Including Valve Patents (Class 623/1.24)
  • Patent number: 10524902
    Abstract: Prosthetic valves are provided with a leaflet assembly having at least one leaflet (3) attached to a supporting element (2), which leaflet has a free margin that can move between a first position wherein the free margin is flexed away from a closure surface (700) to allow body fluid to flow through the valve, and a second position wherein the free margin abuts the closure surface to close the valve, and wherein the leaflet, without pulsatile load on the valve, can form a coaptation height H of more than 0.1 mm along the length of the free margin. Such prosthetic valve provides good performance during prolonged time, and can be made using various materials for the leaflets. The invention also relates to a leaflet assembly for use in a prosthetic valve, and to methods of making the prosthetic valve, including making the leaflet assembly.
    Type: Grant
    Filed: December 28, 2017
    Date of Patent: January 7, 2020
    Assignee: DSM IP ASSETS B.V.
    Inventors: Paul Frederik Gründeman, Jolanda Kluin, Karlien Kristal Boon-Ceelen, Thomas König
  • Patent number: 10517725
    Abstract: Systems for mitral valve repair are disclosed where one or more mitral valve interventional devices may be advanced intravascularly into the heart of a patient and deployed upon or along the mitral valve to stabilize the valve leaflets. The interventional device may also facilitate the placement or anchoring of a prosthetic mitral valve implant. The interventional device may generally comprise a distal set of arms pivotably and/or rotating coupled to a proximal set of arms which are also pivotably and/or rotating coupled. The distal set of arms may be advanced past the catheter opening to a subannular position (e.g., below the mitral valve) and reconfigured from a low-profile delivery configuration to a deployed securement configuration. The proximal arm members may then be deployed such that the distal and proximal arm members may grip the leaflets between the two sets of arms to stabilize the leaflets.
    Type: Grant
    Filed: August 28, 2017
    Date of Patent: December 31, 2019
    Assignee: Twelve, Inc.
    Inventors: Hanson S. Gifford, III, James I. Fann, John Morriss, Mark Deem, Jeffry J. Grainger
  • Patent number: 10512539
    Abstract: A prosthetic heart valve system and a delivery system therefor, the prosthetic heart valve system comprising a heart valve element with expandable generally tubular stent support forming a wire frame, wherein the tubular stent support comprises a plurality of adjacent rows of interconnected, substantially diamond-shaped cell structures extending, along and in parallel to the longitudinal direction, between the proximal end and distal end, and wherein the stent support, in a medial portion, comprises a circumferential row of a plurality of wire anchor structures which wire anchor structures are spaced from one another and attached to the wire frame and which, in respect to the longitudinal axis of the stent support, at least partially protrude outward at an angle ?. The prosthetic heart valve system may also comprise a stent(graft)-element.
    Type: Grant
    Filed: December 4, 2015
    Date of Patent: December 24, 2019
    Assignee: NVT AG
    Inventors: Marcos Centola, Emilia Kawa
  • Patent number: 10463483
    Abstract: A collapsible-expandable tubular stent (29) constructed of shape-memory material which is implantable into a human heart, which comprises proximal and distal rings (71, 73) and at least two spaced apart posts (69) that extend axially between said rings (71, 73), said distal ring (73) comprising a plurality of distal arms (77) which are connected to the distal ring (73) at only one end and which have a free opposite end; said proximal ring (71) comprising a plurality of, which are connected at only one end to the proximal ring (71) and which have a free opposite end, which proximal arms (75) are constructed to swing radially outward at their free ends.
    Type: Grant
    Filed: June 15, 2017
    Date of Patent: November 5, 2019
    Assignee: Venus Medtech (Hangzhou) Inc.
    Inventors: Hou-Sen Lim, Wolfgang Gotz
  • Patent number: 10413402
    Abstract: A prosthetic heart valve includes a prosthetic valve annulus and at least one prosthetic valve leaflet member including at least one coaptation surface configured for cooperating with at least one corresponding coaptation surface of the prosthetic heart valve. At least one valve leaflet member is displaceable by blood flow between a closed position and an open position to produce, correspondingly, a contact and a separation of cooperating coaptation surfaces. In the open position the separation of the cooperating coaptation surfaces enables the blood flow through the orifice in a first direction, and in the closed position the contact of the cooperating coaptation surfaces prevents the blood flow through the orifice in a second direction, opposite to the first direction.
    Type: Grant
    Filed: June 22, 2012
    Date of Patent: September 17, 2019
    Inventor: Pierre Squara
  • Patent number: 10413406
    Abstract: An implantable prosthetic valve has an upper frame section and a lower frame section. The upper frame section has a plurality of struts and a first leaflet receiving surface at a lower portion of the upper frame section. The lower frame section has a second leaflet receiving surface at an upper portion of the lower frame section. An edge of a flexible leaflet is disposed between the first and second leaflet receiving surfaces to attach the leaflet to the upper and lower frame sections.
    Type: Grant
    Filed: November 27, 2018
    Date of Patent: September 17, 2019
    Assignee: Edwards Lifesciences Corporation
    Inventor: Netanel Benichou
  • Patent number: 10413407
    Abstract: A method of crimping an implantable prosthetic valve can include placing protective material over at least a portion of the implantable prosthetic valve. The protective material can be configured to occupy space between open cells of a frame of the implantable prosthetic valve to prevent damage to a leaflet structure of the implantable prosthetic valve. The method can also include crimping the implantable prosthetic valve with the protective material on the implantable prosthetic valve, and removing the protective material from between the frame and the leaflet structure of the implantable prosthetic valve.
    Type: Grant
    Filed: November 28, 2018
    Date of Patent: September 17, 2019
    Assignee: Edwards Lifesciences Corporation
    Inventors: Ilia Hariton, Netanel Benichou, Yaacov Nitzan, Bella Felsen, Diana Nguyen-Thien-Nhon, Rajesh A. Khanna, Son V. Nguyen, Tamir S. Levi, Itai Pelled
  • Patent number: 10413411
    Abstract: A device for percutaneously delivering a stented prosthetic heart valve. The device includes an inner shaft assembly, a delivery sheath assembly, an outer stability tube, and a handle. The sheath assembly is slidably disposed over the inner shaft, and includes a capsule and a shaft. The capsule compressively contains the prosthesis over the inner shaft. The stability tube is slidably disposed over the delivery sheath, and includes a distal region configured to be radially expandable from a first shape having a first diameter to a second shape having a larger, second diameter. In a first delivery state, the distal region assumes the first shape, providing a low profile appropriate for traversing a patient's vasculature. In a second delivery state, the distal region has the expanded diameter second shape, sized to receive the capsule, such as when retracting the capsule to implant the prosthesis.
    Type: Grant
    Filed: October 13, 2016
    Date of Patent: September 17, 2019
    Assignee: Medtronic Vascular, Inc.
    Inventor: Joshua Dwork
  • Patent number: 10390953
    Abstract: Methods and devices for reducing paravalvular leakage associated with a replacement mitral valve. The methods can include monitoring for paravalvular leakage between a replacement mitral valve and tissue proximate the mitral valve annulus; if a sufficient amount of paravalvular leakage is observed, deploying a tissue reshaping device at least partially within a coronary sinus; remodeling coronary sinus tissue with the tissue reshaping device to remodel at least one of mitral valve annulus tissue, at least one mitral valve leaflet, and left atrium tissue in an attempt to reduce the paravalvular leakage; and monitoring for a reduction in paravalvular leakage after the remodeling step.
    Type: Grant
    Filed: March 8, 2017
    Date of Patent: August 27, 2019
    Assignee: Cardiac Dimensions Pty. Ltd.
    Inventor: Rick Wypych
  • Patent number: 10376359
    Abstract: Embodiments of the present disclosure are directed to stents, valved-stents, and associated methods and systems for their delivery via minimally-invasive surgery.
    Type: Grant
    Filed: September 10, 2010
    Date of Patent: August 13, 2019
    Assignee: SYMETIS SA
    Inventors: Jacques Essinger, Youssef Biadillah, Stephane Delaloye, Jean-Luc Hefti, Luc Mantanus, Reynald Passerini
  • Patent number: 10321986
    Abstract: Described embodiments are directed toward prosthetic valves and systems and methods of making prosthetic valves. In accordance with an embodiment, a prosthetic valve comprises and leaflet frame, and outer frame and a film. The leaflet frame has a generally tubular shape defining a plurality of leaflet windows. The outer frame has a generally tubular shape. The leaflet frame is coaxially disposed at least partially within the outer frame. The leaflet frame and outer frame is coupled at least in part by a contiguous portion of the film. At least a portion of the contiguous portion of the film is contained between and coupling the leaflet frame and outer frame operable to prevent relative movement and contact therebetween. The film defines a leaflet extending from each of the leaflet windows.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: June 18, 2019
    Assignee: W. L. Gore & Associates, Inc.
    Inventors: William C. Bruchman, Daniel A. Crawford, Logan R. Hagaman, Cody L. Hartman
  • Patent number: 10321993
    Abstract: A prosthetic heart valve includes a collapsible and expandable stent including a plurality of struts forming cells, the stent having a proximal end, a distal end, an annulus section adjacent the proximal end, an aortic section adjacent the distal end, and a transition section disposed between the annulus section and the aortic section, the aortic section having a larger diameter than the annulus section. The heart valve further includes a valve assembly disposed entirely in the annulus section of the stent for controlling the flow of blood through the stent, the valve assembly including a plurality of leaflets, and a cuff, the cuff being disposed on a surface of the stent and extending fully over at least two rows of cells of the stent.
    Type: Grant
    Filed: May 20, 2015
    Date of Patent: June 18, 2019
    Assignee: St. Jude Medical, Cardiology Division, Inc.
    Inventors: Xue Mei Li, Yousef F. Alkhatib
  • Patent number: 10314695
    Abstract: The present invention provides an apparatus for endovascularly replacing a patient's heart valve. In some embodiments, the apparatus includes an expandable anchor supporting a replacement valve, the anchor and replacement valve being adapted for percutaneous delivery and deployment to replace the patient's heart valve, the anchor having a braid having atraumatic grasping elements adapted to grasp tissue in a vicinity of the patient's heart valve.
    Type: Grant
    Filed: May 1, 2014
    Date of Patent: June 11, 2019
    Assignee: BOSTON SCIENTIFIC SCIMED INC.
    Inventors: Amr Salahieh, Daniel K. Hildebrand, Tom Saul
  • Patent number: 10314700
    Abstract: A composite biomaterial having a continuous metal sheet with arcuate members that define a first fenestration pattern, and a polymer layer over at least one surface of the continuous metal sheet. The arcuate members elastically stretch to allow the continuous metal sheet to bend in more than one axis without buckling or wrinkling.
    Type: Grant
    Filed: June 29, 2016
    Date of Patent: June 11, 2019
    Assignee: Boston Scientific Scimed, Inc.
    Inventors: David J. Sogard, Scott R. Smith, Jason P. Hill, Patrick A. Haverkost, Susan M. Shoemaker
  • Patent number: 10314701
    Abstract: Stent-valves (e.g., single-stent-valves and double-stent-valves), associated methods and systems for their delivery via minimally-invasive surgery, and guide-wire compatible closure devices for sealing access orifices are provided.
    Type: Grant
    Filed: June 23, 2017
    Date of Patent: June 11, 2019
    Assignee: SYMETIS SA
    Inventors: Ludwig K. Von Segesser, Stephane Delaloye
  • Patent number: 10314704
    Abstract: Described, in certain aspects of the invention, are apparatuses and methods for deploying artificial devices within the vascular system. One apparatus includes a delivery device having a lumen and a deployment member slidably received within the lumen. This apparatus further includes an artificial device having an anchoring element releasably engaged with the deployment member. Such an apparatus can be percutaneously delivered to a site within a vascular vessel, and thereafter manipulated so that the anchoring element attaches to the vessel wall. The delivery device and deployment member can then be withdrawn from the vessel, whereby the deployment member disengages from the anchoring element, leaving the artificial device implanted in the vessel.
    Type: Grant
    Filed: August 6, 2014
    Date of Patent: June 11, 2019
    Assignee: Cook Medical Technologies LLC
    Inventor: Darin G. Schaeffer
  • Patent number: 10307249
    Abstract: A holder for a hybrid heart valve prosthesis that can be quickly and easily implanted during a surgical procedure is provided. The hybrid heart valve includes a non-expandable, non-compressible prosthetic valve and a self-expandable anchoring stent, thereby enabling attachment to the annulus without sutures. A first suture connects the holder to the valve and constricts an inflow end of the anchoring stent. A second suture connects the holder to the valve and extends down three holder legs to loop through fabric on the valve. Both sutures may loop over a single cutting well on the holder so that severing the first and second sutures at the single cutting well simultaneously releases the tension in the first suture, permitting the inflow end of the anchoring stent to expand, and disconnects the valve holder from the prosthetic heart valve.
    Type: Grant
    Filed: March 6, 2017
    Date of Patent: June 4, 2019
    Assignee: Edwards Lifesciences Corporation
    Inventors: Da-Yu Chang, Hilda Z. Fann
  • Patent number: 10299922
    Abstract: Stent-valves (e.g., single-stent-valves and double-stent-valves), associated methods and systems for their delivery via minimally-invasive surgery, and guide-wire compatible closure devices for sealing access orifices are provided.
    Type: Grant
    Filed: June 23, 2017
    Date of Patent: May 28, 2019
    Assignee: Symetis SA
    Inventors: Ludwig K. Von Segesser, Stephane Delaloye
  • Patent number: 10292814
    Abstract: A biological heart valve replacement, particularly for pediatric patients, comprises a tubular segment (A) comprising a proximal end (Ep), a distal end (Ed) and a central portion (Pc) arranged between said proximal and distal ends and defining a longitudinal direction of the valve. The valve further comprises at least one inner leaflet (C) attached in hinge-like manner to a connection zone (F) at an inner wall (W) region of said central portion, each one of said inner leaflets being movable between a closing position and an opening position of the valve. In order to provide growth adaptability, the tubular segment comprises at least one tubular growth zone (B; B1,B2) configured as a longitudinal strip made of a growth-adaptive biomaterial, with the remainder of the tubular segment being made of a non-growth-adaptive biomaterial.
    Type: Grant
    Filed: September 24, 2014
    Date of Patent: May 21, 2019
    Assignee: Universitaet Zuerich
    Inventors: Benedikt Weber, Simon Philipp Hoerstrup
  • Patent number: 10285810
    Abstract: Systems and methods for medical interventional procedures, including approaches to valve implant. In one aspect, the methods and systems involve a modular approach to treatment.
    Type: Grant
    Filed: July 28, 2016
    Date of Patent: May 14, 2019
    Assignee: Caisson Interventional, LLC
    Inventors: Cyril J. Schweich, Jr., Todd J. Mortier
  • Patent number: 10245142
    Abstract: A surgically implantable multiple orifice heart valve having a valve frame with at least two orifices, each of which can accommodate a tissue valve. The multiple orifice heart valve includes a stent frame having a first side, an opposite second side, and multiple orifices or opening, each of which extends from the first side to the second side of the stent frame and is adjacent to at least one of the other multiple orifices or openings.
    Type: Grant
    Filed: May 28, 2015
    Date of Patent: April 2, 2019
    Assignee: Medtronic, Inc.
    Inventor: Philipp Bonhoeffer
  • Patent number: 10245141
    Abstract: An implant device (V), such as a heart valve, for implantation in an animal body includes an annular structure and one or more elongated anchoring members deployable to a deployed condition for insertion into an animal body. The anchoring members are retractable from the deployed condition to a rolled up condition wherein the anchoring members protrude radially out from the annular structure of the device (V) to provide anchoring to a body structure (AS) of an animal. In the rolled up condition the anchoring members at least partly protrude axially of the annular structure of the device (V).
    Type: Grant
    Filed: May 14, 2014
    Date of Patent: April 2, 2019
    Assignee: Sorin Group Italia S.r.l.
    Inventors: Laura Ghione, Paolo Gaschino, Monica Francesca Achiluzzi
  • Patent number: 10231831
    Abstract: Apparatus and methods are provided for use with a prosthetic valve that is designated for implantation at a patient's native heart valve, including a valve ring having a plurality of ring segments, each of the segments being hingedly coupled to an adjacent segment at a pivot joint. The valve ring is placed adjacent to a surface of the native heart valve, the prosthetic valve having been coupled to the valve ring. In an expanded state thereof, the valve ring defines a ring, all of the pivot joints being disposed in a plane that is perpendicular to a longitudinal axis of the ring. The valve ring is foldable into a shape that has a generally circular cross-section that defines and surrounds at least in part a central lumen, by folding the segments with respect to each other, at the pivot joints. Other embodiments are also described.
    Type: Grant
    Filed: June 21, 2016
    Date of Patent: March 19, 2019
    Assignee: CARDIOVALVE LTD.
    Inventor: Gil Hacohen
  • Patent number: 10219902
    Abstract: Implants or systems of implants and methods apply a selected force vector or a selected combination of force vectors within or across the left atrium, which allow mitral valve leaflets to better coapt. The implants or systems of implants and methods make possible rapid deployment, facile endovascular delivery, and full intra-atrial adjustability and retrievability years after implant. The implants or systems of implants and methods also make use of strong fluoroscopic landmarks. The implants or systems of implants and methods make use of an adjustable implant and a fixed length implant. The implants or systems of implants and methods may also utilize an adjustable bridge stop to secure the implant, and the methods of implantation employ various tools.
    Type: Grant
    Filed: February 13, 2017
    Date of Patent: March 5, 2019
    Assignee: MVRx, Inc.
    Inventors: Timothy R. Machold, David J. Scott, David A. Rahdert, David R. Tholfsen, Robert T. Chang, John A. Macoviak
  • Patent number: 10195406
    Abstract: The devices and methods described herein include an implantable body lumen fluid flow modulator including an upstream flow accelerator separated by a gap from a downstream flow decelerator. The gap is a pathway to entrain additional fluid from a branch lumen(s) into the fluid stream flowing from the upstream flow accelerator to the downstream flow decelerator.
    Type: Grant
    Filed: May 31, 2018
    Date of Patent: February 5, 2019
    Assignee: HemoDynamx Technologies, Ltd.
    Inventors: Sagy Karavany, Eyal Teichman
  • Patent number: 10188510
    Abstract: A prosthetic valve comprising a conical shaped sheet member comprising an extracellular matrix (ECM) composition, the sheet member having a plurality of ribbons projecting the sheet member proximal end, the distal ends of the ribbons being positioned proximate each other, wherein the sheet member comprises a conical shape.
    Type: Grant
    Filed: July 11, 2016
    Date of Patent: January 29, 2019
    Assignee: CorMatrix Cardiovascular, Inc.
    Inventors: Robert G Matheny, Minh X Vo, Carlos C Chang, Selvamuthu K Natarajan
  • Patent number: 10173352
    Abstract: A method for the self-assembled production of a topographically surface structured cellulose element. First, a mold is provided having on one side a first surface which is in a complementary manner topographically structured and which is permeable to oxygen. Next, a liquid growth medium containing cellulose producing bacteria is provided. Then, the mold is placed to form a interface such that the side of the mold with the first surface is in direct contact with the liquid growth medium, and an opposite side is facing air or a specifically provided oxygen containing gas surrounding. This allows bacteria to be produced and deposit cellulose on the first surface and developing on the interface a surface structured surface complementary thereto, until a cellulose layer with a thickness of the element of at least 0.3 mm is formed. Finally; the element is removed from the mold.
    Type: Grant
    Filed: September 18, 2014
    Date of Patent: January 8, 2019
    Assignee: ETH ZURICH
    Inventors: Tobias Lendenmann, Maximilian Fischer, Simone Bottan, Aldo Ferrari, Dimos Poulikakos, Bernhard Winkler, Martin Grapow
  • Patent number: 10166103
    Abstract: To provide a valve cusp sizer which is small and easy to handle. The present invention relates to a valve cusp sizer 100 for determining the size of a valve cusp depending on the size of a cardiac valve. The valve cusp sizer 100 includes a front surface 10 formed in an arcuate surface form to be abutted against an organism, a back surface 20 positioned on an opposite surface side of the front surface 10, and a pinching portion 30 protruding from the back surface 20. By removing a grip member and a grip member attachment portion from a conventional valve cusp sizer in this manner, and by forming the pinching portion 30 to be held by a clamp, tweezers, or the like, it is possible to dramatically miniaturize the valve cusp sizer while maintaining necessary functions of the valve cusp sizer.
    Type: Grant
    Filed: August 19, 2015
    Date of Patent: January 1, 2019
    Assignee: Japanese Organization For Medical Device Development, Inc.
    Inventor: Shigeyuki Ozaki
  • Patent number: 10166097
    Abstract: A replacement heart valve has an expandable frame configured to engage a native valve annulus and a valve body mounted to the expandable frame. The valve body can have a plurality of valve leaflets configured to open to allow flow in a first direction and engage one another so as to close and prevent flow in a second direction, the second direction being opposite the first direction.
    Type: Grant
    Filed: January 29, 2016
    Date of Patent: January 1, 2019
    Assignee: Edwards Lifesciences CardiAQ LLC
    Inventors: Arshad Quadri, J. Brent Ratz, Robrecht Michiels
  • Patent number: 10149761
    Abstract: A method of delivering a prosthetic mitral valve includes delivering a distal anchor from a delivery sheath such that the distal anchor self-expands inside a first heart chamber on a first side of the mitral valve annulus, pulling proximally on the distal anchor such that the distal anchor self-aligns within the mitral valve annulus and the distal anchor rests against tissue of the ventricular heart chamber, and delivering a proximal anchor from the delivery sheath to a second heart chamber on a second side of the mitral valve annulus such that the proximal anchor self-expands and moves towards the distal anchor to rest against tissue of the second heart chamber. The self-expansion of the proximal anchor captures tissue of the mitral valve annulus therebetween.
    Type: Grant
    Filed: August 28, 2017
    Date of Patent: December 11, 2018
    Assignee: Cephea Valve Technlologies, Inc.
    Inventors: Juan F. Granada, Gary Erzberger, Michael P. Corcoran, Dan Wallace, Matteo Montorfano, Alaide Chieffo
  • Patent number: 10136991
    Abstract: A replacement heart valve implant may include a braided anchor member configured to actuate between a delivery configuration and a deployed configuration formed from a plurality of filaments, a circumferential seal member disposed about a distal portion of the anchor member and including a reinforcing band disposed at a distal end thereof, and a plurality of valve leaflets connected to the anchor member. The reinforcing band is secured to the anchor member adjacent a distal end of the anchor member by a plurality of lashings each attached to two individual filaments. The plurality of filaments defines a body section, a proximal crown section, and a distal crown section, wherein the proximal crown section includes a first plurality of end loops and a second plurality of end loops, wherein a proximalmost extent of the first plurality of end loops and the second plurality of end loops varies.
    Type: Grant
    Filed: July 26, 2016
    Date of Patent: November 27, 2018
    Assignee: Boston Scientific Scimed Inc.
    Inventors: Andrew J. H. Backus, Ali Salahieh, Cornelius M. Crowley
  • Patent number: 10130467
    Abstract: A prosthetic heart valve for replacing a native valve includes a collapsible and expandable stent extending between a proximal end and a distal end. The stent includes an annulus section adjacent the proximal end and having a first diameter, a plurality of first struts forming cells, and a plurality of second struts connected to the annulus section and forming a plurality of deflecting cells expandable to define a second diameter larger than the first diameter. A valve assembly is disposed within the stent and a cuff is coupled to the stent and covers the plurality of deflecting cells.
    Type: Grant
    Filed: May 12, 2015
    Date of Patent: November 20, 2018
    Assignee: St. Jude Medical, Cardiology Division, Inc.
    Inventors: Peter N. Braido, Kent J. Smith, Andrea L. McCarthy, Andrea N. Para, Sounthara (Ott) Khouengboua, Thomas M. Benson, Saravana B. Kumar, Bruce Moseman, Gaurav Satam
  • Patent number: 10105225
    Abstract: Systems and methods for approximating tissue segments, such as mitral valve leaflets, on a minimally invasive basis. The system includes first and second approximation devices each including a magnetic component and an attachment mechanism. Each device is connected to a target tissue segment by the corresponding attachment mechanism. Upon deployment at a target site, the tissue approximation devices are magnetically attracted to one another, approximating the tissue segments and maintaining the tissue segments in the approximated state.
    Type: Grant
    Filed: October 14, 2015
    Date of Patent: October 23, 2018
    Assignee: Medtronic, Inc.
    Inventors: Cynthia Clague, James Keogh, Ana Menk, Paul Rothstein
  • Patent number: 10016274
    Abstract: A stented valve including a generally tubular stent structure that has a longitudinal axis, first and second opposite ends, a plurality of commissure support structures spaced from the first and second ends and extending generally parallel to the longitudinal axis, at least one structural wire positioned between each two adjacent commissure support structures, and at least one wing portion extending from two adjacent commissure support structures and toward one of the first and second ends of the stent structure. The stented valve further includes a valve structure attached within the generally tubular stent structure to the commissure support structures.
    Type: Grant
    Filed: April 14, 2016
    Date of Patent: July 10, 2018
    Assignee: Medtronic, Inc.
    Inventors: Charles Tabor, Carol E. Eberhardt, Timothy G. Laske, Timothy R. Ryan, Joseph C. Morrow, Tammy Y. Tam, Brian A. Glynn, Ann L. Brody Rubin, Michael J. Tuchek
  • Patent number: 10004601
    Abstract: A prosthetic apparatus includes a main body having a lumen and configured for placement within a native annulus of a native valve complex. The main body is radially compressible to a radially compressed state for delivery into the heart and self-expandable from the compressed state to a radially expanded state. The apparatus also includes at least one arm coupled to and disposed outside of the main body. The arm being coupled to the main body such that when the main body is compressed to the compressed state, a leaflet-receiving space between the arm and an outer surface of the main body increases to receive a native valve leaflet therebetween, and when the main body expands to the expanded state in the absence of any radial inward forces on the main body or the arm, the space decreases to capture the leaflet between the outer surface of the main body and the arm.
    Type: Grant
    Filed: October 31, 2011
    Date of Patent: June 26, 2018
    Assignee: Medtronic Ventor Technologies Ltd.
    Inventors: Yosi Tuval, Ido Kilemnik, Raphael Benary
  • Patent number: 9999501
    Abstract: Heart valve prostheses are provided having a self-expanding frame that supports a valve body comprising a skirt and a plurality of coapting leaflets. The self-expanding frame includes an inflow section, a valve section, and an outflow section. The outflow section forms attachment loops in a collapsed configuration to attach the frame to a delivery system.
    Type: Grant
    Filed: April 18, 2012
    Date of Patent: June 19, 2018
    Assignee: Medtronic CV Luxembourg S.A.R.L.
    Inventors: Karan Punga, Finn Rinne, Donna Barrett
  • Patent number: 9974652
    Abstract: A method of crimping an implantable prosthetic valve can include placing protective material over at least a portion of the implantable prosthetic valve. The protective material can be configured to occupy space between open cells of a frame of the implantable prosthetic valve to prevent damage to a leaflet structure of the implantable prosthetic valve. The method can also include crimping the implantable prosthetic valve with the protective material on the implantable prosthetic valve, and removing the protective material from between the frame and the leaflet structure of the implantable prosthetic valve.
    Type: Grant
    Filed: May 19, 2017
    Date of Patent: May 22, 2018
    Assignee: Edwards Lifesciences Corporation
    Inventors: Ilia Hariton, Netanel Benichou, Yaacov Nitzan, Bella Felsen, Diana Nguyen-Thien-Nhon, Rajesh A. Khanna, Son V. Nguyen, Tamir S. Levi, Itai Pelled
  • Patent number: 9925044
    Abstract: Described is a prosthetic valve, comprising: an expandable stent including an inner lumen and having a first and a second end; and a spring attached to the first end of the expandable stent; wherein the expandable stent and the spring can expand radially to a desired diametric configuration in order to anchor the prosthetic valve at an implantation position in a body lumen. Related systems and methods.
    Type: Grant
    Filed: January 15, 2014
    Date of Patent: March 27, 2018
    Assignee: Medtronic, Inc.
    Inventors: Jason Quill, Cynthia T. Clague, Paul T. Rothstein
  • Patent number: 9867698
    Abstract: In some embodiments, a valve prosthesis includes an inlet portion that is substantially s-shaped and configured to engage the floor of the outflow tract of the native heart atrium. In some embodiments, a valve prosthesis includes a chordae guiding element configured to reduce bending of the chordae to reduce stress on the chordae during the cardiac cycle. In some embodiments, a valve prosthesis includes a central portion having an hourglass shape configured to pinch a native annulus in order to provide axial fixation of the valve prosthesis within a valve site. In some embodiments, a valve prosthesis includes a frame having an outflow end that is flared to provide a gap between an outflow end of the frame and an outflow end of prosthetic leaflets when the prosthetic leaflets are fully opened.
    Type: Grant
    Filed: December 8, 2015
    Date of Patent: January 16, 2018
    Assignee: Medtronic, Inc.
    Inventors: Igor Kovalsky, Jason Quill, Daniel Glozman, Illia Hariton, Yossi Tuval, Nadav Yellin
  • Patent number: 9861476
    Abstract: The present invention relates to apparatus for methods for endovascularly replacing a patient's heart valve. The apparatus includes an expandable anchor with leaflet engagement elements on the proximal end of the anchor and a replacement valve. The leaflet engagement elements can be used to prevent distal migration and insure proper positioning of the apparatus.
    Type: Grant
    Filed: November 7, 2011
    Date of Patent: January 9, 2018
    Assignee: BOSTON SCIENTIFIC SCIMED INC.
    Inventors: Amr Salahieh, Brian D. Brandt, Robert A. Geshlider, Dwight P. Morejohn, Tom Saul
  • Patent number: 9855141
    Abstract: Described embodiments are directed toward centrally-opening leaflet prosthetic valve devices having a leaflet frame and a mechanically coupled leaflet. The described leaflet frames have projections that are configured to couple with apertures located within the leaflet attachment region of a leaflet. Some embodiments are further directed toward pulmonary valved conduits incorporating such leaflet and leaflet frame constructs. Methods of making and using such prosthetic valve devices are also described amongst others.
    Type: Grant
    Filed: December 17, 2015
    Date of Patent: January 2, 2018
    Assignee: W. L. Gore & Associates, Inc.
    Inventors: Dustin V. Dienno, Michael G. Dunham, Cody L. Hartman
  • Patent number: 9849011
    Abstract: Methods and devices for increasing flow in the left atrial appendage (LAA) include a conduit directing blood flow from a pulmonary artery into the LAA and/or a conduit drawing blood from the LAA by a Bernoulli effect. In one embodiment, a method comprises implanting a conduit in a pulmonary vein, expanding an inlet portion such that the conduit becomes anchored within the vein and directs blood through an outlet portion of the conduit into or toward the left atrial appendage.
    Type: Grant
    Filed: July 24, 2015
    Date of Patent: December 26, 2017
    Assignee: Edwards Lifesciences Corporation
    Inventors: Neil S. Zimmerman, Robert C. Taft, Eric R. Reuland, David L. Hauser
  • Patent number: 9839511
    Abstract: A mitral valve replacement device is adapted to be deployed at a mitral valve position in a human heart. The device has an atrial flange defining an atrial end of the device, a ventricular portion defining a ventricular end of the device, the ventricular portion having a height ranging between 2 mm to 15 mm, and an annulus support that is positioned between the atrial flange and the ventricular portion. The annulus support includes a ring of anchors extending radially therefrom, with an annular clipping space defined between the atrial flange and the ring of anchors. A plurality of leaflet holders positioned at the atrial end of the atrial flange, and a plurality of valve leaflets secured to the leaflet holders, and positioned inside the atrial flange at a location above the native annulus.
    Type: Grant
    Filed: October 3, 2014
    Date of Patent: December 12, 2017
    Assignee: SINO MEDICAL SCIENCES TECHNOLOGY INC.
    Inventors: Jianlu Ma, Yong Huo, Tianzhu Li, Jinhong Zhao, Jianxiang Ma, Lei Meng
  • Patent number: 9839515
    Abstract: Stent-valves (e.g., single-stent-valves and double-stent-valves), associated methods and systems for their delivery via minimally-invasive surgery, and guide-wire compatible closure devices for sealing access orifices are provided.
    Type: Grant
    Filed: August 28, 2014
    Date of Patent: December 12, 2017
    Assignee: Symetis, SA
    Inventors: Ludwig K. Von Segesser, Stéphane Delaloye
  • Patent number: 9801737
    Abstract: The subject invention is directed to devices and methods for producing devices for regulating blood flow in the venous system. In particular, the invention provides for artificial valves designed to regulate the flow of blood in human vessels, wherein such artificial valves include superior properties including fatigue resistance, biocompatibility, and ease of manufacture.
    Type: Grant
    Filed: March 9, 2011
    Date of Patent: October 31, 2017
    Assignee: Deep Vein Medical, Inc.
    Inventors: Peter W. J. Hinchliffe, Menno Kalmann, Adam I. Lehman, Olga Laksin
  • Patent number: 9788941
    Abstract: Apparatus and methods are described including a prosthetic atrioventricular valve (10) for coupling to a native atrioventricular valve (12). The prosthetic valve includes a support frame (20) and a covering (22), which at least partially covers the support frame. The support frame and the covering are shaped so as to define a downstream skirt (24). A plurality of prosthetic leaflets (40) are coupled to at least one element selected from the group consisting of: the support frame and the covering. An elongated anchoring member (152) is positioned around the downstream skirt in a subvalvular space (150), such that the anchoring member presses native leaflets (30) of the native valve against the downstream skirt, thereby anchoring the prosthetic valve to the native valve. Other applications are also described.
    Type: Grant
    Filed: February 19, 2015
    Date of Patent: October 17, 2017
    Assignee: MITRALTECH LTD.
    Inventor: Gil Hacohen
  • Patent number: 9788942
    Abstract: A prosthetic heart valve includes a plurality of leaflets and an expandable member including one or more braided wires with a first set of wire segments extended helically in a first direction and a second set of wire segments extended helically in a second direction such that each wire segment of the first set intersects a plurality of wire segments from the second set at a plurality of intersection points. The one or more braided wires can have crowns where the wire segments of the first set connect to wire segments of the second set. The heart valve can include a tubular seal secured to the plurality of leaflets and to the expandable member by a plurality of sutures. The sutures can include cross stitches formed around both a wire segment of the first set and a wire segment of the second set at one of the intersection points.
    Type: Grant
    Filed: January 27, 2016
    Date of Patent: October 17, 2017
    Assignee: Boston Scientific Scimed Inc.
    Inventors: Andrew J. H. Backus, Spencer C. Noe, Christopher M. Miracle
  • Patent number: 9770331
    Abstract: Systems for mitral valve repair are disclosed where one or more mitral valve interventional devices may be advanced intravascularly into the heart of a patient and deployed upon or along the mitral valve to stabilize the valve leaflets. The interventional device may also facilitate the placement or anchoring of a prosthetic mitral valve implant. The interventional device may generally comprise a distal set of arms pivotably and/or rotating coupled to a proximal set of arms which are also pivotably and/or rotating coupled. The distal set of arms may be advanced past the catheter opening to a subannular position (e.g., below the mitral valve) and reconfigured from a low-profile delivery configuration to a deployed securement configuration. The proximal arm members may then be deployed such that the distal and proximal arm members may grip the leaflets between the two sets of arms to stabilize the leaflets.
    Type: Grant
    Filed: July 15, 2016
    Date of Patent: September 26, 2017
    Assignee: Twelve, Inc.
    Inventors: Hanson S. Gifford, III, James I. Fann, John Morriss, Mark Deem, Jeffry J. Grainger
  • Patent number: 9763780
    Abstract: A prosthetic heart valve device (100) for percutaneous replacement of a native heart valve includes an expandable retainer (110) at least partially surrounding and coupled to an inner valve support (120). The device can further include a prosthetic valve (130) coupled to the valve support. The retainer forms a donut-shaped flange (190) having an arcuate outer surface (142) for engaging tissue and an inner lumen defining a passage for blood to flow through the valve support. The retainer can include a plurality of circumferentially positioned, resiliency deformable and flexible ribs (114) which are coupled at their downstream ends 116 to the valve support 120. The flexible ribs, in one embodiment, can have a general C-shape configuration with the tips (117) of the flexible ribs and an opening (119) of the C-shape configuration oriented toward a longitudinal axis (101) of the device.
    Type: Grant
    Filed: October 19, 2012
    Date of Patent: September 19, 2017
    Assignee: Twelve, Inc.
    Inventors: John Morriss, Hanson Gifford, III, James I. Fann, Jean-Pierre Dueri, Darin Gittings, Michael Luna, Mark Deem, Douglas Sutton
  • Patent number: 9763786
    Abstract: An implantable device for regulating blood flow through a blood vessel comprising an elongated support dimensioned and configured to be implanted in a blood vessel. The support includes a linking member linking axially spaced apart portions to one another. A valve membrane extends between the axially spaced apart support portions and includes first region folded over the first linking member and attached thereto and a second region adjacent the first region and unattached to the first linking member. The second region is movable between a first position to enable blood flow and a second position to inhibit blood flow.
    Type: Grant
    Filed: October 12, 2015
    Date of Patent: September 19, 2017
    Assignee: Deep Vein Medical, Inc.
    Inventors: Menno Kalmann, Peter W. J. Hinchliffe, Adam I. Lehman