael A Faltys, Lee F Hartley
  • Patent number: 7242985
    Abstract: Contrast between various frequency components of sound is enhanced through a lateral suppression strategy to provide increased speech perception in the electrically stimulated cochlea. A received audio signal is divided into a plurality of input signals, wherein each input signal is associated with a frequency band. A plurality of envelope signals are generated by determining the envelope of each of a plurality of the input signals. At least one of the envelope signals is scaled in accordance with a scaling factor to generate at least one scaled envelope signal. An output signal is generated by combining at least one envelope signal with at least one scaled envelope signal, and the cochlea is stimulated based on the generated output signal. The lateral suppression strategy can be applied to one or more frequency bands using scaled amplitude signals associated with one or more neighboring frequency bands.
    Type: Grant
    Filed: December 3, 2004
    Date of Patent: July 10, 2007
    Assignee: Advanced Bionics Corporation
    Inventors: Gene Y. Fridman, Leonid M. Litvak
  • Patent number: 7225028
    Abstract: A system for treating patients affected both by hearing loss and by balance disorders related to vestibular hypofunction and/or malfunction, which includes sensors of sound and head movement, processing circuitry, a power source, and an implantable electrical stimulator capable of stimulating areas of the cochlea and areas of the vestibular system.
    Type: Grant
    Filed: May 20, 2005
    Date of Patent: May 29, 2007
    Assignees: Advanced Bionics Corporation, Johns Hopkins School of Medicine
    Inventors: Charles C Della Santina, Michael A Faltys
  • Patent number: 7225026
    Abstract: An auditory prosthesis includes an implanted component and an external component. The external component includes a transmitter for transmitting electromagnetic signals to the implanted component; means for detecting electromagnetic emissions of the transmitter; and means for indicating when the electromagnetic emissions of the transmitter have been detected.
    Type: Grant
    Filed: June 5, 2002
    Date of Patent: May 29, 2007
    Assignee: Cochlear Limited
    Inventor: Ibrahim Hanna Ibrahim
  • Patent number: 7194314
    Abstract: A cochlear implant wherein the return path of the electrode array is located to increase current flow through the modiolus. The return electrode is placed at various locations outside the cochlea, and into the modiolus itself. In addition, the electrode array includes an inflatable membrane that is inflated to anchor the array in position in the cochlea with the electrode contacts pressed into contact with the modiolar wall and allowing the membrane to seal with the surrounding tissue of the cochlea, increasing the longitudinal resistance along the cochlear implant electrode, decreasing shunting of the injected current via scala tympani. In experiments that were conducted the current along the modiolus was determined to be, on average, 2.4 times larger with the return electrode in the modiolus than in an extracochlear location.
    Type: Grant
    Filed: August 15, 2003
    Date of Patent: March 20, 2007
    Assignee: Northwestern University
    Inventors: Claus-Peter Richter, Steven Ho
  • Patent number: 7146227
    Abstract: A cochlear implant electrode assembly device (10) comprising an elongate electrode carrier member (11), a stiffening element (15), and a stiffening sheath (16) that at least partially envelops the elongate member (11). The member (11) is made of a resiliently flexible first material and has a plurality of electrodes (12) mounted thereon. The member (11) has a first configuration that allows it to be inserted into an implantee's cochlea (30). The member (11) also has a second configuration wherein the member is curved to match an inside surface of the cochlea (30), and at least one intermediate configuration between the first and second configurations. Both the stiffening element (15) and sheath (16) are made of a material that is relatively stiffer than the member (11). The stiffening element (15) and the stiffening sheath (16) in combination bias the elongate member (11) into the first configuration.
    Type: Grant
    Filed: September 28, 2001
    Date of Patent: December 5, 2006
    Assignee: Cochlear Limited
    Inventors: Fysh Dadd, Ian Darley, Peter Gibson, John Parker, Claudiu Treaba
  • Patent number: 7136706
    Abstract: An implantable neural stimulation system, such as a cochlear implant system, utilizes a Distributed Compression Amplitude Mapping (DCAM) system to distribute signal compression between a pre-bandpass linear mapping function, and a post-bandpass compressive mapping function. The pre-bandpass linear mapping function is implemented, in one embodiment, as a traditional fast audio compressor to prevent distortion that might result from a non-linear mapping. The post-bandpass compressive mapping function is implemented, in one embodiment, as a logarithmic transform to reflect natural hearing. As a result of the DCAM processing, the differences in amplitudes of components of the acoustic spectrum are maintained. By maintaining these differences, spectral smearing between channels is reduced and speech clues are preserved.
    Type: Grant
    Filed: February 21, 2003
    Date of Patent: November 14, 2006
    Assignee: Advanced Bionics Corporation
    Inventor: Andrew W. Voelkel
  • Patent number: 7130694
    Abstract: Improved skipping strategies for cochlear or other multi-channel neural stimulation implants selects N out of M channels for stimulation during a given stimulation frame. A microphone transduces acoustic energy into an electrical signal. The electrical signal is processed by a family of bandpass filters, or the equivalent, to produce a number of frequency channels. In a first embodiment, a probability based channel selection strategy computes a probably for each of the M channels based on the strength of each channel. N channels are probabilistically selected for stimulation based on their individual probability. The result is a randomized “stochastic” stimulus presentation to the patient. Such randomized stimulation reduces under representation of weaker channels for steady state input conditions such as vowels. In second, third and fourth embodiments, a variable threshold is adjusted to obtain the selection of N channels per frame.
    Type: Grant
    Filed: December 13, 2002
    Date of Patent: October 31, 2006
    Assignee: Advanced Bionics Corporation
    Inventor: Andrew W Voelkel
  • Patent number: 7103417
    Abstract: An adaptive place-pitch ranking procedure for use with a cochlear implant or other neural stimulation system provides a systematic method for quantifying the magnitude and direction of errors along the place-pitch continuum. The method may be conducted and completed in a relatively short period of time. In use, the implant user or listener is asked to rank the percepts obtained after a sequential presentation of monopolar stimulation pulses are applied to a selected spatially-defined electrode pair. Should the patient's judgment of pitch order be correct for all applied interrogations, then no further testing involving the tested electrode pair (two electrode contacts) is undertaken. However, should there be errors in the place-pitch ranking, which errors evidence perceptual place-confusions, then a search is undertaken for the spread of the perceptual confusion by separating the target channel and competing channel by one electrode contact at a time.
    Type: Grant
    Filed: April 7, 2004
    Date of Patent: September 5, 2006
    Assignee: Advanced Bionics Corporation
    Inventors: Philip A Segel, Tracey L Kruger
  • Patent number: 7082332
    Abstract: The sound processor and method uses a model of basilar membrane motion to select stimuli, based upon the predicted motion which the acoustic signal presented would produce in an acoustically excited normally hearing cochlea. The filter; used, in contrast to single channel per electrode approaches, cover multiple channels and overlap with each other. Consequently the stimuli presented produce a neural excitation pattern which approximates the spatio-temporal travelling wave observed on the basilar membrane in an acoustically excited normally hearing cochlea. Preferably, the predicted electrode stimuli are based upon the instantaneous predicted amplitude of the electrode location.
    Type: Grant
    Filed: June 19, 2001
    Date of Patent: July 25, 2006
    Assignee: Cochlear Limited
    Inventors: Peter John Blamey, Brett Anthony Swanson, Hugh McDermott, James F. Patrick, Graeme Clark
  • Patent number: 7039466
    Abstract: A cochlear implant system, or other neural stimulation system, has the capability to stimulate fast enough to induce stochastic neural firing so as to restore “spontaneous” neural activity. The stimulation rate applied to the more distally-located electrodes of an electrode array connected to the implant system is reduced from the stimulation rate applied to the more proximally-located electrodes. Thus, in the case of a cochlear implant system, the apically-located regions within the cochlea are stimulated at a reduced rate in order to conserve power. Pulse widths of the reduced-rate pulses may further be increased, and amplitudes reduced, to further conserve power. As needed, a low-level random conditioner stimulation signal may be applied to the apical regions of the cochlea in order to ensure the occurrence of random neural firings.
    Type: Grant
    Filed: April 28, 2004
    Date of Patent: May 2, 2006
    Assignee: Advanced Bionics Corporation
    Inventors: William Vanbrooks Harrison, Michael A. Faltys
  • Patent number: 6996438
    Abstract: An envelope based amplitude mapping achieves the signal compression required to provide a natural sound level without the high processor loading or waveform alteration. In a preferred embodiment, the output of a family of parallel bandpass filters is processed by an envelope detector, followed by decimation. The resulting reduced data rate envelope is log mapped to produce a scaling factor for the original high data rate bandpass filter output sequence. The resulting scaled signal determines the current level for stimulation of the cochlea for each frequency band, which stimulation achieves a log mapping of the sound amplitude effect similar to natural hearing, while reducing processor load, and preserving waveform shape.
    Type: Grant
    Filed: October 14, 2003
    Date of Patent: February 7, 2006
    Assignee: Advanced Bionics Corporation
    Inventor: Andrew W. Voelkel
  • Patent number: 6915166
    Abstract: A method is described to allow for better selection of electrodes for neural stimulation, for example in a cochlear implant. A series of stimuli, at different stimulation levels, are provided at each electrode to be tested, and the neural response to each stimulus is measured, using an implanted electrode. A value is then calculated relating stimulus level to response, to allow the relative responsiveness of electrodes to be determined. This can then be used as the basis for a stimulation map used to select which electrodes are stimulated and at what level.
    Type: Grant
    Filed: August 28, 2000
    Date of Patent: July 5, 2005
    Assignee: Cochlear Limited
    Inventors: Mathias Stecker, Ernst Ludwig Von Wallenberg, Norbert Dillier, Wai Kong Lai, Jochen Nicolai, Roland Laszig, Joachim Mueller-Delle, Denise Cafarelli-Dees
  • Patent number: 6907130
    Abstract: A apparatus and method for inner ear implants is provided that generates signal processing stochastic independence activity across the excited neural population. A high rate pulse train can produce random spike patterns in auditory nerve fibers (hereafter “pseudospontaneous activity”) that are statistically similar to those produced by spontaneous activity in the normal auditory nerve. We call this activity “pseudospontaneous”. Varying rates of pseudospontaneous activity can be created by varying the intensity of a fixed amplitude, high rate pulse train stimulus, e.g., 5000 pps. The high rate pulse train can desynchronize the nerve fiber population and can be combined with a data signal in an inner ear implant. The pseudospontaneous activity can enhance neural representation of temporal detail and dynamic range with an inner ear implant such as a cochlear implant. The pseudospontaneous activity can further eliminate a major difference between acoustic-and electrical-derived hearing percepts.
    Type: Grant
    Filed: February 13, 1998
    Date of Patent: June 14, 2005
    Assignees: University of Iowa Research Foundation, Research Triangle Institute
    Inventors: Jay Rubinstein, Blake Wilson
  • Patent number: 6879855
    Abstract: The invention is a method for increasing the airflow to a zinc-air battery such that the energy density is 500 mwh/cc to 1000 mwh/cc. This allows 8 to 16 hours use as a primary (throw-away) battery, with, for example, high-duty cycle, high-drain cochlear implants, and neuromuscular stimulators for nerves, muscles, and both nerves and muscles together. The systems incorporating the high energy density source are also part of the invention, as well as the resulting apparatus of the method. The uses of this inexpensive, i.e., a $1.00 per day, throw-away primary battery are new uses of the modified zinc-air battery and are directed toward helping people hear again, walk again, and regain body functionality which they have otherwise lost permanently.
    Type: Grant
    Filed: April 5, 2002
    Date of Patent: April 12, 2005
    Assignee: The Alfred E. Mann Foundation for Scientific Research
    Inventors: Joseph H. Schulman, Albert A Maltan, Thomas A. Santogrossi
  • Patent number: 6879693
    Abstract: A noninvasive method and system are provided for assessing the performance of implanted actuators of semi or fully-implantable hearing aid systems. The invention utilizes an externally positioned test measurement device to obtain measurements of the electrical impedance of an implanted actuator when driven by a test signal of predetermined characteristics. In one embodiment, the test measurement device may comprise a signal generator for generating the test signal for the actuator, a signal processing unit to compute the electrical impedance from voltage and current measurements, and a user interface to provide an output that is usable to asses the performance of the actuator. The electrical impedance is computable from the voltage and current of the signal passing through the actuator. The electrical impedance is directly related to the mechanical impedance present at the interface between the actuator and middle ear of a patient.
    Type: Grant
    Filed: February 26, 2002
    Date of Patent: April 12, 2005
    Assignee: Otologics, LLC.
    Inventors: Douglas Alan Miller, Scott Allan Miller, III
  • Patent number: 6736770
    Abstract: The invention relates to an implantable medical device having an hermetically tight housing, which houses an electronic unit as well as an electrochemical energy storage for supplying the medical device with current. The energy storage is arranged directly within the hermetically tight housing without having a separate housing.
    Type: Grant
    Filed: August 27, 2001
    Date of Patent: May 18, 2004
    Assignee: Cochlear Limited
    Inventors: Hans Leysieffer, Dirk A. Fiedler
  • Patent number: 6728578
    Abstract: An envelope based amplitude mapping achieves the signal compression required to provide a natural sound level without the high processor loading or waveform alteration. In a preferred embodiment, the output of a family of parallel bandpass filters is processed by an envelope detector, followed by decimation. The resulting reduced data rate envelope is log mapped to produce a scaling factor for the original high data rate bandpass filter output sequence. The resulting scaled signal determines the current level for stimulation of the cochlea for each frequency band, which stimulation achieves a log mapping of the sound amplitude effect similar to natural hearing, while reducing processor load, and preserving waveform shape.
    Type: Grant
    Filed: May 25, 2001
    Date of Patent: April 27, 2004
    Assignee: Advanced Bionics Corporation
    Inventor: Andrew W. Voelkel
  • Patent number: 6724902
    Abstract: A canal hearing device with a dual acoustic seal system for preventing feedback while minimizing occlusion effects. The two-part device comprises a main module and an elongated tubular insert for conducting sound to the tympanic membrane and sealing within the bony region of the ear canal. The main module is positioned in the cartilaginous portion of the ear canal. The tubular insert comprises a sound conduction tube and a cylindrically hollow primary seal medially positioned in the bony region. The device also comprises a secondary seal laterally positioned in the cartilaginous region. The secondary seal, although providing additional acoustic sealing for the prevention of feedback, is sufficiently vented to provide a path of least acoustic resistance for occlusion sounds within the ear canal.
    Type: Grant
    Filed: April 29, 1999
    Date of Patent: April 20, 2004
    Assignee: InSound Medical, Inc.
    Inventors: Adnan Shennib, Richard C. Urso
  • Patent number: 6628195
    Abstract: The tactile stimulation device designed to be used by a deaf person includes, in particular, an electroacoustic transducer. The invention is noteworthy in that the device consists of a case which can be held in one hand and which has a sensor associated with the electroacoustic transducer, which sensor is designed to enable turning the device on by touching said sensor.
    Type: Grant
    Filed: November 7, 2000
    Date of Patent: September 30, 2003
    Inventor: Jean-Max Coudon
  • Patent number: 6611717
    Abstract: An improved cochlear implant and method of stimulating are disclosed. The method comprises stimulating an electrode array using a set of current stimuli having different geometries, so as to provide a more regular and monotonic set of pitch percepts for a user. In one embodiment, this may be achieved by combining different modes of stimulation for a patient, so that some channels utilise one mode and other channels utilise one or more different modes.
    Type: Grant
    Filed: December 9, 1996
    Date of Patent: August 26, 2003
    Assignee: The University of Melbourne
    Inventors: Graeme Milbourne Clark, Lawrence Thomas Cohen, Peter Andrew Busby
  • Patent number: 6572531
    Abstract: A hearing aid comprised of conventional cochlear implant electronics implanted in the middle ear and coupled to an actuator configured to mechanically vibrate the middle ear ossicles. The implant electronics, typically used for driving an electrode array implanted in the cochlea, is used instead to supply electric drive signals to the actuator for mechanically vibrating the ossicles.
    Type: Grant
    Filed: June 15, 2001
    Date of Patent: June 3, 2003
    Assignee: Alfred E. Mann Foundation for Scientific Reseach
    Inventors: Yitzhak Zilberman, Joseph H. Schulman
  • Patent number: 6560488
    Abstract: An improved hair-clip rotatably secures a headpiece of a Implantable Cochlear Stimulation (ICS) system adjacent to an implantable device of the ICS system. The hair-clip includes three fingers to securely grasp the headpiece around the cylindrical edge of the headpiece, while allowing rotation of the headpiece relative to the hair-clip. Both power and control signals are transmitted transcutaneously from the head piece to the implantable device. Efficient transmission of these signals requires that the headpiece be securely held in close alignment to the implantable device. The improved hair-clip securely holds the headpiece in place, and allows the headpiece to be rotated to position the headpiece cable. The ability to position the cable allows a user to achieve a comfortable and inconspicuous cable routing. The hair-clip also provides: retention regardless of skin flap thickness, secure retention during physical activity, and permits magnet-less retention thus minimizing interference with MRI examination.
    Type: Grant
    Filed: January 19, 2001
    Date of Patent: May 6, 2003
    Assignee: Advanced Bionics Corporation
    Inventor: Scott Crawford
  • Patent number: 6556870
    Abstract: A cochlear implant system has a signal processor that fits in the ear canal of a user. The signal processor processes an acoustic signal present in the ear of the user to produce a representative radio signal. A power transmitter transmits an electrical power signal through the skin of the user. A cochlear implant receives the radio signal and the electrical power signal and produces for the auditory nerve of the user an electrical stimulation signal representative of the acoustic signal.
    Type: Grant
    Filed: January 31, 2001
    Date of Patent: April 29, 2003
    Assignee: Med-El Elektromedizinische Geraete GmbH
    Inventors: Clemens M. Zierhofer, Erwin S. Hochmair, Ingeborg J. Hochmair
  • Patent number: 6496734
    Abstract: An auditory prosthesis includes a sound sensor that senses both ambient sounds and sounds uttered by the patient. The prosthesis includes a monitor that senses a physiological parameter indicative of the intensity of the sounds as perceived by the patient and/or the onset of a prospective speech episode during which the patient utters sounds. For example, the monitor may detect the activity of the stapedius muscle. This muscle contracts in the presence of subjectively perceived high level sounds or just prior to and during a speech episode. This parameter is used dynamically by the prosthesis to process the received sounds, for example, by changing the amplification level of these sounds dependent on the activity.
    Type: Grant
    Filed: April 24, 2000
    Date of Patent: December 17, 2002
    Assignee: Cochlear Limited
    Inventor: David K. Money
  • Patent number: 6480820
    Abstract: A method for the real-time transformation of an electrical signal representative of a sound wave that includes the steps of providing an electrical signal representative of a sound wave, transforming that signal to an analytic representation, and passing said electrical signal, in parallel, through a number of bandpass filters to create a set of time domain real and imaginary band limited signals. Next, a stream of instantaneous phase angle and magnitude values for each of said set of time domain real and imaginary band limited signals is computed. Thirdly, a stream of electrical pulses or other digital representation of the phase, instantaneous frequency, and magnitude information is computed for delivery to a cochlear implant or transmission for decoding and synthesis of the original sound.
    Type: Grant
    Filed: September 20, 1999
    Date of Patent: November 12, 2002
    Assignee: Advanced Cochlear Systems, Inc.
    Inventors: Ben M. Clopton, Sean Kenneth Ridgway Lineaweaver, Scott S. Corbett, III, Francis A. Spelman
  • Patent number: 6470214
    Abstract: A modulation process with a fully suppressed carrier and input preprocessor filtering to produce an encoded output; for amplitude modulation (AM) and audio speech preprocessor filtering, intelligible subjective sound is produced when the encoded signal is demodulated using the RF Hearing Effect. Suitable forms of carrier suppressed modulation include single sideband (SSB) and carrier suppressed amplitude modulation (CSAM), with both sidebands present.
    Type: Grant
    Filed: December 13, 1996
    Date of Patent: October 22, 2002
    Assignee: The United States of America as represented by the Secretary of the Air Force
    Inventors: James P. O'Loughlin, Diana L. Loree
  • Patent number: 6466911
    Abstract: An electrotactile vocoder includes a handset (3) carrying stimulating electrodes (9) positioned adjacent openings (8) in the handset and electrically contacting the fingers when the handset is worn to cause stimulation of the digital nerves of the fingers, a speech processor/stimulator unit (2) for producing electrical stimuli at the electrodes (9) based on incoming speech and other information received by a microphone (1), the stimulator unit including circuit means for applying stimulating currents to the electrodes (9), the speech processor unit including means for encoding the presence of unvoiced speech components or for encoding information to a first formant F1 in addition to information relating to a second formant F2 and for applying the stimulating currents to selected pairs of electrodes.
    Type: Grant
    Filed: February 2, 2000
    Date of Patent: October 15, 2002
    Assignee: The University of Melbourne
    Inventors: Robert S C. Cowan, Karyn L. Galvin, Bich D. Lu, Rodney E. Millard
  • Patent number: 6466688
    Abstract: An aura detection system for detecting pathogens through the detection of a specific aura signature of the pathogen or a creature carrying the pathogen. The system includes a transmitter for generating high frequency waves to produce an electrical field, the transmitter including generating means for generating a high frequency electrical field, a receiver for monitoring the high frequency electrical field generated by the transmitter, and a processor for processing the signals from the antenna array of the receiver. The transmitter and the receiver are spaced with a space therebetween for receiving an organism.
    Type: Grant
    Filed: March 6, 2000
    Date of Patent: October 15, 2002
    Inventor: Thomas P. Ramstack
  • Patent number: 6394947
    Abstract: Partially or fully implantable hearing aid for rehabilitation of an inner ear hearing disorder, with a microphone (10) which delivers an audio signal, an electronic signal processing and amplification unit (40, 50, 80, 140, 141) which is located in an audio signal-processing electronic hearing aid path, an implantable electromechanical output converter (20) and a unit (60) for power supply of the implant. The hearing aid is provided with an electronic module (90, 140, 141) for rehabilitation of tinnitus and it generates the signals necessary for a tinnitus masking or noiser function and feeds them into the audio signal processing path of the hearing implant.
    Type: Grant
    Filed: December 21, 1999
    Date of Patent: May 28, 2002
    Assignee: Cochlear Limited
    Inventor: Hans Leysieffer
  • Patent number: 6374143
    Abstract: A multi-bipolar configured electrode array and means to uniquely position said array within the scalae of the human cochlea is described. Said array is inserted into the scala tympani, scala vestibuli or both, by a surgeon. The electrode array may be pre-formed to lightly hug the modiolar wall of a scala so as to position the electrodes in close proximity to the cochlear spiral lamina and spiral ganglia in the modiolus. Mechanical features within said array allow the surgeon to further position said array against the modiolar wall of the scala, post insertion, and to mechanically retain such positioning of said array. Such positioning is in close proximity to surviving neural sites in the spiral lamina and/or spiral ganglion cells in the modiolus to efficiently stimulate functioning auditory neural elements. The multi-bipolar electrode configuration achieves a high degree of spatial selectivity, thus improving the implantee's speech percepts.
    Type: Grant
    Filed: August 18, 1999
    Date of Patent: April 16, 2002
    Assignee: Epic Biosonics, Inc.
    Inventors: Peter G. Berrang, Henry V. Bluger, Henryk Klosowski, Alan J. Lupin
  • Patent number: 6289246
    Abstract: The output stage of a tissue stimulating apparatus, for example a cochlear implant prosthesis, operating at a low supply voltage (35) incorporates a multiplier circuit (54, 62, 63, 64) for ensuring that voltage compliance is maintained in the event that high intensity stimulations are required. The multiplier circuit makes use of compliance monitoring so that multiplication is only used as required. Also described is a method for operating a tissue stimulating apparatus incorporating a multiplier circuit.
    Type: Grant
    Filed: February 4, 1999
    Date of Patent: September 11, 2001
    Assignee: Cochlear Pty. Ltd.
    Inventor: David Money
  • Patent number: 6235056
    Abstract: An implantable hearing assistance system has a subcranially implantable electronics unit that is remotely situated from the ear, such as implanted in the pectoral region, rather than in the mastoid portion of the temporal bone. The increased volume available in the remote electronics unit allows it to carry a power source of increased energy capacity. This improves longevity, allows higher power consumption signal processing capability, and simplifies battery replacement. The hearing assistance system is coupled to a middle ear input transducer and a middle or inner ear output stimulator. The hearing assistance system is capable of use in a partial middle ear implantable (P-MEI), total middle ear implantable (T-MEI), or cochlear implant hearing assistance system.
    Type: Grant
    Filed: December 31, 1998
    Date of Patent: May 22, 2001
    Assignee: St. Croix Medical, Inc.
    Inventor: Joel A. Kennedy
  • Patent number: 6214046
    Abstract: An implantable hearing assistance system method has a subcranially implantable electronics unit that is remotely situated from the ear, such as implanted in the pectoral region, rather than in the mastoid portion of the temporal bone. The increased volume available in the remote electronics unit allows it to carry a power source of increased energy capacity. This improves longevity, allows higher power consumption signal processing capability, and simplifies battery replacement. The hearing assistance system is coupled to a middle ear input transducer and a middle or inner ear output stimulator. The hearing assistance system is capable of use in a partial middle ear implantable (P-MEI), total middle ear implantable (T-MEI), or cochlear implant hearing assistance system.
    Type: Grant
    Filed: December 31, 1998
    Date of Patent: April 10, 2001
    Assignee: St. Croix Medical, Inc.
    Inventor: Joel A. Kennedy
  • Patent number: 6106551
    Abstract: A medical assembly, such as an artificial heart assembly, adapted to be implanted within a living subject is composed of an implantable data communications interface adapted to receive an encoded data signal from a data communications interface located outside the subject at a position remote from the medical assembly. The encoded data signal is transmitted in a plurality of periodic signal bursts, which are transmitted at a first frequency to represent a first data value and a second frequency to represent a second data value. Each of the bursts comprises a plurality of signal transitions having a third frequency greater than both the first and second frequencies.
    Type: Grant
    Filed: August 19, 1997
    Date of Patent: August 22, 2000
    Assignee: Minnesota Mining & Manufacturing
    Inventors: Stanley J. Crossett, Richard A. Nazarian, Michael Hamerly
  • Patent number: 6002966
    Abstract: A method and system provides a wide range of temporospatial patterns of electrical stimulation waveforms to be readily specified for respective channels of a multichannel cochlear prosthesis. The cochlear prosthesis includes a speech processor system and a cochlear stimulator. The speech processor system typically includes an external headpiece, including a microphone, coupled to a speech processor. The speech processor includes electronic circuitry, typically including a microprocessor, that converts acoustical signals sensed through the microphone to electrical signals, and processes the electrical signals in accordance with a desired speech processing strategy. The definition of simple or complex stimulation waveforms to be used as part of the selected speech processing strategy is facilitated, in a preferred embodiment, through the use of a template table stored in the speech processor. The rows and columns of the template table define time intervals and stimulation channels (and hence stimulation sites).
    Type: Grant
    Filed: October 24, 1997
    Date of Patent: December 14, 1999
    Assignee: Advanced Bionics Corporation
    Inventors: Gerald E. Loeb, Michael A. Faltys
  • Patent number: 5991663
    Abstract: A stimulation strategy for cochlear implants is disclosed. The method and devices that provides electrical stimuli seek to approximate the time domain response of a patient's neural system to electrical stimuli, to the time domain response of a normal hearing person to a corresponding acoustic stimulus.
    Type: Grant
    Filed: April 16, 1997
    Date of Patent: November 23, 1999
    Assignee: The University of Melbourne
    Inventors: Laurence Irlicht, Graeme Clark
  • Patent number: 5983139
    Abstract: A digital finite impulse response bandpass filter is described. Analog to digital conversion (A/D) of an input signal uses a Sigma-Delta (.SIGMA.-.DELTA.) converter, resulting in a digital sequence representation of the input signal. A low-pass FIR filter convolves the binary sequence to produce a low-pass vector, and a digital comb filter defined by at least one set of weighted and time-shifted unit impulses convolves the low-pass vector with the comb filter weights. An envelope detector detects a bandpass envelope of the digital FIR bandpass filter. Also described is a filter bank of a plurality of such digital FIR filters arranged in parallel.A square root of a sum of squares of the convolution products of the low-pass vector with the comb filter weights is calculated to estimate the bandpass envelope.
    Type: Grant
    Filed: April 28, 1998
    Date of Patent: November 9, 1999
    Assignee: MED-EL Elektromedizinische Gerate Ges.m.b.H.
    Inventor: Clemens Zierhofer
  • Patent number: 5957958
    Abstract: An implant stimulator device uses tantalum and tantalum pentoxide as a system for the conveyance of electrical stimulation pulses from stimulus-forming circuitry contained within an hermetic enclosure to the saline fluids of body tissue to be stimulated. Internal coupling capacitors are not used, yet the danger of having DC current flow to the saline fluids is eliminated. A preferred embodiment provides a multiplicity of electrode contacts made from sintered, anodized tantalum, connected via tantalum wire leads to tantalum feedthroughs into the hermetically sealed package containing the stimulus pulse-forming electronic circuitry. One or more counter electrode contacts (for monopolar or bipolar configurations, respectively) made of activated iridium, non-activated iridium, iridium in combination with a noble or non-noble metal, platinum, gold, or other metal which forms a low impedance contact with body fluids, is/are connected via platinum or other conductive metal leads to return feedthroughs.
    Type: Grant
    Filed: October 16, 1997
    Date of Patent: September 28, 1999
    Assignees: Advanced Bionics Corporation, Alfred E. Mann Foundation for Scientific Research
    Inventors: Joseph H. Schulman, Gerald E. Loeb, Francis J. R. Richmond
  • Patent number: 5935166
    Abstract: An implantable hearing assistance system has a subcranially implantable electronics unit that is remotely situated from the ear, such as implanted in the pectoral region, rather than in the mastoid portion of the temporal bone. The increased volume available in the remote electronics unit allows it to carry a power source of increased energy capacity. This improves longevity, allows higher power consumption signal processing capability, and simplifies battery replacement. The hearing assistance system is coupled to a middle ear input transducer and a middle or inner ear output stimulator. The hearing assistance system is capable of use in a partial middle ear implantable (P-MEI), total middle ear implantable (T-MEI), or cochlear implant hearing assistance system.
    Type: Grant
    Filed: November 25, 1996
    Date of Patent: August 10, 1999
    Assignee: St. Croix Medical, Inc.
    Inventor: Joel A. Kennedy
  • Patent number: 5876425
    Abstract: A power control loop is established between an external control device and an implantable device so that only the amount of power needed by the implant device to sustain its present operating conditions is transmitted across a transcutaneous transmission link, thereby reducing the amount of power expended by the external control device. In one embodiment, the power control loop is used with a cochlea stimulating system that includes an externally wearable signal receiver and processor (WP) and an implanted cochlear stimulator (ICS). The power control loop is provided between the ICS and the WP such that power delivered to the ICS is precisely controlled in a closed loop manner, with a variable amount of RF energy (power) being transmitted across the transcutaneous link between the WP and ICS. The transmitted RF energy is received by the ICS and is converted to a voltage that is used as a power source within the ICS for stimulating electrode contacts of the ICS.
    Type: Grant
    Filed: September 19, 1997
    Date of Patent: March 2, 1999
    Assignee: Advanced Bionics Corporation
    Inventors: John C. Gord, Michael A. Faltys, Andy Voelkel, Joseph H. Schulman
  • Patent number: 5833714
    Abstract: An implant device uses tantalum and tantalum pentoxide as a complete system for the conveyance of electrical stimulation pulses from stimulus-forming circuitry contained within an hermetic enclosure to the saline fluids of the cochlea (or other tissue to be stimulated). Internal coupling capacitors are not used, yet the danger of having DC current flow to the saline fluids is eliminated. A preferred embodiment is a cochlear prosthesis comprised of a multiplicity of electrode contacts made from sintered, anodized tantalum, connected via tantalum wire leads to tantalum feedthroughs into the hermetically sealed package containing the stimulus pulse-forming electronic circuitry. One or more counterelectrode contacts (for monopolar or bipolar configurations, respectively) consist of activated iridium, connected via platinum or other noble metal leads to noble metal feedthroughs.
    Type: Grant
    Filed: January 15, 1997
    Date of Patent: November 10, 1998
    Inventor: Gerald E. Loeb
  • Patent number: 5814095
    Abstract: Implantable microphone for implantable hearing aids, which is used for excitation of hearing, such as cochlear implants or hearing aids with mechanical stimulation of the middle or inner ear, with a microphone capsule which is accommodated in a hermetically sealed housing, and with an electrical lead-in wire connector for connecting an implant line to the microphone module. The housing has at least two legs which are oriented at an angle relative to one another, one leg holding the microphone capsule and being provided with a sound inlet membrane, and the other leg containing the electrical lead-in wire connector.
    Type: Grant
    Filed: March 13, 1997
    Date of Patent: September 29, 1998
    Assignee: Implex GmbH Spezialhorgerate
    Inventors: Gerd Muller, Hans Leysieffer
  • Patent number: 5776179
    Abstract: A method for evaluating the electromotility of hair cells within the cochlea of a mammalian ear by providing an electrode in proximate relation with the round window and applying electricity therethrough in order to electrically excite hair cells within the cochlea to produce electrically-evoked otoacoustic emissions therefrom. The electrically-evoked otoacoustic emissions further excite the internal structure of the cochlea which produces vibrations at the oval window that act through the bones of the middle ear to drive the tympanic membrane, producing corresponding acoustic sounds in the ear canal. The resulting acoustic sounds in the ear canal are subsequently detected with a microphone where they are later measured and characterized via readily available signal processing techniques.
    Type: Grant
    Filed: October 6, 1995
    Date of Patent: July 7, 1998
    Assignee: The University of Michigan
    Inventors: Tianying Ren, Alfred L. Nuttall
  • Patent number: 5776172
    Abstract: An implantable cochlear stimulator (ICS) has eight output stages (212), each having a current source (212B) connected to a pair of electrodes, designated "A" and "B", through respective output coupling capacitors and an electrode switching matrix (212C). An indifferent electrode is connected to each output stage by way of an indifferent electrode switch (212D). The current source generates a precise stimulation current as a function of an analog control voltage. The analog control voltage, in turn, is generated by a logarithmic D/A converter. The D/A converter serially converts data words, received in a data frame from an external source, to respective analog control voltages that are applied sequentially to the current sources of each output stage. An output mode register (208) controls the switching matrix of each stage, as well as the indifferent electrode switch, to configure the electrodes for a desired stimulation configuration, e.g.
    Type: Grant
    Filed: May 25, 1995
    Date of Patent: July 7, 1998
    Assignee: Alfred E. Mann Foundation For Scientific Research
    Inventors: Joseph H. Schulman, John C. Gord, Primoz Strojnik, David I. Whitmoyer, James H. Wolfe
  • Patent number: 5749912
    Abstract: A low-cost, four-channel cochlear stimulation system utilizes a completely passive, implantable receiver/electrode array that is inductively coupled to an external wearable processor. The receiver/electrode array is formed in a silicone rubber carrier adapted to be implanted in a deaf patient. At one end of the receiver/electrode array, positioned subcutaneously near the surface of skin above the ear, four receiving coils are arranged in an appropriate pattern. Such receiving coils are held within an hermetically-sealed titanium case. At the other end of the receiver/electrode array, which may be pre-formed in a spiral to match the basal turn of the cochlea, and which is inserted in the cochlea, four ball electrodes are spaced apart along an inner radius of the spiral. Each electrode is electrically connected to a respective receiving coil. Each receiving coil is also electrically connected to a reference electrode typically located near the receiver-coil end of the array.
    Type: Grant
    Filed: August 26, 1996
    Date of Patent: May 12, 1998
    Assignees: House Ear Institute, Advanced Bionics Corporation
    Inventors: Chaoying Zhang, Franco Portillo, Fan-Gang Zeng, Robert V. Shannon, Gerald E. Loeb
  • Patent number: 5697975
    Abstract: A neural prosthetic device for reducing or eliminating the effects of tinnitus is inserted into a tinnitus patient's primary auditory cortex (or thalamus). The prosthetic device includes a stimulation device for outputting processed electrical signals and an electrode arranged in the primary auditory cortex having a plurality of electrical contacts. Each of the plurality of electrical contacts independently outputs electrical discharges in accordance with the electrical signals. In another embodiment, a catheter is inserted into the tinnitus patient's primary auditory cortex or thalamus. The catheter microinfuses drugs which suppress or eliminate abnormal neural activity into disperse geometric locations in the cortex or thalamus, thereby reducing or eliminating the effects of the patient's tinnitus.
    Type: Grant
    Filed: November 1, 1994
    Date of Patent: December 16, 1997
    Assignee: The University of Iowa Research Foundation
    Inventors: Matthew A. Howard, III, Timothy M. McCulloch, Carol A. Bauer
  • Patent number: 5609616
    Abstract: A physician's tester provides for physician monitoring and control of an implantable human tissue stimulator system, such as an implantable cochlear stimulator (ICS) system. During normal operation, the tissue stimulator system includes an implantable stimulator and a wearable processor (WP). The physician's tester is designed around a microprocessor, and is basically a modification of the WP. The tester provides control over the selection of voltages and currents to be measured and the presetting of parameters in the implantable stimulator during testing of the implanted stimulator and/or a patient's response to data transmitted by the WP/tester to the implanted stimulator. The physician's testor is portable and utilizes telemetry coupling with the implanted stimulator to provide communication between the tester and stimulator for the monitoring, control and measurement of the stimulator parameters. The tester resides in a portable housing having a control panel and a visual display.
    Type: Grant
    Filed: May 25, 1995
    Date of Patent: March 11, 1997
    Assignee: Alfred E. Mann Foundation for Scientific Research
    Inventors: Joseph H. Schulman, John C. Gord, Primoz Strojnik, David I. Whitmoyer
  • Patent number: 5601617
    Abstract: A method and system of readily specifying a wide range of temporospatial patterns of electrical stimulation waveforms that can be used by an implantable cochlear prosthesis. Such stimulation patterns and waveforms can thus be readily tested by an audiologist in the process of fitting the cochlear prosthesis, allowing desirable patterns of pulsatile stimuli of almost arbitrary complexity to be modulated in real-time by the acoustic signal to produce useful perceptions of sound in otherwise deaf patients. The cochlear prosthesis includes two main components: (1) an external system, and (2) an implantable system. The external system includes electronic circuitry, typically including a microprocessor, that converts sensed acoustical signals to electrical signals and processes the electrical signals in accordance with a desired speech processing strategy. The present invention facilitates the definition of complex stimulation waveforms to be used as part of the selected speech processing strategy.
    Type: Grant
    Filed: April 26, 1995
    Date of Patent: February 11, 1997
    Assignee: Advanced Bionics Corporation
    Inventors: Gerald E. Loeb, Michael A. Faltys
  • Patent number: 5571148
    Abstract: A multichannel stimulation system includes a plurality of implantable microminiature stimulators (microstimulators), each being connected to a respective implanted electrode or electrode array. Each microstimulator is selectively operable as controlled by an external (non-implanted) control unit. The electrode or electrode array is implanted so as to contact nerves and/or tissue that is to be stimulated. Operating power is inductively coupled from the control unit to the microstimulators. An information signal is also coupled to the microstimulators to control which of the microstimulators is to be activated to provide a stimulation pulse to its respective electrode. In one embodiment, the invention provides a cochlear prosthesis with an intracochlear electrode array being implanted within the human cochlea, and with selected electrodes of the array being connected to individual ones of the plurality of microstimulators.
    Type: Grant
    Filed: August 10, 1994
    Date of Patent: November 5, 1996
    Inventors: Gerald E. Loeb, Joseph H. Schulman