Having Multiple Connected Bodies Patents (Class 623/1.16)
  • Patent number: 11446169
    Abstract: A bifurcated implant delivery system is provided for deploying a bifurcated expandable implant in a patient lumen. A shaft has at least two shaft proximal openings. A shaft distal end has at least two shaft branches longitudinally extending from a shaft body distal end. Each of the shaft branches has a shaft open tip. The shaft has at least one shaft lumen that longitudinally extends between a respective shaft proximal opening and at least one respective shaft open tip. A reinforcing element longitudinally extends from the shaft body distal end. An outer sheath has an outer sheath proximal opening and at least one outer sheath open tip. An outer sheath lumen longitudinally extends between the outer sheath proximal opening and the at least one outer sheath open tip. The outer sheath lumen is for selectively holding at least a portion of the shaft and a bifurcated expandable implant therein.
    Type: Grant
    Filed: March 9, 2018
    Date of Patent: September 20, 2022
    Assignee: THE CLEVELAND CLINIC FOUNDATION
    Inventor: Karunakaravel Karuppasamy
  • Patent number: 11446168
    Abstract: Prostheses and methods of making the same are provided. The prosthesis has an internal branch configuration. A trough or branch opening is at least partially defined by a trough wall extending into a main lumen from a sidewall of the prosthesis. The internal branch extends from the trough within the main lumen towards one of the outflow end of the graft body in a helical, retrograde arrangement. Other arrangements are described. The prosthesis may include a scalloped fenestration having a width larger than the trough. The trough may be positioned along a tapered region of the prosthesis. The trough and internal branch may be made from the same graft material. The trough and internal branch, in addition to the main graft body, may be made from the same graft material.
    Type: Grant
    Filed: April 23, 2018
    Date of Patent: September 20, 2022
    Assignee: Cook Medical Technologies LLC
    Inventors: Blayne A Roeder, Jarin A Kratzberg, Charles L Baxter, Chantelle King, Stephan Haulon
  • Patent number: 11432923
    Abstract: Prosthetic devices and frames for implantation at a cardiac valve annulus are provided that include an annular frame (having an inflow end and an outflow end) and a plurality of axial frame members that bridge two circumferentially extending rows of angled struts. The axial frame members can include a plurality of axially extending leaflet attachment members and a plurality of axial struts in a 1:1 ratio. Along each of the two rows, the frame can have at least three angled struts between adjacent axial frame members.
    Type: Grant
    Filed: August 24, 2018
    Date of Patent: September 6, 2022
    Assignee: Edwards Lifesciences Corporation
    Inventor: Tamir S. Levi
  • Patent number: 11419713
    Abstract: A visceral double-barreled main body stent graft and methods for its use, the stent graft comprises, a main body stent graft having distal and proximal ends, the main body stent graft's length ranges from about 100-120 mm and diameter at the proximal end ranges from about 30-45 mm, first and second lumens defined at the main body stent graft's distal end, the first lumen's diameter ranges from about 18-20 mm, the second lumen's diameter ranges from about 16-18 mm, the first and second lumens have about the same length from about 50-70 mm, the first lumen is secured to the second lumen along a shared length, and the main body stent graft defines a tubular wall that is contiguous with the first and second lumens such that any fluid entering the main body must exit through one of the first or second lumens.
    Type: Grant
    Filed: May 28, 2019
    Date of Patent: August 23, 2022
    Assignee: Sanford Health
    Inventor: Patrick W Kelly
  • Patent number: 11419714
    Abstract: A stent includes a fluid-permeable stent body having longitudinally separated proximal and distal stent ends. The stent body has inner and outer stent body surfaces. The stent body defines at least one longitudinally extending primary lumen and at least two longitudinally extending secondary lumens laterally spaced from one another with at least a portion of the primary lumen interposed laterally therebetween. The secondary and primary lumens all are at least partially fluid-permeable between the inner and outer stent body surfaces. At least one fluid-impermeable and longitudinally extending berm is located directly laterally adjacent a corresponding secondary lumen. The berm prevents fluid flow laterally between at least a portion of the corresponding secondary lumen and a space laterally opposite the secondary lumen beyond the berm. A method of using the stent in at least partially extending a superior landing zone of an abdominal aortic aneurysm is also described.
    Type: Grant
    Filed: June 19, 2018
    Date of Patent: August 23, 2022
    Assignee: THE JOHNS HOPKINS UNIVERSITY
    Inventors: Andrew Schulick, Devika Singh
  • Patent number: 11413171
    Abstract: A stent comprises a first longitudinally extended cylindrical-shaped member. The first member comprises a plurality of first longitudinal struts and an array of first radial struts extending between the first longitudinal struts. The stent further comprises an overlapping region to form a dense mesh.
    Type: Grant
    Filed: December 16, 2019
    Date of Patent: August 16, 2022
    Assignee: MONARCH BIOSCIENCES, INC.
    Inventor: Vikas Gupta
  • Patent number: 11406540
    Abstract: A bio-absorbable implant is configured to bear radially outwardly against a Eustachian tube of a patient. The implant includes a proximal portion and a distal portion. The proximal portion includes an array of dilating bodies and a tether assembly. The dilating bodies are formed of a bio-absorbable material and are dimensioned to bear radially outwardly against the Eustachian tube of the patient. The tether assembly connects adjacent dilating bodies of the array of dilating bodies. The tether assembly is configured to allow restricted movement of the array of dilating bodies to thereby change the longitudinal profile of the proximal portion. The distal portion includes an anchor assembly that is configured to secure the bio-absorbable implant in the Eustachian tube of the patient.
    Type: Grant
    Filed: September 5, 2018
    Date of Patent: August 9, 2022
    Assignee: Acclarent, Inc.
    Inventors: Jetmir Palushi, Fatemeh Akbarian
  • Patent number: 11399971
    Abstract: In accordance with the present invention, there is provided a stent for insertion into a vessel of a patient. The stent is a tubular member having front and back open ends and a longitudinal axis extending there between. The tubular member has a first smaller diameter for insertion into a patient and navigation through the vessels, and a second larger diameter for deployment into the target area of a vessel. The tubular member is made from a plurality of adjacent hoops extending between the front and back ends. The hoops include a plurality of longitudinal struts and a plurality of loops connecting adjacent struts. The stent further includes a plurality of bridges having loop to bridge connections which connect adjacent hoops to one another. The bridge to loop connection points are separated angularly with respect to the longitudinal axis. The bridges have one end attached to a loop, another end attached to a loop on an adjacent hoop.
    Type: Grant
    Filed: October 28, 2010
    Date of Patent: August 2, 2022
    Assignee: CARDINAL HEALTH SWITZERLAND 515 GMBH
    Inventor: Michael V. Williamson
  • Patent number: 11344373
    Abstract: In part, the disclosure relates to systems and methods to assess stent/scaffold expansion in a vessel on an expedited time scale after stent/scaffold placement and expansion. In one embodiment, the method generates a first representation of a stented segment of the blood vessel indicative of a level of stent expansion; determines using the detected stent struts, a first end of the stent and a second end of the stent; and generate a second representation of the segment of the blood vessel by interpolating a lumen profile using an offset distance from the first end and the second end.
    Type: Grant
    Filed: May 29, 2019
    Date of Patent: May 31, 2022
    Assignee: LightLab Imaging, Inc.
    Inventors: Ajay Gopinath, Kyle Savidge, Robert Steinbrecher
  • Patent number: 11318032
    Abstract: A sphincter assist device includes a plurality of interconnected and adjacent links which define a ring. Each link includes a body section and a latch cam. The body section includes a first set of side beams and a first set of snap arms. The latch cam includes a post extending from the body section and a cam disposed at an end portion of the post. The cam is engagable with the first set of snap arms of an adjacent link. Translation of the cam displaces the first set of snap arms and the first set of side beams to transition the sphincter assist device between open and closed configurations. The first set of snap arms, in combination with the first set of side beams, exert a positive non-linear force profile on the cam, thus defining a non-linear force profile of the sphincter assist device between the open and closed configurations.
    Type: Grant
    Filed: March 25, 2020
    Date of Patent: May 3, 2022
    Assignee: Covidien LP
    Inventors: John J. Kappus, Joe D. Sartor, John A. Hammerland, III, David N. Heard
  • Patent number: 11291570
    Abstract: Disclosed herein is a hybrid stent having a balloon-expandable portion joined to a self-expanding portion. The hybrid stent is capable of withstanding the forces applied by delivery. Delivery systems for deploying a hybrid stent are described, as are methods of using such delivery systems.
    Type: Grant
    Filed: April 24, 2019
    Date of Patent: April 5, 2022
    Assignee: Cook Medical Technologies LLC
    Inventors: Brent A. Mayle, Ram H. Paul, Jr., James C. Merk, Gary Neff, Dean R. Puckett, Austin Neidigh, Thomas Mindel, Michelle Reynolds
  • Patent number: 11291568
    Abstract: Provided herein is a system including, in some embodiments, a stent and a catheter. The stent includes a number of filaments arranged to form a tubular body of the stent, a number of microcells forming each filament of the number of filaments, and a port in an end portion of the stent. Each microcell includes a moveable microsurface. The port of the stent may be configured to accept power and control signals for moving the microsurfaces. The catheter may include a cable configured to connect with the port of the stent and provide the power and the control signals for moving the microsurfaces. Moving the microsurfaces may include matching a shape of an anatomical vessel to maintain patency thereof while mitigating stress on the anatomical vessel.
    Type: Grant
    Filed: August 29, 2017
    Date of Patent: April 5, 2022
    Assignee: C.R. Bard, Inc.
    Inventor: Aseem Singh
  • Patent number: 11291412
    Abstract: A universal implantable integrated circuit medical device platform having integral and monolithic circuit traces. The platform allows for implanting into a mammalian body single and multi-functional interface devices for sensing, monitoring stimulating and/or modulating physiological conditions within the body. Microelectronic circuitry may be integrated onto the platform or may be joined as modular components to the platform.
    Type: Grant
    Filed: February 4, 2020
    Date of Patent: April 5, 2022
    Assignee: Vactronix Scientific, LLC.
    Inventor: Scott P. Carpenter
  • Patent number: 11255356
    Abstract: An actuator system is provided having a fluidic body member having a surface configured to be deformable in response to a pressure differential. One or more auxetic elements are disposed on and engage the surface of the fluidic body member in the form of a network of beam elements. The auxetic element has a negative Poisson's ratio resulting in kinematics such that upon application of the internal fluid pressure, the surface of the fluidic body member is caused to have specific kinematics enabling planar and 3D motions. In some embodiments, the plurality of non-auxetic elements cooperate with a plurality of auxetic elements.
    Type: Grant
    Filed: August 31, 2020
    Date of Patent: February 22, 2022
    Assignee: THE REGENTS OF THE UNIVERSITY OF MICHIGAN
    Inventors: Audrey Sedal, Joshua Bishop-Moser, Sridhar Kota, Michael Fisher, Margaret Kohler, Alan Wineman
  • Patent number: 11253380
    Abstract: An absorbable stent includes an absorbable matrix. The matrix includes a number of wave-shaped rings connected by connection units and arranged in an axial direction. The wave-shaped ring includes a number of waves arranged in a circumferential direction. A peak, a valley and a support connecting the peak and the valley form the wave. Two adjacent wave-shaped rings and the connection unit form a closed side supporting unit. The matrix has a volume of [4, 40] ?m per unit blood vessel area. The absorbable stent has sufficient radial supporting strength for clinical applications. Moreover, the volume of the matrix per unit blood vessel area is less than volumes of existing stents. When the absorbable stent and existing stents are made of the same material, the absorbable stent has a shorter degradation and absorption cycle.
    Type: Grant
    Filed: December 19, 2017
    Date of Patent: February 22, 2022
    Assignee: Biotyx Medical (Shenzhen) Co., Ltd
    Inventors: Wenjiao Lin, Wenchao Fu
  • Patent number: 11253676
    Abstract: An interventional medical device delivery system comprises a loader provided with a loading tube, a delivery sheath, a dilator, a pushing component, and a hemostasis valve. The loading tube or the delivery sheath is provided with a position-limiting locking connector. An appropriate-rotation control mechanism for controlling a tightening degree between a distal end of the loading tube and a proximal end of the delivery sheath is disposed outside the loading tube or the delivery sheath. The proximal end of the delivery sheath and the distal end of the loading tube engage with each other in a sealed manner, and are threadingly fixed to each other by means of the position-limiting locking connector. The appropriate-rotation control mechanism rotates in one direction to appropriately tighten a thread-connection, and rotates in the opposite direction to release the thread-connection. The interventional medical device conveying system of the invention automatically determines a tightening degree.
    Type: Grant
    Filed: March 10, 2017
    Date of Patent: February 22, 2022
    Assignee: HANGZHOU NUO MAO MEDICAL TECHNOLOGY CO., LTD
    Inventors: Tingchao Zhang, Yang Li
  • Patent number: 11242468
    Abstract: The present invention relates to adurable and multifunctional superhydrophobic coating composition and water based fabrication method of producing the durable and multifunctional superhydrophobic coating composition via chemical modification and functionalization of hydrophilic material by silanes under room temperature without any organic solvents. Synthesis of chemically modified cellulose nanofibers or clay in water forms excellent water repelling thin films upon coating over various substrates. The super hydrophobic materials are used as additive for paints, pigments, paper, varnish and, textile and used for various industrial applications such as construction of buildings and other super structures.
    Type: Grant
    Filed: October 17, 2018
    Date of Patent: February 8, 2022
    Assignee: INDIAN INSTITUTE OF TECHNOLOGY MADRAS (ITT MADRAS)
    Inventors: Pradeep Thalappil, Avijit Baidya, Mohd. Azhardin Ganayee, Swathy Jakka Ravindran
  • Patent number: 11234812
    Abstract: A surgical heart valve includes a non-collapsible frame having features that enable the frame to expand from an initial condition having a first diameter to an expanded condition having a second diameter larger than the first diameter after the valve has been implanted within a patient. The frame may include members that prevent the unintended expansion of the frame, such as during implantation, and members that prevent the over-expansion of the frame. The surgical heart valve further includes a valve assembly connected to the frame and including a plurality of leaflets.
    Type: Grant
    Filed: April 18, 2019
    Date of Patent: February 1, 2022
    Assignee: St. Jude Medical, Cardiology Division, Inc.
    Inventors: Chad Joshua Green, Neelakantan Saikrishnan, Paul E. Ashworth, Scott R. Lien
  • Patent number: 11234844
    Abstract: A multi-element, bioresorbable, vascular stent may be used to maintain or enhance patency of a blood vessel. The stent may be used in peripheral blood vessels, which may be long and/or tortuous. By using multiple, separate stent elements that are balloon expandable, the multi-element stent may be stronger than a traditional self-expanding stent but may also be more flexible, due to its multiple-element configuration, than a traditional balloon-expandable stent. Thus, the multi-element, bioresorbable, vascular stent described herein may be particularly advantageous for treating long lesions in tortuous peripheral blood vessels.
    Type: Grant
    Filed: March 25, 2020
    Date of Patent: February 1, 2022
    Assignee: EFEMORAL MEDICAL INC.
    Inventors: Lewis B. Schwartz, Gregory Orr, Jayson Delos Santos, Christopher Haig
  • Patent number: 11219518
    Abstract: An endovascular stent graft for treatment of a blood vessel is provided. The stent is configured to be inserted into the blood vessel while in a radially-contracted configuration, and may be opened into a radially-expanded configuration once properly located within the blood vessel. The stent graft includes a main body having a proximal end and a distal end. The distal end of the main body is connected to a first leg and a second leg. A first plurality of stitching extends along a first seam path and connects the main body to the first leg, while a second plurality of stitching extends along a second seam path and connects the main body to the second leg. At least one of the first or second seam axes can be offset, in that the seam path does not extent perpendicular to a longitudinal axis of the stent graft.
    Type: Grant
    Filed: November 15, 2019
    Date of Patent: January 11, 2022
    Assignee: Medtronic Vascular, Inc.
    Inventor: Ian Benjamin Baranowski
  • Patent number: 11131243
    Abstract: An auxetic bi-stable structure that comprises an auxetic curved shell movable between a first and a second stable position, and a rigid element. At least part of the surface of the auxetic curved shell is joined to the rigid element such that the curved shell is movable with respect to the rigid element between the first and second stable positions.
    Type: Grant
    Filed: February 21, 2019
    Date of Patent: September 28, 2021
    Assignee: AIRBUS OPERATIONS S.L.
    Inventors: Esteban Martino-Gonzalez, Iker Velez De Mendizabal Alonso, Vasilis Votsios, Guillermo Nicolas Gutierrez, Diego Sanchez Franco, David Matesanz Hidalgo, Jose Angel Hernanz-Manrique
  • Patent number: 11129703
    Abstract: An intraluminal device and method of fixation of an intraluminal device at a recipient having an esophagus, a stomach with a cardiac portion and a GE junction between the esophagus and the cardiac portion of the stomach includes deploying the intraluminal device to the recipient. The intraluminal device has a wall defining a cardiac member that is configured to the size and shape of the cardiac portion of the stomach and deployed to the cardiac portion of the stomach and an esophageal member that is configured to the size and shape of a portion of the esophagus and deployed to the esophagus. The intraluminal device having a connector connected with the esophageal portion and cardiac portion and deployed to the GE junction. The wall is fixed to the recipient to resist distal migration of the wall. The fixing includes the wall having a wall characteristic that is configured to facilitate tissue ingrowth.
    Type: Grant
    Filed: December 17, 2018
    Date of Patent: September 28, 2021
    Assignee: BFKW, LLC
    Inventors: Randal S. Baker, Frederick J. Walburn, James A. Foote
  • Patent number: 11123175
    Abstract: An endograft is provided for a blood vessel having a branch extending from said blood vessel, including a body having a wall defining a lumen and an exterior surface. The endograft body includes a first portion defining or being made to define a non-circular cross-sectional dimension, and a second portion defining a circular cross-sectional dimension. Modular systems including the endograft and methods for creating endografts according to the disclosure are described also.
    Type: Grant
    Filed: November 19, 2018
    Date of Patent: September 21, 2021
    Inventor: David J. Minion
  • Patent number: 11116510
    Abstract: Systems, devices and methods for occluding the left atrial appendage (LAA). The device excludes the LAA from blood flow. The implantable device is delivered via transcatheter delivery into the LAA and secured within the LAA. The implant comprises an expandable and compliant frame and an expandable and conformable tubular foam body. A delivery and tether retraction system includes a handle for controlling a pusher and tether. The pusher may be moved a distance away from the implant without changing the orientation of the implant, while the tether is still attached to the implant. Severing the tether and proximally retracting a control on the hand piece by a distance causes the severed end to advance distally by at least about twice that distance. A loader includes a conical portion with guides and a reservoir for submerging the foam prior to loading and delivery.
    Type: Grant
    Filed: February 18, 2020
    Date of Patent: September 14, 2021
    Assignee: Conformal Medical, Inc.
    Inventors: David A. Melanson, Andy H. Levine, James H. Loper, Michael T. Radford, Carol Devellian, Aaron V. Kaplan, Ronald B. Lamport
  • Patent number: 11083605
    Abstract: The techniques of this disclosure generally relate to a modular stent device that is deployed into the ascending aorta via femoral access. The modular stent device is a base or anchor component to which additional modular stent devices can be attached to exclude diseased areas of the aorta while at the same time allowing perfusion of the brachiocephalic artery, the left common carotid artery, and/or the left subclavian artery.
    Type: Grant
    Filed: March 28, 2019
    Date of Patent: August 10, 2021
    Assignee: Medtronic Vascular, Inc.
    Inventors: Keith Perkins, Zachary Borglin, Mark Stiger, Julie Benton, Steven Claessens, Travis Rowe, Mark Young
  • Patent number: 11071558
    Abstract: A device for capturing and removing an obstruction in a bodily duct of a patient. The device includes a cylindrical body having a circumference and a longitudinal axis. According to some implementations the cylindrical body is comprised of a plurality of closed cell structures arranged in diagonal rows around the longitudinal axis. At least some of closed cell structures have substantially the same shape and size. According to some implementations at least some of the closed cell structures of substantially the same shape and size occupy a same circumferential location in the cylindrical body and are longitudinally separated from one another by no less than two, three, four or more diagonal rows of closed cell structures. According to other implementations the closed cell structures include diagonally extending struts having at least a curve portion and a straight portion.
    Type: Grant
    Filed: February 14, 2019
    Date of Patent: July 27, 2021
    Assignee: HIGHWAY 1 MEDICAL, INC.
    Inventors: Vera Shinsky, Scott D. Wilson
  • Patent number: 11039945
    Abstract: A stent for use in hollow tubular organs, comprising a continuous tubular or cylindrical inner cavity which is delimited by a wall. The wall is formed in a tubular or cylindrical manner about an axis which runs in a longitudinal direction and has a structure which surrounds the wall. The structure is made of elements, and the elements are made of loops which are arranged about the longitudinal axis in the radial direction. The elements are rigidly connected via connection points such that a tubular or cylindrical single-piece wall structure is produced, and the stent has acute angles in the region of the connection points.
    Type: Grant
    Filed: November 10, 2015
    Date of Patent: June 22, 2021
    Assignee: MEDICUT STENT TECHNOLOGY GMBH
    Inventors: Johannes Jung, Aryan Fallahi
  • Patent number: 11007073
    Abstract: Devices that can be delivered into a vascular system to divert flow are disclosed herein. According to some embodiments, devices are provided for treating aneurysms b diverting flow. An expandable device can comprise, for example, a plurality of strut regions and a plurality of bridge regions. Each of the strut regions may extend circumferentially about the expandable device and include a plurality of struts. Each of the plurality of bridge regions may be attached to and extend between two of the strut regions and comprise a plurality first bridges and second bridges that intersect one another and are movable relative to one another at their intersections.
    Type: Grant
    Filed: May 15, 2019
    Date of Patent: May 18, 2021
    Assignee: COVIDIEN LP
    Inventor: Animesh Choubey
  • Patent number: 10952838
    Abstract: A multi-lumen stent assembly (100) for deployment in a bifurcated vessel. This assembly is made of a self-expandable main body component (200) and two lumen extensions (300), able to be inserted into one of the lumens of a double-barrelled portion (208) of the main body component (200). The main body component (200) has a proximal end (201) configured to be placed toward the heart and a distal end (202). The main body component (200) has a main body portion (203), a concaved portion (206), and a transition portion (205). The main body portion (203) has a cylindrical lumen (204) of constant diameter. The concaved portion (206) has a double-barrelled portion (208) having two lumens (211). A cross-section of the transition portion (205) evolving from a circular shape to an elliptical shape towards the transition portion (205), a larger diameter of this shape being in a central plane (CP).
    Type: Grant
    Filed: March 5, 2015
    Date of Patent: March 23, 2021
    Assignee: Cardiatis S.A.
    Inventor: Noureddine Frid
  • Patent number: 10952840
    Abstract: The present invention relates a vascular prosthesis for a blood vessel of a patient, which has the following: a hollow-cylindrical main body with a main lumen extending therein, an also a multiplicity of stent rings, which are not connected to one another, are arranged spaced apart one behind the other in the longitudinal direction of the vascular prosthesis and running around in a meandering formation. The vascular prosthesis also has four side branches, which extend distally into the main lumen from fenestrations in the prosthesis material lying between the stent rings.
    Type: Grant
    Filed: August 1, 2018
    Date of Patent: March 23, 2021
    Assignee: JOTEC GMBH
    Inventors: Michael Walther, Karsten Klein, Juergen Merz, Jan Ulmer
  • Patent number: 10939988
    Abstract: A ball-type anti-reflux biliary stent, including a meshed body, a cup and a ball. The cup and the ball are respectively provided at two ends of the meshed body. Inner diameters of the cup and the ball is larger than that of the meshed body. The meshed body includes a plurality of sections, and two adjacent sections are connected by a flexible wire. The cup of the stent is a cylinder open outwards, and the opening of the ball is connected to a tube having a substantially elliptical cross section. Therefore, a displacement of the stent is prevented for an accurate fixation of the stent. Moreover, the intestinal juice is prevented from flowing back into the biliary tract, avoiding infectious diseases.
    Type: Grant
    Filed: June 12, 2019
    Date of Patent: March 9, 2021
    Inventor: Bing Hu
  • Patent number: 10925757
    Abstract: Example articles coated with tissue layers and techniques for forming articles with tissue layers. An example article may include a tubular frame extending along a longitudinal axis. The tubular frame includes a plurality of struts joined at apices to define a plurality of cells including a group of struts. The example article includes a tissue layer coating each strut and extending across each cell. The tissue layer defines a plurality of defects, each cell including a respective defect.
    Type: Grant
    Filed: March 21, 2018
    Date of Patent: February 23, 2021
    Assignee: MEDTRONIC VASCULAR, INC.
    Inventors: Nathan Weidenhamer, Jeffrey Vogel
  • Patent number: 10905549
    Abstract: A prosthetic valve for implantation within a native heart valve may be provided. The prosthetic valve may include an annular outer frame having a plurality of ventricular anchoring legs extending therefrom, as well as an inner frame having a plurality of atrial anchoring arms extending therefrom. A portion of each ventricular anchoring leg may be configured to overlap with a portion of each atrial anchoring arm in a common lateral plane. As a result, a prosthetic valve with a reduced axial length may be provided.
    Type: Grant
    Filed: September 19, 2018
    Date of Patent: February 2, 2021
    Assignee: CARDIOVALVE LTD.
    Inventors: Ilia Hariton, Meni Iamberger, Aviram Baum, Boaz Harari
  • Patent number: 10897678
    Abstract: Devices and methods to reduce ear wax clogging of acoustic ports, hearing aid systems, and feedback reduction systems are provided. A conformal hearing aid includes a hearing aid body, where the hearing aid body houses a microphone and a receiver, where the microphone is positioned within the hearing aid body to measure acoustic signals from an ambient environment, and where the receiver is positioned within the hearing aid body to emit acoustic signals toward a tympanic membrane of a user; an expandable element, where the expandable element is operatively connected to the hearing aid body, and where the expandable element is configured to encompass a circumferential portion of the hearing aid body when expanded; and an inflation management system, where the inflation management system is configured to expand the expandable element when actuated.
    Type: Grant
    Filed: May 15, 2020
    Date of Patent: January 19, 2021
    Assignee: Staton Techiya, LLC
    Inventor: John P. Keady
  • Patent number: 10893869
    Abstract: Devices that can be delivered into a vascular system to divert flow are disclosed herein. According to some embodiments, devices are provided for treating aneurysms by diverting flow. A flow-diverting device can comprise, for example, a frame and mesh immovably attached to and extending over a portion of the frame. The mesh can include a plurality of pores that are sized to inhibit the flow of blood through the frame into an aneurysm to a degree sufficient to lead to thrombosis and healing of the aneurysm when the device is positioned in a blood vessel and adjacent to the aneurysm.
    Type: Grant
    Filed: March 24, 2017
    Date of Patent: January 19, 2021
    Assignee: COVIDIEN LP
    Inventor: Animesh Choubey
  • Patent number: 10881511
    Abstract: A prosthetic valve configured for implantation within a native valve may be provided. The prosthetic valve may include an expandable valve body having an inner lumen extending along a longitudinal axis of the valve body. The prosthetic valve may additionally include a plurality of ventricular tissue anchors configured to extend from the valve body to ventricular anchor distal ends, as well as a plurality of atrial tissue anchors configured to extend from the valve body to atrial anchor distal ends. Each atrial tissue anchor may include a rigid portion, and a flexible portion situated between a distal end of the rigid portion and the atrial anchor distal end. The ventricular anchor distal end of a ventricular tissue anchor and the distal end of the rigid portion of an atrial tissue anchor may be configured to be equidistant from the longitudinal axis of the valve body.
    Type: Grant
    Filed: September 19, 2018
    Date of Patent: January 5, 2021
    Assignee: CARDIOVALVE LTD.
    Inventors: Ilia Hariton, Meni Iamberger, Aviram Baum, Boaz Harari
  • Patent number: 10874502
    Abstract: Some embodiments are directed to a stent graft comprising a first stent graft having a first and a second stent and a first and a second inner graft supported by the first stent, and an outer graft. The second inner graft can be spaced apart from the first inner graft so that a portion of the first stent is not covered by either the first inner graft or the second inner graft. A first and second portion of the outer graft can be attached to the first stent, the outer graft being unsupported by the stent between the first and second portions so as to form a fillable space between the outer graft, the first inner graft, and the second inner graft. Some embodiments further comprise a second stent graft deployable within the inside of the first stent graft to sealingly cover the uncovered portion of the first stent.
    Type: Grant
    Filed: March 5, 2018
    Date of Patent: December 29, 2020
    Assignee: Endologix LLC
    Inventors: Stefan Schreck, Daniel Hawkins
  • Patent number: 10864071
    Abstract: Stent graft comprising a stent (1) having a plurality of ring segments (3) arranged side by side and connected with each other by connecting webs (7) having a meandering pattern, and at least one membrane (2), characterized in that a plurality of connecting webs (7) between adjacent ring segments (3) are provided with flexible tongues (6), which are arranged in a form-closed manner in the connecting webs (7) and which are resiliently movable against the connecting webs (7), wherein the membrane (2) being clamped between flexible tongues (6) and connecting webs (7).
    Type: Grant
    Filed: April 20, 2016
    Date of Patent: December 15, 2020
    Assignee: Bentley InnoMed GmbH
    Inventor: Nikola Obradovic
  • Patent number: 10849769
    Abstract: Self-expending stents that include circumferential rings of alternating interconnected struts connected by flexible connectors. The struts of the rings and flexible connectors have a structure, including areas of expanded or reduced width or thickness, to account for venous applications. When used for venous applications, the stents convey benefit from configurations that improve flexibility (due to the greater elasticity of venous applications) while maintaining enough stiffness to resist pressure on the venous structure in selected areas (such as for the May-Thurner syndrome). The stents include particular structural characteristics—often expressed as ratios between different measurements—that are particularly advantageous for (although not limited to) venous applications.
    Type: Grant
    Filed: August 23, 2017
    Date of Patent: December 1, 2020
    Assignee: Vesper Medical, Inc.
    Inventors: William James Harrison, Michael A. Longo
  • Patent number: 10842606
    Abstract: An implantable permanent filter assembly (1) for deployment in a bifurcated vessel includes a main vessel and at least two branches. This assembly includes a filtering sleeve (2) formed of an expendable braided framework (20) able to expand from a radially compressed state in a delivery configuration to a radially expanded state. The filtering sleeve extends along an axis and defines a cylindrical lumen devoid of impermeable layer, having a distal end configured to extend toward the branches of the bifurcated vessel and a proximal end configured to extend toward away from the branches of the bifurcated vessel. The braided framework has a plurality of mesh layers (22,23,24) of wires (25) made of biocompatible material, forming a lattice with a plurality of wires of each layers. The lattice, when observed normal with respect to a wall of the implantable endoluminal prosthesis, defines polygonal openings.
    Type: Grant
    Filed: September 9, 2016
    Date of Patent: November 24, 2020
    Assignee: FRID MIND TECHNOLOGIES
    Inventor: Noureddine Frid
  • Patent number: 10835399
    Abstract: This disclosure relates to a stent for use in vascular interventions, the stent comprising a first portion for placing in a first lumen and a second portion for placing in a region of a branch point at which the first lumen branches off a second lumen, the second portion comprising one or more rings linked by second links to the first portion and, if the second portion comprises two or more rings, together. The first and second portions are configured to be different to facilitate controlled longitudinal deformation of the second portion.
    Type: Grant
    Filed: January 20, 2017
    Date of Patent: November 17, 2020
    Assignee: University Hospitals of Leicester NHS Trust
    Inventor: Anthony Gershlick
  • Patent number: 10821011
    Abstract: A method of making a method of making a stent includes forming a precursor stent using micro-cladding. The precursor stent includes a plurality of bands made of a first material disposed adjacent to each other and a plurality of connectors connecting each band to an adjacent band. The precursor stent includes a plurality of first connectors configured to remain and a plurality of second connectors made by functionally grading the first material with a second material to create embrittlement. The plurality of second connectors are configured to be removed. The precursor stent is processed to remove the plurality of second connectors without adversely affecting the bands and the plurality of first connectors. The second material may be a radiopaque material.
    Type: Grant
    Filed: March 11, 2018
    Date of Patent: November 3, 2020
    Assignee: Medtronic Vascular, Inc.
    Inventor: Syamala Pulugurtha
  • Patent number: 10792144
    Abstract: An anastomosis stent includes an elongated body of a tubular configuration having a length and diameter dimensions extending in axial and radial directions of the elongated body and in a transverse relationship to each other. The elongated body is formed by multiple rings stacked adjacent one another in a direction parallel to the length dimension. Each ring is a single strand of wire bent in a repetitive pattern of sine waves. Each sine wave defines an alternating peak and valley divided by a length dimension extending orthogonal to the length dimension of the elongated body. The rings are fused together at locations on selected pairs of adjacent peaks and valleys of the rings with the fused locations arranged in parallel rows. The elongated body includes main and end portion and a safety mark about the elongated body at the juncture therebetween.
    Type: Grant
    Filed: November 7, 2017
    Date of Patent: October 6, 2020
    Inventor: Nelson Rene Torales
  • Patent number: 10786374
    Abstract: A stent (scaffold) or other luminal prosthesis comprising circumferential structural elements which provides high strength after deployment and allows for scaffold to uncage, and/or allow for scaffold or luminal expansion thereafter. The circumferential scaffold may be formed from degradable material, or may be formed from non-degradable material and will be modified to expand and/or uncage after deployment.
    Type: Grant
    Filed: July 22, 2019
    Date of Patent: September 29, 2020
    Assignee: Elixir Medical Corporation
    Inventors: Motasim Sirhan, John Yan, Vinayak Bhat, Joseph Paraschac, Brett Cryer, Benjamyn Serna
  • Patent number: 10786376
    Abstract: Vascular stent, in particular made of an in vivo degradable plastic material, having individual ring segments (2), the webs (4) of which are of meandering configuration, and comprising connecting webs (3) arranged between adjacent ring segments (2), said webs converging in connection points (7) with the webs (4) of the ring segments (2), with recesses (9a, 9b) being arranged at angles of the connection points (7) that are compressed when the vascular stent (1) is expanded, said recesses being open towards the edge and extending through the ring segment webs (4) and connecting webs (3), with a view to reducing stresses arising during the expansion of the vascular stent (1).
    Type: Grant
    Filed: September 9, 2016
    Date of Patent: September 29, 2020
    Assignee: Bentley InnoMed GmbH
    Inventor: Milisav Obradovic
  • Patent number: 10772747
    Abstract: The invention relates to a self-expanding vascular implant for implanting into a blood vessel, the implant comprising a hollow cylindrical body with a proximal and a distal end and with a longitudinal axis; comprising stent springs, which are successively arranged and spaced from one another over the longitudinal axis of the body, each stent spring meandering; and comprising an implant material, which is fixed to the stent springs and connects same. The stent springs have pointed arches which alternately point toward the proximal and distal direction and comprise alternating crests and troughs that are connected to one another via legs of different lengths, whereby a stent spring has pointed arches, which are circumferentially and successively arranged and which have different heights, said pointed arches consisting of higher and shorter pointed arches.
    Type: Grant
    Filed: May 20, 2015
    Date of Patent: September 15, 2020
    Assignee: JOTEC GmbH
    Inventors: Heike Fischer, Juergen Merz
  • Patent number: 10758381
    Abstract: A radially expandable, tubular stent, includes a first section having a first crush resistance force and a second section have a second crush resistance force, wherein the first crush resistance force is less than the second crush resistance force. The first section is connected to the second section to form a tube, connection of the first and second sections extending in an axial direction of the tube.
    Type: Grant
    Filed: March 28, 2017
    Date of Patent: September 1, 2020
    Assignee: Vesper Medical, Inc.
    Inventors: Michael A. Longo, Christopher N. Korkuch, William James Harrison, Thea Rose Sander
  • Patent number: 10744012
    Abstract: A stent includes a first section and a second section. The second section is aligned with the first section along a longitudinal axis of the stent. Each section includes a plurality of expandable modules and a plurality of bridging modules. Each expandable module includes a plurality of strut elements that join together at a plurality of apices. Each bridging module includes bridging elements that connect an apex of a first module with an apex of a second module. The plurality of expandable modules or the plurality of bridging modules in the first section are more radially stiff than the plurality of expandable modules or the plurality of bridging modules in the second section such that at least a portion of the first section is configured to be placed in a region of a vein subjected to physiologic compression.
    Type: Grant
    Filed: May 15, 2017
    Date of Patent: August 18, 2020
    Assignee: BOSTON SCIENTIFIC SCIMED, INC.
    Inventors: Craig L. Bonsignore, Stephen J. Kleshinski, Andrea Seba Les
  • Patent number: 10709587
    Abstract: A stent system is provided for stenting a bifurcated vessel structure having a parent vessel and a daughter vessel. The stent system has a parent vessel stent and a daughter vessel stent. The parent vessel stent has a substantially tubular body that is configured to be deployed into the parent vessel. This body has an angular flap that is openable to extend into the daughter vessel. The daughter vessel stent has a substantially tubular body that is configured to be deployed through the flap in the parent vessel stent into the daughter vessel. The daughter vessel stent has an angled tail portion that is configured to overlap with the flap of the parent vessel stent when both stents are deployed in the vessel structure. A method of stenting using this system is also provided.
    Type: Grant
    Filed: November 4, 2014
    Date of Patent: July 14, 2020
    Inventors: Hameem Unnabi Changezi, Yousuf Chowdhary
  • Patent number: 10709544
    Abstract: A stent is provided having a plurality of intersecting elongated members arranged to form a plurality of cells, which define an elongated tube with a lumen. The elongated tube has first and second sections, the first section having a substantially constant first diameter, the second section having a substantially constant second diameter that is larger than the first diameter. The elongated tube also has a transition section between the first and second sections, the transition section having a concave curvature extending proximally from the first section and a convex curvature extending proximally from the concave curvature to the second portion. A proximal end of the second section has a plurality of rounded ends formed by the plurality of intersecting elongated members. Each of the plurality of cells within the first section have a pitch that is tighter than each of the plurality of cells within the second section.
    Type: Grant
    Filed: July 18, 2018
    Date of Patent: July 14, 2020
    Assignee: Cook Medical Technologies LLC
    Inventors: Ryan C. Bradway, Jarin A. Kratzberg, William S. Gibbons, Jr.