Multicomponent Cascade Refrigeration Patents (Class 62/612)
  • Patent number: 10852059
    Abstract: Systems and methods described for increasing capacity and efficiency of natural gas liquefaction processes having a mixed refrigerant precooling system with multiple pressure levels comprising cooling the compressed mixed refrigerant stream and separating the cooled compressed mixed refrigerant stream into a vapor and liquid portion. The liquid portion provides refrigeration duty to a first precooling heat exchanger. The vapor portion is further compressed, cooled, and condensed, and used to provide refrigeration duty to a second precooling heat exchanger. A flash gas separated from the liquefied natural gas is warmed and combined with the natural gas feed stream.
    Type: Grant
    Filed: September 28, 2017
    Date of Patent: December 1, 2020
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Gowri Krishnamurthy, Mark Julian Roberts, Adam Adrian Brostow
  • Patent number: 10852058
    Abstract: There is described a method to produce LNG at gas pressure letdown stations. A high pressure gas stream is pre-cooled, dewatered, and then divided into two streams: a diverted LNG production stream (LNG stream) and a gas to end users stream (User stream). Carbon dioxide is removed from the LNG stream and the LNG stream is compressed. The LNG stream is then precooled by passing through one or more heat exchangers. Hydrocarbon condensate is removed from the LNG steam by passing the LNG stream through a first Knock Out drum. The LNG stream is then depressured by passing through a JT valve to depressurize the gas vapour exiting the first Knock Out drum and discharge it into a second Knock Out drum where the LNG is captured.
    Type: Grant
    Filed: December 4, 2013
    Date of Patent: December 1, 2020
    Assignees: 1304338 Alberta Ltd.
    Inventors: MacKenzie Millar, Jose Lourenco
  • Patent number: 10788259
    Abstract: A system for the production of liquefied natural gas from raw natural gas. The system includes a pre-treatment module to remove impurities from a raw natural gas input, a gas compression module to compress gas received from the pre-treatment module, an absorption chiller for providing gas equipment cooling in the compression module, and a gas liquefaction module including a gas pre-cooler configured to pre-cool gas received from the compression module using a closed-loop refrigeration cycle and a six-stream heat exchanger unit configured to cool gas received from the gas pre-cooler. A power module is provided that powers the pre-treatment module, gas compression module, and gas liquefaction module.
    Type: Grant
    Filed: December 2, 2016
    Date of Patent: September 29, 2020
    Assignee: CHESTER LNG, LLC
    Inventors: Neville A. Tomlinson, Andrew H. Stern, Jerry L. Penland
  • Patent number: 10767924
    Abstract: This method includes introducing a downstream stream (140) of cracked gas from a downstream heat exchanger (58) in a downstream separator (60) and recovering, at the head of the downstream separator (60), a high-pressure fuel gas stream (144). The method includes the passage of the stream (144) of fuel through the downstream exchanger (58) and an intermediate exchanger (50, 54) to form a reheated high-pressure fuel stream (146), the expansion of the reheated high-pressure fuel stream (146) in at least a first dynamic expander (68) and the passage of the partially expanded fuel stream (148) from the intermediate exchanger (50, 54) in a second dynamic expander (70) to form an expanded fuel stream (152). The expanded fuel stream (152) from the second dynamic expander (70) is reheated in the downstream heat exchanger (58) and in the intermediate heat exchanger (50, 54).
    Type: Grant
    Filed: October 26, 2010
    Date of Patent: September 8, 2020
    Assignee: TECHNIP FRANCE
    Inventors: Jean-Paul Laugier, Yvon Simon
  • Patent number: 10753676
    Abstract: Systems and methods described for increasing capacity and efficiency of natural gas liquefaction processes having a mixed refrigerant precooling system with multiple pressure levels comprising cooling the compressed mixed refrigerant stream and separating the cooled compressed mixed refrigerant stream into a vapor and liquid portion. The liquid portion provides refrigeration duty to a first precooling heat exchanger. The vapor portion is further compressed, cooled, and condensed, and used to provide refrigeration duty to a second precooling heat exchanger. A flash gas separated from the liquefied natural gas is warmed and combined with the natural gas feed stream.
    Type: Grant
    Filed: September 28, 2017
    Date of Patent: August 25, 2020
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Gowri Krishnamurthy, Mark Julian Roberts, Adam Adrian Brostow
  • Patent number: 10731795
    Abstract: A method for liquid air and gas energy storage (LAGES) which integrates the processes of liquid air energy storage (LAES) and regasification of liquefied natural gas (LNG) at the Floating Storage, Regasification and Power (FSRP) facilities through the exchange of thermal energy between the streams of air and natural gas (NG) in their gaseous and liquid states and includes recovering a compression heat from air liquefier and low-grade waste heat of power train for LNG regasification with use of an intermediate heat carrier between the air and LNG streams and utilizing a cold thermal energy of liquid air being regasified for increase in LAGES operation efficiency through using a semi-closed CO2 bottoming cycle.
    Type: Grant
    Filed: August 28, 2018
    Date of Patent: August 4, 2020
    Inventor: Stanislav Sinatov
  • Patent number: 10718564
    Abstract: A gas liquefaction apparatus includes at least a source-gas supply line that supplies source gas; a room-temperature heat exchanger, a preliminary-cooling heat exchanger, and a liquefaction/supercooling heat exchanger that are provided in series sequentially in the source-gas supply line and that cool the source gas; a separation drum that separates the source gas containing a condensate, which has been cooled by heat exchange up to a liquefaction temperature of the source gas or below, into a gas component and a liquefied component; and a refrigerant-gas supply line that uses a gas component separated by the separation drum as refrigerant gas to supply the refrigerant gas in a direction opposite to a supply direction of the source gas, in order of the liquefaction/supercooling heat exchanger, the preliminary-cooling heat exchanger, and the room-temperature heat exchanger.
    Type: Grant
    Filed: January 4, 2016
    Date of Patent: July 21, 2020
    Assignee: Mitsubishi Heavy Industries Engineering, Ltd.
    Inventors: Wataru Matsubara, Atsuhiro Yukumoto, Nobuyuki Nishioka, Hiroyuki Furuichi, Takeo Shinoda, Hiroshi Shiomi
  • Patent number: 10690013
    Abstract: A liquid energy storage system where the mixed refrigerant may include the following components with concentrations in mole volume percentages as follows: about 12.0% Nitrogen, about 15.0% Ethylene, about 39.0% Methane, about 20.0% Ethane, about 10.0% Propane, and about 4.0% Iso-Butane. A liquid energy storage system where the thermodynamic relationship for lost work is characterized by: Wlost=TOIntegral(T1?T2)/(T1×T2)dH, where To is the ambient temperature and T1, and T2 are the temperatures of the hot and cold streams, respectively, all temperatures are absolute temperatures, and H represents the enthalpy or heat content of the fluids in the heat exchange process.
    Type: Grant
    Filed: November 22, 2019
    Date of Patent: June 23, 2020
    Inventors: John D. Upperman, Ralph Greenberg
  • Patent number: 10684072
    Abstract: The invention relates to a method and system of preparing a lean methane-containing gas stream (22), comprising: —feeding a hydrocarbon feed stream (10) into a separator (100); —withdrawing from the separator (100) a liquid bottom stream (12); —passing the liquid bottom stream (12) to a stabilizer column (200); —withdrawing from the stabilizer column (200) a stabilized condensate stream (13) enriched in pentane, —withdrawing from the stabilizer column (200) a stabilizer overhead stream (14) enriched in ethane, propane and butane; —splitting the stabilizer overhead stream (14) according to a split ratio into a main stream portion (15) and a slip stream portion (16), —passing the slip stream portion (16) to a fractionation unit (300) to obtain an ethane enriched stream (17) and a bottom stream enriched in propane and butane (18).
    Type: Grant
    Filed: October 18, 2016
    Date of Patent: June 16, 2020
    Assignee: SHELL OIL COMPANY
    Inventors: Stefan Adrianus Rovers, Johannes Marinus Van Amelsvoort
  • Patent number: 10663220
    Abstract: Systems and methods described for increasing capacity and efficiency of natural gas liquefaction processes having a mixed refrigerant precooling system with multiple pressure levels comprising cooling the compressed mixed refrigerant stream and separating the cooled compressed mixed refrigerant stream into a vapor and liquid portion. The liquid portion provides refrigeration duty to a first precooling heat exchanger. The vapor portion is further compressed, cooled, and condensed, and used to provide refrigeration duty to a second precooling heat exchanger. Optionally additional precooling heat exchangers, and/or phase separators may be used.
    Type: Grant
    Filed: October 7, 2016
    Date of Patent: May 26, 2020
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Gowri Krishnamurthy, Mark Julian Roberts
  • Patent number: 10655911
    Abstract: A method of liquefying natural gas. The method comprises cooling a gaseous natural gas process stream with a refrigerant flowing in a path isolated from the natural gas process stream. The refrigerant may differ in composition from a composition of the natural gas process stream, and the refrigerant composition may be selected to enhance efficiency of the refrigerant path with regard to a specific composition of the natural gas process stream. The refrigeration path may be operated at pressures, temperatures and flow rates differing from those of the natural gas process stream. Other methods of liquefying natural gas are described. A natural gas liquefaction plant is also described.
    Type: Grant
    Filed: June 20, 2012
    Date of Patent: May 19, 2020
    Assignee: BATTELLE ENERGY ALLIANCE, LLC
    Inventors: Terry D. Turner, Bruce M. Wilding, Michael G. McKellar, Dennis N. Bingham, Kerry M. Klingler
  • Patent number: 10655913
    Abstract: A method for energy storage which integrates charging a liquid in an energy storage facility through consumption of a power from the grid with reduction pressure of natural gas through expander at the co-located city gate station and includes recovery of mechanical power of the natural gas expander and cold thermal energy of the expanded natural gas for an increase in production of liquid air per each kW of low-demand power consumed from the grid during off-peak hours.
    Type: Grant
    Filed: September 6, 2017
    Date of Patent: May 19, 2020
    Inventor: Stanislav Sinatov
  • Patent number: 10657478
    Abstract: Embodiments of the invention are directed to a system, method, or computer program product for creating a control dashboard for user interactions. The application may be utilized by a user in connection with a third party exchange system, small business, or individually. As such, the invention may extract data from multiple user and competitor locations. The invention coordinates the data and generates components for the dashboard that includes resource flows, outside entity user information, and aggregation integration in a customizable, real-time modified dashboard. Thus providing monitoring and alerts for inventorying, resources, and invoicing. Furthermore, the system may identify underpenetrated customer populations, perform trend analysis to identify potential customers, and the like. Finally, the system integrates an artificial intelligence engine for real-time data digestion and future predictions for resource flows.
    Type: Grant
    Filed: August 30, 2018
    Date of Patent: May 19, 2020
    Assignee: BANK OF AMERICA CORPORATION
    Inventors: Willard Andrew Barr, Lisa Matarese Braun, Brian William Caldwell, Kevin Patrick Condon, Kelly Elizabeth Firment, Ryan Michael Furey, Caroline Hayes Godwin, Matthew Murphy, Robert Altemus Pascal, George William Taylor, Renee Elaine Weiler
  • Patent number: 10544987
    Abstract: In a gas liquefaction plant that produces a liquefied gas by liquefying a raw gas, a pipe rack portion in which an air-cooling heat exchanging system is disposed has a rectangular shape when viewed from above. A first compressor, a precooling heat exchanging portion, an auxiliary heat exchanging portion, and a fourth compressor are arranged in this order along one long side of the pipe rack portion. A second compressor, a primary heat exchanging portion, and a third compressor are arranged in this order along the other long side of the pipe rack portion. A pipe that carries the raw gas cooled at the precooling heat exchanging portion is connected to the primary heat exchanging portion across the pipe rack portion. A pipe that carries a primary refrigerant compressed at the second and third compressors is connected to the auxiliary heat exchanging portion across the pipe rack portion.
    Type: Grant
    Filed: March 5, 2015
    Date of Patent: January 28, 2020
    Assignee: JGC CORPORATION
    Inventors: Naoyuki Takezawa, Shigeru Akiyama, Yoshihisa Wakamatsu
  • Patent number: 10502482
    Abstract: A system and method for producing liquefied natural gas are provided. The method may include compressing a process stream containing natural gas in a compression assembly to produce a compressed process stream. The method may also include removing non-hydrocarbons from the compressed process stream in a separator, and cooling the compressed process stream with a cooling assembly to thereby produce a cooled, compressed process stream containing natural gas in a supercritical state. The method may further include expanding a first portion and a second portion of the natural gas from the cooled, compressed process stream in a first expansion element and a second expansion element to generate a first refrigeration stream and a second refrigeration stream, respectively. The method may further include cooling the natural gas in the cooled, compressed process stream to a supercritical state with the first and second refrigeration streams to thereby produce the liquefied natural gas.
    Type: Grant
    Filed: March 22, 2017
    Date of Patent: December 10, 2019
    Assignee: DRESSER-RAND COMPANY
    Inventors: Daniel L. Ohart, Gregory W. Yonker
  • Patent number: 10502483
    Abstract: A system and method for cooling and liquefying a gas in a heat exchanger that includes compressing and cooling a mixed refrigerant using first and last compression and cooling cycles so that high pressure liquid and vapor streams are formed. The high pressure liquid and vapor streams are cooled in the heat exchanger and then expanded so that a primary refrigeration stream is provided in the heat exchanger. The mixed refrigerant is cooled and equilibrated between the first and last compression and cooling cycles so that a pre-cool liquid stream is formed and subcooled in the heat exchanger. The stream is then expanded and passed through the heat exchanger as a pre-cool refrigeration stream. A stream of gas is passed through the heat exchanger in countercurrent heat exchange with the primary refrigeration stream and the pre-cool refrigeration stream so that the gas is cooled.
    Type: Grant
    Filed: November 8, 2016
    Date of Patent: December 10, 2019
    Assignee: Chart Energy & Chemicals, Inc.
    Inventors: Timothy P. Gushanas, Douglas A. Ducote, Jr., James Podolski
  • Patent number: 10480851
    Abstract: Provided are mixed refrigerant systems and methods and, more particularly, to a mixed refrigerant system and methods that provides greater efficiency and reduced power consumption.
    Type: Grant
    Filed: March 18, 2014
    Date of Patent: November 19, 2019
    Assignee: Chart Energy & Chemicals, Inc.
    Inventors: Douglas A. Ducote, Jr., Timothy P. Gushanas
  • Patent number: 10401333
    Abstract: The invention relates to a method, to a device, and to the use of a method for the gas-chromatic separation and determination of volatile substances in a carrier gas by means of a chromatographic separating capillary (1), wherein the separating capillary and/or an enveloping capillary (2) surrounding the separating capillary (1) is electrically conductive and is heated with current in the form of a resistance heater and is cooled by a forced convective flow by means of a fluid in the form of a gradient flow field in such a way that a continuous temperature gradient arises over the length of the separating capillary.
    Type: Grant
    Filed: March 23, 2015
    Date of Patent: September 3, 2019
    Inventor: Peter Boeker
  • Patent number: 10345039
    Abstract: A system and method for cooling and liquefying a gas in a heat exchanger that includes compressing and cooling a mixed refrigerant using first and last compression and cooling cycles so that high pressure liquid and vapor streams are formed. The high pressure liquid and vapor streams are cooled in the heat exchanger and then expanded so that a primary refrigeration stream is provided in the heat exchanger. The mixed refrigerant is cooled and equilibrated between the first and last compression and cooling cycles so that a pre-cool liquid stream is formed and subcooled in the heat exchanger. The stream is then expanded and passed through the heat exchanger as a pre-cool refrigeration stream. A stream of gas is passed through the heat exchanger in countercurrent heat exchange with the primary refrigeration stream and the pre-cool refrigeration stream so that the gas is cooled.
    Type: Grant
    Filed: August 3, 2016
    Date of Patent: July 9, 2019
    Assignee: Chart Energy & Chemicals, Inc.
    Inventors: Timothy P. Gushanas, Douglas A. Ducote, Jr., James Podolski
  • Patent number: 10330382
    Abstract: A LNG liquefaction plant includes a propane recovery unit including an inlet for a feed gas, a first outlet for a LPG, and a second outlet for an ethane-rich feed gas, an ethane recovery unit including an inlet coupled to the second outlet for the ethane-rich feed gas, a first outlet for an ethane liquid, and a second outlet for a methane-rich feed gas, and a LNG liquefaction unit including an inlet coupled to the second outlet for the methane-rich feed gas, a refrigerant to cool the methane-rich feed gas, and an outlet for a LNG. The LNG plant may also include a stripper, an absorber, and a separator configured to separate the feed gas into a stripper liquid and an absorber vapor. The stripper liquid can be converted to an overhead stream used as a reflux stream to the absorber.
    Type: Grant
    Filed: May 18, 2016
    Date of Patent: June 25, 2019
    Assignee: Fluor Technologies Corporation
    Inventors: John Mak, Jacob Thomas, Curt Graham
  • Patent number: 10323880
    Abstract: The present invention relates to methods of increasing the operability, capacity, and efficiency of natural gas liquefaction processes, with a focus on mixed refrigerant cycles. The present invention also relates to natural gas liquefaction systems in which the above-mentioned methods can be carried out. More specifically, a refrigerant used in a pre-cooling heat exchanger of a natural gas liquefaction plant is withdrawn from the pre-cooling heat exchanger, separated into liquid and vapor streams in a liquid-vapor separator after being cooled and compressed. The vapor portion is further compressed, cooled, and fully condensed, then returned to the liquid-vapor separator. Optionally, the fully condensed stream may be circulated through a heat exchanger before being returned to the liquid-vapor separator for the purpose of cooling other streams, including the liquid stream from the liquid-vapor separator.
    Type: Grant
    Filed: September 27, 2016
    Date of Patent: June 18, 2019
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Mark Julian Roberts, Gowri Krishnamurthy, Adam Adrian Brostow
  • Patent number: 10161612
    Abstract: A lighting fixture employing a solid-state light source and an ambient light sensor is disclosed. The solid-state light source is placed within a light source housing and configured to emit light through a lens assembly that covers an opening into a mixing chamber provided within the light source housing. In one embodiment, the ambient light sensor is located within mixing chamber with the solid-state light source. In another embodiment, the ambient light sensor is located outside of the mixing chamber. In either embodiment, the ambient light sensor may be recessed within a waveguide, which aides in controlling the sensor distribution beam for the ambient light sensor. The sensor distribution beam essentially defines an area from which light reflected off of a task surface is accurately monitored via the ambient light sensor. The direction of the sensor distribution beam and the light emitted from the ambient light sensor may generally coincide.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: December 25, 2018
    Assignee: Cree, Inc.
    Inventors: Joseph P. Chobot, Daniel J. Pope
  • Patent number: 9945607
    Abstract: A refrigeration system for condensation of carbon dioxide (CO2) in a flue gas stream, the system includes a refrigeration circuit, a flue gas treatment system that includes a flue gas compressor, a flue gas adsorption drier, and a refrigeration system for condensation of CO2; and a method for condensation of CO2 in a flue gas stream using a circulating stream of an external refrigerant.
    Type: Grant
    Filed: September 30, 2013
    Date of Patent: April 17, 2018
    Assignee: General Electric Technology GmbH
    Inventor: Olaf Stallmann
  • Patent number: 9920985
    Abstract: A process and apparatus for liquefying natural gas includes a heavies recovery system. In another aspect, a liquefied natural gas (LNG) facility may employ an ethylene independent heavies recovery system. The recovery system may thus operate relying only on fluid input from upstream of an ethylene refrigeration cycle. A heavies-depleted stream recovered from a liquid withdrawn from a heavies removal column in the heavies recovery system may combine at a location downstream of the heavies removal column with an overhead withdrawn from the heavies removal column for further cooling of such combined stream into liquefied natural gas product.
    Type: Grant
    Filed: August 9, 2012
    Date of Patent: March 20, 2018
    Assignee: CONOCOPHILLIPS COMPANY
    Inventors: Jon M. Mock, Megan V. Evans, Attilio J. Praderio
  • Patent number: 9915447
    Abstract: A magnetocaloric cascade containing at least three different magnetocaloric materials with different Curie temperatures, which are arranged in succession by descending Curie temperature, wherein none of the different magnetocaloric materials with different Curie temperatures has a higher layer performance Lp than the magnetocaloric material with the highest Curie temperature and wherein at least one of the different magnetocaloric materials with different Curie temperatures has as lower layer performance Lp than the magnetocaloric material with the highest Curie temperature wherein Lp of a particular magnetocaloric material being calculated according to formula (I): Lp=m*dTad,max with dTad,max: maximum adiabatic temperature change which the particular magnetocaloric material undergoes when it is magnetized from a low magnetic field to high magnetic field during magnetocaloric cycling, m: mass of the particular magnetocaloric material contained in the magnetocaloric cascade.
    Type: Grant
    Filed: December 22, 2015
    Date of Patent: March 13, 2018
    Assignee: BASF SE
    Inventors: Colman Carroll, Olaf Rogge, Bernard Hendrik Reesink, Andrew Rowe, Danny Arnold, Armando Tura
  • Patent number: 9879906
    Abstract: A method and apparatus for cooling and liquefying a hydrocarbon stream using a liquefaction process wherein a hydrocarbon stream is cooled and at least partially liquefied to obtain a liquefied hydrocarbon stream. In the method, one or more compressors are driven with one or more electric drivers, that are powered with one or more dual-fuel diesel-electric generators. These dual-fuel diesel-electric generations are operated by passing one or more hydrocarbon fuel streams to the one or more dual-fuel diesel-electric generators, wherein at least one of the one or more hydrocarbon fuel streams comprises a stream that is generated in the liquefaction process. The apparatus may be provided on a floating structure, a caisson, or off-shore platform.
    Type: Grant
    Filed: May 18, 2009
    Date of Patent: January 30, 2018
    Inventor: Michiel Gijsbert van Aken
  • Patent number: 9879905
    Abstract: This invention is about a natural gas isobaric liquefaction apparatus, which is based on the Rankine cycle system of similar thermal energy power circulation apparatus at cryogenic side, a cryogenic liquid pump is used to input power and the refrigerating media makes up cold to the natural gas liquefying apparatus, so as to realize the isobaric liquefaction of natural gas. The natural gas liquefying apparatus of this invention can save energy by over 30% as compared with the traditional advanced apparatus with the identical refrigerating capacity, therefore it constitutes a breakthrough to the traditional natural gas liquefaction technology, with substantial economic, social and environmental protection benefits.
    Type: Grant
    Filed: January 24, 2014
    Date of Patent: January 30, 2018
    Assignee: NANJING RECLAIMER ENVIRONMENTAL TEKNIK CO., LTD.
    Inventor: Haibo Wang
  • Patent number: 9869487
    Abstract: A heat exchanger is provided with stacked coil sections. Each of the stacked coil sections is configured to circulate a fluid independent from the other coil section. An air moving device is used to circulate air through both of the stacked coil sections. The stacked coil sections are positioned to have the air exiting the one coil section entering the other coil section.
    Type: Grant
    Filed: February 11, 2011
    Date of Patent: January 16, 2018
    Assignee: Johnson Controls Technology Company
    Inventors: Glenn Eugene Nickey, Ian Michael Casper, William L. Kopko, Michael Lee Buckley, Mustafa Kemal Yanik
  • Patent number: 9791209
    Abstract: A process of liquefying a natural gas stream in a liquefied natural gas facility is provided. The process includes cooling the natural gas stream in a first refrigeration cycle to produce a cooled natural gas stream. The process also includes cooling the cooled natural gas stream in a first chiller of a second refrigeration cycle, the cooled natural gas stream exiting the first chiller at a first pressure. The process further includes cooling the cooled natural gas stream in a first core of a second chiller of the second refrigeration cycle. The process yet further includes cooling a refrigerant of a refrigerant recycle stream separate from the cooled natural gas stream in a second core of the second chiller of the second refrigeration cycle, wherein the refrigerant recycle stream enters the second chiller at a second pressure that is lower than the first pressure of the cooled natural gas stream.
    Type: Grant
    Filed: April 8, 2015
    Date of Patent: October 17, 2017
    Assignee: ConocoPhillips Company
    Inventors: Satish L. Gandhi, Jim L. Rockwell, Karl L. Herzog, David C. Vogel
  • Patent number: 9657246
    Abstract: A natural gas liquefaction process suited for offshore liquefaction of natural gas produced in association with oil production is described.
    Type: Grant
    Filed: March 29, 2010
    Date of Patent: May 23, 2017
    Assignee: Keppel Offshore & Marine Technology Centre Pte Ltd
    Inventors: Michael Barclay, Paul Campbell, Xiaoxia Sheng, Wen Sin Chong
  • Patent number: 9651300
    Abstract: A semi-closed loop system for producing liquefied natural gas (LNG) that combines certain advantages of closed-loop systems with certain advantages of open-loop systems to provide a more efficient and effective hybrid system. In the semi-closed loop system, the final methane refrigeration cycle provides significant cooling of the natural gas stream via indirect heat transfer, as opposed to expansion-type cooling. A minor portion of the LNG product from the methane refrigeration cycle is used as make-up refrigerant in the methane refrigeration cycle. A pressurized portion of the refrigerant from the methane refrigeration cycle is employed as fuel gas. Excess refrigerant from the methane refrigeration cycle can be recombined with the processed natural gas stream, rather than flared.
    Type: Grant
    Filed: August 9, 2013
    Date of Patent: May 16, 2017
    Assignee: CONOCOPHILLIPS COMPANY
    Inventor: Anthony P. Eaton
  • Patent number: 9593273
    Abstract: Use of a gaseous mixture, selected from the group consisting of—propylene in a concentration from 90% to 99% by weight and a gas selected from the group consisting of butene, ethylene and ethane or mixtures thereof in a concentration from 1% to 10% by weight; as replacement or alternative refrigerant gas for R404A, R507A and/or R407C, and/or other replacement or alternative refrigerants for R404A, R507A and R407C containing HFC (hydrofluorocarbons), HFO (hydrofluoro olefins) and HFE (hydrofluoro ethers).
    Type: Grant
    Filed: July 16, 2013
    Date of Patent: March 14, 2017
    Assignee: Tazzetti S.P.A.
    Inventors: Riccardo Mondino, Valentina Longoni
  • Patent number: 9574822
    Abstract: Processes and systems for producing liquefied natural gas (LNG) with a single mixed refrigerant, closed-loop refrigeration cycle are provided. Liquefied natural gas facilities configured according to embodiments of the present invention include refrigeration cycles optimized to provide increased efficiency and enhanced operability, with minimal additional equipment or expense.
    Type: Grant
    Filed: March 17, 2014
    Date of Patent: February 21, 2017
    Assignee: Black & Veatch Corporation
    Inventors: Kyle M. Haberberger, Jason M. Manning, Shawn D. Hoffart
  • Patent number: 9528759
    Abstract: An LNG facility employing an enhanced nitrogen removal system that concentrates the amount of nitrogen in the feed stream to a nitrogen removal unit (NRU) to thereby increase the separation efficiency of the NRU. In one embodiment, the nitrogen removal system comprises a multistage separation vessel operable to separate nitrogen from a cooled natural gas stream. At least a portion of the resulting nitrogen-containing stream exiting the multistage separation vessel can be used as a refrigerant, processed to a nitrogen removal unit, and/or utilized as fuel gas for the LNG facility.
    Type: Grant
    Filed: May 8, 2008
    Date of Patent: December 27, 2016
    Assignee: ConocoPhillips Company
    Inventors: Weldon L. Ransbarger, J. Dale Ortego, Jr.
  • Patent number: 9523055
    Abstract: The invention provides a process and system for processing natural gas and separating natural gas liquids into natural gasoline and a Y-grade liquid that meets specifications for low methane and ethane content. The process and system includes a side stripper and reboiler to separate methane and ethane from heavier hydrocarbons and a reboiler system to stabilize the natural gasoline.
    Type: Grant
    Filed: January 27, 2015
    Date of Patent: December 20, 2016
    Assignee: UOP LLC
    Inventor: Richard L. Russeff
  • Patent number: 9517978
    Abstract: A process for chilling ethylene to required storage temperatures is disclosed, the process including: cooling an ethylene product from at least one of an ethylene production process and an ethylene recovery process via indirect heat exchange with a coolant at a temperature less than about ?100° C. to decrease the temperature of the ethylene product; mixing a portion of the cooled ethylene product with methane to form the coolant; expanding at least one of the coolant, the methane, and the portion of the cooled ethylene to reduce a temperature of the coolant to less than ?100° C. prior to the cooling; and feeding the heat exchanged coolant to at least one of the ethylene production process, the ethylene recovery process, and an open-loop refrigeration system.
    Type: Grant
    Filed: September 21, 2015
    Date of Patent: December 13, 2016
    Assignee: Lummus Technology Inc.
    Inventor: Stephen De Haan
  • Patent number: 9506690
    Abstract: A process for the production of a subcooled liquefied natural gas stream from a natural gas feed stream. Passing a first natural gas feed stream through a first heat exchanger for precooling by heat exchange with a first stream of gaseous refrigerant produced in a first refrigeration cycle comprising a first dynamic expansion turbine. Passing the precooled feed stream through a second heat exchanger for liquefying by heat exchange with a second stream of gaseous refrigerant produced in a second refrigeration cycle comprising a second dynamic expansion turbine. Passing the liquefied natural gas stream through a third heat exchanger for subcooling the liquefied gas by heat exchange with a third refrigerant stream produced in a third refrigeration cycle comprising a third dynamic expansion turbine separate from the first turbine and the second turbine.
    Type: Grant
    Filed: November 24, 2009
    Date of Patent: November 29, 2016
    Assignee: TECHNIP FRANCE
    Inventors: Henri Paradowski, Sylvain Vovard
  • Patent number: 9435583
    Abstract: A method and apparatus for liquefying a hydrocarbon stream such as natural gas from a feed stream. A feed stream is provided and passed through at least two cooling stages. Each cooling stage involves one or more heat exchangers. One of the heat exchangers involves a first refrigerant circuit having a first refrigerant stream, and a second of the heat exchangers involves a second refrigerant circuit having a second refrigerant stream. The liquefied hydrocarbon stream is expanded and a flash vapor is separated to provide a liquefied hydrocarbon product stream and a gaseous stream. The gaseous stream, at least a part of the first refrigerant stream, and at least a part of the second refrigerant stream are passed through a heat exchanger, for the gaseous stream to provide cooling to the first and second refrigerant streams.
    Type: Grant
    Filed: September 20, 2007
    Date of Patent: September 6, 2016
    Assignee: Shell Oil Company
    Inventors: Willem Dam, Ming Teck Kong, Leendert Johannes Arie Zoetemeijer
  • Patent number: 9423160
    Abstract: A regenerative refrigerator includes an expander which includes a regenerator including a regenerative material and an expansion space for expanding a refrigerant gas flowing in the regenerator, the regenerator being configured such that a temperature profile at a predetermined temperature range in the regenerator is selectively higher than a case when lead is used as the regenerative material.
    Type: Grant
    Filed: April 2, 2013
    Date of Patent: August 23, 2016
    Assignee: SUMITOMO HEAVY INDUSTRIES, LTD.
    Inventor: Mingyao Xu
  • Patent number: 9328947
    Abstract: Plate evaporator (14), in particular for a refrigerant circuit, having a pre-evaporator (18), a low temperature evaporator (28), and a post-evaporator (24) for refrigerant, all of which are integrated into a singular component, and furthermore having an inlet and an outlet for a heat transfer medium.
    Type: Grant
    Filed: January 16, 2009
    Date of Patent: May 3, 2016
    Assignee: VALEO KLIMASYSTEME GMBH
    Inventor: Roland Haussmann
  • Patent number: 9279607
    Abstract: A part replacement method for replacement of a part of a refrigeration cycle apparatus includes a refrigerant circuit in which a flammable refrigerant is circulated and a container connecting device for controlling the refrigerant such that the refrigerant is allowed to flow out of the refrigerant circuit. The method includes a refrigerant recovery step of allowing the refrigerant to flow out of the refrigerant circuit through the container connecting device, a pressure reduction step of connecting a pressure reducing device to the container connecting device to reduce a pressure in the refrigerant circuit until the pressure in the refrigerant circuit reaches a set pressure or a setting time is reached, and a part replacement step of removing the part from the refrigerant circuit by heating to replace the part.
    Type: Grant
    Filed: December 3, 2010
    Date of Patent: March 8, 2016
    Assignee: MITSUBISHI ELECTRIC CORPORATION
    Inventor: Koji Yamashita
  • Patent number: 9139491
    Abstract: A process for chilling ethylene to required storage temperatures is disclosed, the process including: cooling an ethylene product from at least one of an ethylene production process and an ethylene recovery process via indirect heat exchange with a coolant at a temperature less than about ?100° C. to decrease the temperature of the ethylene product; mixing a portion of the cooled ethylene product with methane to form the coolant; expanding at least one of the coolant, the methane, and the portion of the cooled ethylene to reduce a temperature of the coolant to less than ?100° C. prior to the cooling; and feeding the heat exchanged coolant to at least one of the ethylene production process, the ethylene recovery process, and an open-loop refrigeration system.
    Type: Grant
    Filed: March 24, 2011
    Date of Patent: September 22, 2015
    Assignee: Lummus Technology Inc.
    Inventor: Stephen De Haan
  • Publication number: 20150135767
    Abstract: Methods and systems for reducing the pressure of a hydrocarbon-containing stream so as to provide a cooled, reduced-pressure hydrocarbon-containing stream are provided. Facilities as described herein utilize a single closed-loop mixed refrigeration system in order to facilitate transportation, loading, and/or storage of a liquefied hydrocarbon-containing material at or near atmospheric pressure. In some aspects, the facilities can include at least one separation device for removing lighter components from the feed stream, which may separately be recovered as a vapor product for subsequent processing and/or use.
    Type: Application
    Filed: August 22, 2014
    Publication date: May 21, 2015
    Applicant: BLACK & VEATCH HOLDING COMPANY
    Inventors: Kevin L. Currence, Daniel G. McCartney
  • Publication number: 20150052938
    Abstract: A process is described for removing heavies and lights from a hydrocarbon-rich feed fraction. A heavies-rich liquid is rectificatorily removed (1st removal stage) from a partially condensed feed fraction. Heavies-depleted gas is partially condensed and rectificatorily separated into a methane-rich liquid fraction and a lights-rich gas fraction (2nd removal stage). The 1st removal stage is operated at a pressure of at least 25 bar. The heavies-depleted gas fraction does not undergo pressure elevation before being fed into the 2nd removal stage. Reflux for the 2nd removal stage is produced via an open loop refrigeration cycle. Refrigerant circulating in the open loop refrigeration cycle is vaporized to two different temperature levels against the reflux streams in a head condenser and a side condenser of the 2nd removal stage. The pressure of refrigerant vaporized in the side condenser is at least three times the pressure of refrigerant vaporized in the head condenser.
    Type: Application
    Filed: August 19, 2014
    Publication date: February 26, 2015
    Applicant: LINDE AKTIENGESELLSCHAFT
    Inventors: Heinz BAUER, Hartmut WALZ
  • Publication number: 20150013379
    Abstract: Systems and a method for the formation of a liquefied natural gas (LNG) are disclosed herein. The system includes a refrigeration system configured to chill a natural gas using a refrigerant mixture including a noble gas. The system also includes an autorefrigeration system configured to use the natural g self-refrigerant to form the LNG from the natural gas.
    Type: Application
    Filed: March 4, 2013
    Publication date: January 15, 2015
    Inventor: Russell H. Oelfke
  • Patent number: 8931306
    Abstract: A wet hydrocarbon stream having at least methane and water, provided at a temperature equal to a first temperature, is cooled thereby lowering the temperature to a second temperature. In a water removal device a wet disposal stream having water is withdrawn from the wet hydrocarbon stream, at the second temperature. An effluent stream having the wet hydrocarbon stream from which the wet disposal stream has been removed, is discharged from the water removal device and passed to a further heat exchanger. A refrigerant stream is also passed to the further heat exchanger, and both the effluent stream and the refrigerant stream are cooled in the further heat exchanger by indirect heat exchanging against an evaporating refrigerant fraction. The effluent stream is heated by indirectly heat exchanging against the wet hydrocarbon stream. The cooling of the wet hydrocarbon stream includes this indirectly heat exchanging.
    Type: Grant
    Filed: June 28, 2011
    Date of Patent: January 13, 2015
    Assignee: Shell Oil Company
    Inventors: Cornelis Buijs, Francois Chantant
  • Patent number: 8899074
    Abstract: A method of natural gas liquefaction may include cooling a gaseous NG process stream to form a liquid NG process stream. The method may further include directing the first tail gas stream out of a plant at a first pressure and directing a second tail gas stream out of the plant at a second pressure. An additional method of natural gas liquefaction may include separating CO2 from a liquid NG process stream and processing the CO2 to provide a CO2 product stream. Another method of natural gas liquefaction may include combining a marginal gaseous NG process stream with a secondary substantially pure NG stream to provide an improved gaseous NG process stream. Additionally, a NG liquefaction plant may include a first tail gas outlet, and at least a second tail gas outlet, the at least a second tail gas outlet separate from the first tail gas outlet.
    Type: Grant
    Filed: October 22, 2009
    Date of Patent: December 2, 2014
    Assignee: Battelle Energy Alliance, LLC
    Inventors: Bruce M. Wilding, Terry D. Turner
  • Patent number: 8806891
    Abstract: The present invention relates to a process plant and method for cooling and optionally liquefaction of a product gas, particularly for liquefaction of natural gas, based on a closed loop of multi-component refrigerant in heat exchange with the gas to be cooled and optionally condensed.
    Type: Grant
    Filed: November 1, 2007
    Date of Patent: August 19, 2014
    Assignee: Sinvent AS
    Inventors: Einar Brendeng, Petter Nekså
  • Patent number: 8783061
    Abstract: A natural gas liquefaction train includes a nitrogen cooling loop. A controller is provided for controlling one or more controlled variables by adjusting one or more manipulated variables. The one or more manipulated variables may include a nitrogen flow associated with the nitrogen cooling loop in the natural gas liquefaction train. The controller could adjust the nitrogen flow by adjusting operation of a compressor associated with the nitrogen cooling loop. The one or more controlled variables may include a rundown temperature of liquefied natural gas exiting the nitrogen loop and/or a calorific or heating value of the liquefied natural gas exiting the nitrogen loop. A second controller could control other aspects of the natural gas liquefaction train, such as by controlling a mass flow rate of a feed gas in the natural gas liquefaction train.
    Type: Grant
    Filed: June 12, 2007
    Date of Patent: July 22, 2014
    Assignee: Honeywell International Inc.
    Inventor: Brian A. Coward
  • Publication number: 20140150492
    Abstract: Methods and systems for liquefying natural gas using nonflammable refrigerants are provided. Methods of liquefaction include cooling a natural gas stream via indirect heat exchange with a first nonflammable refrigerant selected from the group consisting of: difluoromethane, pentafluoromethane, trifluoromethane, hexafluoroethane, tetrafluoroethane, pentafluorethane, trifluoroethane, pentafluoroethane, any derivative thereof, and any combination thereof during a first refrigeration cycle; and cooling the natural gas stream via indirect heat exchange with a second refrigerant during a second refrigeration cycle.
    Type: Application
    Filed: October 31, 2013
    Publication date: June 5, 2014
    Applicant: CONOCOPHILLIPS COMPANY
    Inventors: Paul DAVIES, James Lee HARRIS, JR., Emery Jay THOMAS, Gregg SAPP