Meniscus Patents (Class 623/14.12)
  • Patent number: 10973644
    Abstract: An implant system includes a first portion, a second portion, and a third portion. The first portion includes a hydrogel. The second portion includes a porous material and the hydrogel in pores of the porous material. The third portion includes the porous material. The first portion is free of the porous material. The third portion is free of the hydrogel. Methods of making and using the implant system.
    Type: Grant
    Filed: March 1, 2018
    Date of Patent: April 13, 2021
    Assignee: CARTIVA, INC.
    Inventors: Timothy J. Patrick, Carribeth B. Ramey, Letitia Tudor, Michael A. Axelrod
  • Patent number: 10950026
    Abstract: Method and system for displaying a medical image. For example, a computer-implemented method for displaying a medical image includes acquiring an original image of a target; obtaining a lesion region in the original image; selecting a region of interest in the original image based on at least the lesion region, the region of interest including the lesion region; obtaining a plurality of planar images of the region of interest from the original image of the target based on at least a predetermined setting; generating an animated display by grouping the plurality of planar images based on at least a predetermined order; and displaying the animated display related to the region of interest including the lesion region.
    Type: Grant
    Filed: July 3, 2019
    Date of Patent: March 16, 2021
    Assignee: Shanghai United Imaging Intelligence Co., Ltd.
    Inventors: Dijia Wu, Yaozong Gao, Yiqiang Zhan
  • Patent number: 10918486
    Abstract: An implant system for implantation at a joint, the implant system including an implant device, the implant device comprising a body portion having first and second ends, and a first elongate member, extending from the first or second end of the body portion, the first elongate member being insertable in a bone tunnel in a subject's tibia.
    Type: Grant
    Filed: July 16, 2018
    Date of Patent: February 16, 2021
    Assignee: Imperial Innovations, Ltd.
    Inventors: Andrew Arthur Amis, Justin Peter Cobb, Anthony Michael James Bull, Sarat Babu
  • Patent number: 10905558
    Abstract: The invention provides treatment methods of using meniscus to repair injured and/or arthritic joints, for example, small hand joints including but not limited to radiocarpal, metacarpophalangeal, and interphalangeal joints. The invention also provides various implants made of meniscus for injured and/or arthritic joints.
    Type: Grant
    Filed: January 22, 2018
    Date of Patent: February 2, 2021
    Assignee: Cedars-Sinai Medical Center
    Inventor: David A. Kulber
  • Patent number: 10905796
    Abstract: A supramolecular polymer blend includes a thermoplastic elastomer functionalized with at least one bis-urea moiety and a functional component which is functionalized with at least one bis-urea moiety which is present in an amount of 0.5-40 wt % based on the total mass of the polymer blend. The functional component is selected from polyalkylene glycol, betaine, polysaccharide, zwitterion, polyol or taurine and derivatives thereof. Implants including the polymer blend and a process to manufacture the implants are also provided.
    Type: Grant
    Filed: January 29, 2016
    Date of Patent: February 2, 2021
    Assignees: Xeltis AG, Technische Universiteit Eindhoven
    Inventors: Patricia Dankers, Björne Mollet, Samaneh Kheyrrooz, Bastiaan Ippel, Henk Keizer, Geert Van Almen, Frank Baaijens
  • Patent number: 10758357
    Abstract: A joint spacer, in particular a knee spacer and a hip spacer is provided which is long-lasting and is sufficiently cushioned and abrasion-resistant and which can also support locally very high loads.
    Type: Grant
    Filed: October 9, 2014
    Date of Patent: September 1, 2020
    Assignee: REVOMOTION GMBH
    Inventor: Josef Jansen
  • Patent number: 10758358
    Abstract: Methods of selecting and implanting prosthetic devices for use as a replacement meniscus are disclosed. The selection methods include a pre-implantation selection method and a during-implantation selection method. The pre-implantation selection method includes a direct geometrical matching process, a correlation parameters-based matching process, and a finite element-based matching process. The implant identified by the pre-implantation selection method is then confirmed to be a suitable implant in the during-implantation selection method. In some instances, the during-implantation selection method includes monitoring loads and/or pressures applied to the prosthetic device and/or the adjacent anatomy. In some instances, the loads and/or pressures are monitored by a trial prosthetic device comprising one or more sensors. Methods of implanting meniscus prosthetic devices are also disclosed.
    Type: Grant
    Filed: August 13, 2018
    Date of Patent: September 1, 2020
    Assignee: Active Implants LLC
    Inventors: Eran Linder-Ganz, Jacob Jonathan Elsner, Avraham Shterling
  • Patent number: 10758359
    Abstract: A prosthetic system for use as a partial unicompartmental artificial knee replacement system. In one form, an artificial femoral bearing component is implanted along with a floating meniscus component that is configured to cooperate with the femoral bearing component to move through a plurality of translational and rotational positions as the knee rotates through a variety of angles. In another form, an artificial tibial bearing component is implanted along with a floating meniscus component that is configured to cooperate with the tibial bearing component to move through a plurality of translational and rotational positions as the knee rotates through a variety of angles.
    Type: Grant
    Filed: April 29, 2019
    Date of Patent: September 1, 2020
    Assignee: Active Implants LLC
    Inventors: Emanuele Nocco, Eran Linder-Ganz
  • Patent number: 10736749
    Abstract: A prosthetic device for use as an artificial meniscus is disclosed. The prosthetic device restores stress distribution, stability, and function to the knee joint after removal of the damaged natural meniscus. In some embodiments, the prosthetic device includes an anti-migration feature that inhibits extreme movement within the joint while permitting free floating over a significant range. In one aspect, the anti-migration feature is an enlarged anterior structure or a posterior meniscus remnant engaging channel while in another aspect, the anti-migration feature includes a tethering member. Still further, removable radiopaque features are provided to enhance trialing of the implant prior to final implantation within the joint.
    Type: Grant
    Filed: October 5, 2018
    Date of Patent: August 11, 2020
    Assignee: Active Implants LLC
    Inventors: Eran Linder-Ganz, Lex R. Giltaij, Richard W. Treharne, Thomas B. Buford, Dvora Galli
  • Patent number: 10699599
    Abstract: A hydrogel liquid precursor includes an inorganic mineral and a monomer, wherein the inorganic mineral accounts for 15 percent by mass or more of the hydrogel liquid precursor, wherein the hydrogel liquid precursor has an initial viscosity of 20 mPa·s or less at 25 degrees C., and wherein the hydrogel liquid precursor has a ratio of a two-week viscosity to the initial viscosity of from 0.90 to 1.10, the two-week viscosity representing a viscosity of the hydrogel liquid precursor at 25 degrees C. after being left at 50 degrees C. for two weeks.
    Type: Grant
    Filed: June 18, 2018
    Date of Patent: June 30, 2020
    Assignee: Ricoh Company, Ltd.
    Inventors: Yoshihiro Norikane, Hiroshi Iwata
  • Patent number: 10675154
    Abstract: The present invention refers to an osteochondral local prosthetic insert for partial humeral joint reconstitution by reconstitution of the bone anatomical sphericity to treat bone lesions, in particular Hill-Sachs lesions. The local osteochondral prosthetic insert is a rigid monolithic body having a truncated-cone shape, the proximal diameter greater than the distal diameter, the proximal end of convex shape and rounded at the corners, and a tapered distal end. The lateral surface of the insert shows in the middle-distal part a non-return shaping that allows the maintenance of the position defined in the surgical operation. The proximal end is convex in order to better adapt to the local bone sphericity and has recesses for the manipulation and positioning through dedicated tools.
    Type: Grant
    Filed: April 16, 2018
    Date of Patent: June 9, 2020
    Assignee: BONE AND JOINT SOLUTIONS SA
    Inventors: Matteo Petraglio, Ettore Taverna
  • Patent number: 10660654
    Abstract: A method includes mapping a contoured surface of at least one bone onto a digital model of a resection guide locator using a processor to create a digital model of a customized resection guide locator and manufacturing the customized resection guide locator. The customized resection guide locator includes a complementary surface of the at least one bone and a wall having a shape that is complementary to an outer profile of a resection guide and defining a pocket. A first elongate slot and at least one first hole are positioned within the pocket such that the first elongate slot aligns with a second elongate slot defined by the resection guide and the at least one first hole aligns with at least one second hole defined by the resection guide when the resection guide is received within the pocket of the customized resection guide locator.
    Type: Grant
    Filed: February 6, 2018
    Date of Patent: May 26, 2020
    Inventors: Michael Carroll, Richard Obert, Paul Stemniski
  • Patent number: 10639159
    Abstract: The invention provides a reticular fixation system and method for an articular cartilage. The system comprises an articular cartilage repair surface locator, a temporary fixation kirschner wire, a depth-control guide wire, a percussion device and a cartilage fixing piece. The method comprises: repositing an injured articular cartilage; placing a locator on a surface of the injured articular cartilage; fixing the locator to the articular cartilage and the bone temporarily; punching the fixing piece wire tunnels on the articular cartilage and the bone in a fixing piece guide channel of the locator; placing the fixing piece into a fixing piece wire guide channel; percussing a fixing piece nail into the tunnels of the articular cartilage and the bone; removing the temporary fixation kirschner wire; implanting a second fixing piece nail, and completing the articular cartilage repair. The invention can improve convenience and reliability of fixation of the injured cartilage.
    Type: Grant
    Filed: August 9, 2017
    Date of Patent: May 5, 2020
    Assignee: Union Hospital, Tongji Medical College, Huazhong University of Science and Technology
    Inventor: Hong Wang
  • Patent number: 10525681
    Abstract: A composite material including a substrate, a porous body provided on the substrate, and insulating polymers starting from a surface of the substrate and extending inside the porous body, and a method of producing the composite material.
    Type: Grant
    Filed: September 30, 2016
    Date of Patent: January 7, 2020
    Assignee: TOHOKU UNIVERSITY
    Inventors: Matsuhiko Nishizawa, Kuniaki Nagamine
  • Patent number: 10455893
    Abstract: The disclosure relates to articles and components thereof, including outsoles, which can be used in conditions normally conducive to the accumulation of soil. In particular, the articles have a substrate body, a material including a hydrogel secured to the substrate body, and a mesh component present on and/or adjacent to a second side of the hydrogel-containing material opposing the first side. The articles can prevent or reduce the accumulation of soil during use.
    Type: Grant
    Filed: February 24, 2017
    Date of Patent: October 29, 2019
    Assignee: NIKE, INC.
    Inventors: Hossein A. Baghdadi, Jay Constantinou, Caleb W. Dyer, Myron Maurer, Denis Schiller, Jeremy D. Walker, Zachary C. Wright
  • Patent number: 10456263
    Abstract: Methods and devices are disclosed relating improved articular models, implant components, and related guide tools and procedures. In addition, methods and devices are disclosed relating articular models, implant components, and/or related guide tools and procedures that include one or more features derived from patient-data, for example, images of the patient's joint. The data can be used to create a model for analyzing a patient's joint and to devise and evaluate a course of corrective action. The data also can be used to create patient-adapted implant components and related tools and procedures.
    Type: Grant
    Filed: April 27, 2015
    Date of Patent: October 29, 2019
    Assignee: ConforMIS, Inc.
    Inventors: Raymond A. Bojarski, Nam T. Chao, John Slamin, Thomas Minas, Philipp Lang, Wolfgang Fitz, Daniel Steines, Terrance Wong
  • Patent number: 10420650
    Abstract: An implant couples a first bone of a hand to a second bone of the hand. The implant includes a body that defines a median plane. The body also defines a first joint surface having a first central region that articulates with the first bone. The body further defines a second joint surface having a second central region that articulates with the second bone, and the second central region is disposed on an opposite side of the median plane of the body relative to the first central region. The first and second central regions correspond to profiles of first and second axial segments, respectively, the first and second axial segments are each one of a cylinder, a cone and a torus and are centered on first and second axes, respectively, and the first and second axes, as projected on the median plane, are substantially perpendicular to each other.
    Type: Grant
    Filed: January 9, 2017
    Date of Patent: September 24, 2019
    Assignee: TORNIER
    Inventors: Michel Hassler, Philippe Bellemere
  • Patent number: 10405987
    Abstract: A method of determining disc space geometry with the use of an expandable trial having endplate-mapping capabilities. An expandable trial is inserted into the disc space and its height is adjusted to obtain the desired decompression and spinal alignment (which is typically confirmed with the use of CT or Fluoroscopic imaging). The endplate dome/geometry dome is then determined by one of the following three methods: a) direct imaging through the trial, b) balloon moldings filled with flowable in-situ fluid (for example, silicon, polyurethane, or PMMA) from superior/inferior endplates or c) light-based imaging through superior & inferior balloons.
    Type: Grant
    Filed: August 3, 2017
    Date of Patent: September 10, 2019
    Assignee: DePuy Synthes Products, Inc.
    Inventors: Michael J O'Neil, Roman Lomeli
  • Patent number: 10307257
    Abstract: This disclosure is directed to a resilient interpositional arthroplasty implant for application into a joint to pad cartilage defects, cushion, and replace or restore the articular surface, which may preserve joint integrity, reduce pain and improve function. The implant may endure variable joint compressive and shear forces and cyclic loads. The implant may repair, reconstruct, and regenerate joint anatomy, and thereby improve upon joint replacement alternatives. The walls of this invention may capture, distribute and hold living cells until aggregation and hyaline cartilage regrowth occurs. The implant may be deployed into debrided joint spaces, molding and conforming to surrounding structures with sufficient stability so as to enable immediate limb use after outpatient surgery. Appendages of the implant may repair or reconstruct tendons or ligaments, and menisci by interpositional compliant polymer arthroplasties that promote anatomic joint motion.
    Type: Grant
    Filed: November 9, 2017
    Date of Patent: June 4, 2019
    Assignee: IORTHOPEDICS, INC.
    Inventor: Robert Thomas Grotz
  • Patent number: 10271953
    Abstract: A prosthetic system for use as a partial unicompartmental artificial knee replacement system. In one form, an artificial femoral bearing component is implanted along with a floating meniscus component that is configured to cooperate with the femoral bearing component to move through a plurality of translational and rotational positions as the knee rotates through a variety of angles. In another form, an artificial tibial bearing component is implanted along with a floating meniscus component that is configured to cooperate with the tibial bearing component to move through a plurality of translational and rotational positions as the knee rotates through a variety of angles.
    Type: Grant
    Filed: January 11, 2018
    Date of Patent: April 30, 2019
    Assignee: Active Implants LLC
    Inventors: Emanuele Nocco, Eran Linder-Ganz
  • Patent number: 10130479
    Abstract: A method and apparatus for replacing damaged meniscal tissue includes a meniscus implant including a porous body having a plurality of interconnected open micro-pores and one or more open cavities for receiving meniscal tissue. The interconnected micro-pores are arranged to allow fluid to flow into the porous body and are in fluid communication with the one or more open cavities.
    Type: Grant
    Filed: September 3, 2015
    Date of Patent: November 20, 2018
    Assignee: DePuy Synthes Products, Inc.
    Inventors: Philippe Gedet, Beat Lechmann, Nicolas Bouduban
  • Patent number: 10130482
    Abstract: A bearing for a total or partial joint replacement prosthesis: the bearing having a body and a reinforcing element which strengthens the bearing and which forms an attachment member, and/or the bearing being formed at least partially from polymeric or composite material the bearing comprising a lower modulus portion and a higher modulus portion, one portion of the bearing being at least partially encased by the other portion of the bearing. Also provided is a method for of forming the bearing, and a total or partial joint replacement prosthesis comprising the hearing.
    Type: Grant
    Filed: December 8, 2014
    Date of Patent: November 20, 2018
    Assignee: Biomet UK Limited
    Inventors: Mohammed Imran Khan, Russell Lloyd, David Wycliffe Murray, Christopher Dodd, John O'Connor
  • Patent number: 10098744
    Abstract: A mold adapted to be introduced into a joint of a human patient for resurfacing at least one carrying contacting surface of said joint is provided. The mold is adapted to receive material for resurfacing at least one carrying contacting surface of said joint. The mold is further adapted to be resorbed by the human body or melt after having served its purpose. Further, a method of treating hip joint osteoarthritis in a human patient by providing an artificial hip joint surface using a mold is provided. The method comprises the steps of: said mold being placed inside of said hip joint, said mold being injected with a fluid adapted to harden, said fluid hardening inside of said hip joint, said mold being resorbed by the human body, and said hardened fluid serving as artificial hip joint surface.
    Type: Grant
    Filed: June 27, 2016
    Date of Patent: October 16, 2018
    Inventor: Peter Forsell
  • Patent number: 10092408
    Abstract: A prosthetic device for use as an artificial meniscus is disclosed. The prosthetic device restores stress distribution, stability, and function to the knee joint after removal of the damaged natural meniscus. In some embodiments, the prosthetic device includes an anti-migration feature that inhibits extreme movement within the joint while permitting free floating over a significant range. In one aspect, the anti-migration feature is an enlarged anterior structure or a posterior meniscus remnant engaging channel while in another aspect, the anti-migration feature includes a tethering member. Still further, removable radiopaque features are provided to enhance trialing of the implant prior to final implantation within the joint.
    Type: Grant
    Filed: October 20, 2017
    Date of Patent: October 9, 2018
    Assignee: Active Implants LLC
    Inventors: Eran Linder-Ganz, Lex R. Giltaij, Richard W. Treharne, Thomas B. Buford, Dvora Galli
  • Patent number: 10085848
    Abstract: A dynamic intervertebral spacer includes a ring which is split on an anterior portion. A posterior portion of the ring acts as a torsion spring. After implantation, the ring is able to act as a spring between superior and inferior vertebral bodies, thus allowing dynamic bone growth in fusion procedures.
    Type: Grant
    Filed: July 15, 2016
    Date of Patent: October 2, 2018
    Assignee: Simplify Medical Pty Ltd
    Inventors: Yves Arramon, David Hovda
  • Patent number: 10058631
    Abstract: Described are methods of performing a surgical tonsillectomy, medical devices for treating a void created by removing tonsil tissue from a patient, surgical kits, and use of an extracellular matrix material in the manufacture of a medicament for treating a surgical wound resulting from removal of tonsil tissue from a patient. Also described is a device for wound closure, and methods of making and using thereof.
    Type: Grant
    Filed: July 9, 2015
    Date of Patent: August 28, 2018
    Assignee: Cook Medical Technologies LLC
    Inventors: Thomas Cherry, Melissa Rose Taylor, Don Patterson
  • Patent number: 10045852
    Abstract: Methods of selecting and implanting prosthetic devices for use as a replacement meniscus are disclosed. The selection methods include a pre-implantation selection method and a during-implantation selection method. The pre-implantation selection method includes a direct geometrical matching process, a correlation parameters-based matching process, and a finite element-based matching process. The implant identified by the pre-implantation selection method is then confirmed to be a suitable implant in the during-implantation selection method. In some instances, the during-implantation selection method includes monitoring loads and/or pressures applied to the prosthetic device and/or the adjacent anatomy. In some instances, the loads and/or pressures are monitored by a trial prosthetic device comprising one or more sensors. Methods of implanting meniscus prosthetic devices are also disclosed.
    Type: Grant
    Filed: January 6, 2017
    Date of Patent: August 14, 2018
    Assignee: Active Implants LLC
    Inventors: Eran Linder-Ganz, Jacob Jonathan Elsner, Avraham Shterling
  • Patent number: 10045851
    Abstract: This disclosure is directed to restoring joints by deploying a resilient interpositional arthroplasty implant. Such implants function to pad cartilage defects, cushion, and replace or restore the articular surface, which may preserve joint integrity, reduce pain and improve function. The implant may endure variable joint compressive and shear forces and cyclic loads. The implant may repair, reconstruct, and regenerate joint anatomy, and thereby improve upon joint replacement alternatives. The walls of this invention may capture, distribute and hold living cells until aggregation and hyaline cartilage regrowth occurs. The implant may be deployed into debrided joint spaces, molding and conforming to surrounding structures with sufficient stability so as to enable immediate limb use after outpatient surgery. Appendages of the implant may repair or reconstruct tendons or ligaments, and menisci by interpositional inflatable or compliant polymer arthroplasties that promote anatomic joint motion.
    Type: Grant
    Filed: July 17, 2017
    Date of Patent: August 14, 2018
    Assignee: IORTHOPEDICS, INC.
    Inventor: Robert Thomas Grotz
  • Patent number: 10034778
    Abstract: A workstation having a pair of posts on either side of a clamping plate where a donor bone may be placed on sequentially cut in three separate cutting paths. Cutting gates are attached to the posts and used to provide cutting paths that can be precisely oriented with respect to the meniscus of the donor bone part using visual alignment without any manual measurements. The graft is affixed to a machining clamp and shaved to appropriately shape the sides and form a radius on the bottom of the graft. A tibia is then prepared by using a drill guide to form a pilot hole and then to drill out a large hole for the graft. The drilled hole is expanded and shaped using a rod guide and chisel and then a rasp. The shaped graft may then be implanted into the shaped hole and sutured in place.
    Type: Grant
    Filed: March 18, 2016
    Date of Patent: July 31, 2018
    Assignee: CONMED CORPORATION
    Inventors: Adrian E. Bosworth, Peter C. Miller
  • Patent number: 10034755
    Abstract: An implant device used to replace and restore the function of the knee meniscus in a human. The compliant, yet resilient device is comprised of a biocompatible, non-degradable three-dimensional body comprised of at least a central body, a second structure, a third structure, and a coating. The device is concentrically aligned wherein the second structure is adjoined to the central body wherein the third structure is adjoined on the central body opposite of the second structure. The third structure further features a first and a second pulling element which is coupled to the central body and forms the outer periphery and major circumference of the device. The device is comprised of multiple components which provide tensile strength, compressive resilience, and attachment mechanisms for replacing the meniscus. Each structure is comprised of multiple surfaces which are further reinforced, separated, and connected by an individual plurality of vertical elements.
    Type: Grant
    Filed: October 2, 2015
    Date of Patent: July 31, 2018
    Inventors: Seth McCullen, Mario Alberto Accardi
  • Patent number: 9944896
    Abstract: The present invention provides biomatrix scaffolds for industrial scale dispersal.
    Type: Grant
    Filed: October 13, 2015
    Date of Patent: April 17, 2018
    Assignee: The University of North Carolina at Chapel Hill
    Inventors: Marsha Lynn Roach, Richard Harold Malavarca, Yunfang Wang, Lola Cynthia McAdams Reid
  • Patent number: 9919079
    Abstract: Cardiovascular prostheses for treating, reconstructing and replacing damaged or diseased cardiovascular tissue that are formed from acellular extracellular matrix (ECM). The cardiovascular prostheses comprise various compositions, such as ECM based compositions, and structures, such as particulate structures, mesh constructs, encasement structures, coated structures and multi-sheet laminate structures.
    Type: Grant
    Filed: December 21, 2016
    Date of Patent: March 20, 2018
    Assignee: CorMatrix Cardiovascular, Inc.
    Inventor: Robert G Matheny
  • Patent number: 9901454
    Abstract: Methods of selecting and implanting prosthetic devices for use as a replacement meniscus are disclosed. The selection methods include a pre-implantation selection method and a during-implantation selection method. The pre-implantation selection method includes a direct geometrical matching process, a correlation parameters-based matching process, and a finite element-based matching process. The implant identified by the pre-implantation selection method is then confirmed to be a suitable implant in the during-implantation selection method. Methods of implanting meniscus prosthetic devices are also disclosed.
    Type: Grant
    Filed: April 21, 2016
    Date of Patent: February 27, 2018
    Assignee: Active Implants LLC
    Inventors: Eran Linder-Ganz, Avraham Shterling, Noam Weissberg
  • Patent number: 9901450
    Abstract: The invention provides natural multi-composite bone implants such as bone-connective tissue-bone and osteochondral implants for the replacement and/or repair of, for example and in particular a damaged or defective bone-meniscus-bone joint or a bone-patella tendon-bone joint or osteochondral lesions, methods of preparing the composites and uses thereof. The invention also provides natural or native composite bone-connective tissue-bone and osteochondral matrices or scaffolds that are substantially decellularized for subsequent transplantation/implantation.
    Type: Grant
    Filed: September 4, 2013
    Date of Patent: February 27, 2018
    Assignee: University of Leeds
    Inventors: Eileen Ingham, Gemma Jones, Hazel Fermor, John Fisher, Jahid Hasan
  • Patent number: 9883870
    Abstract: A method includes mapping a contoured surface of at least one bone onto a digital model of a resection guide locator using a processor to create a digital model of a customized resection guide locator and manufacturing the customized resection guide locator. The customized resection guide locator includes a complementary surface of the at least one bone and a wall having a shape that is complementary to an outer profile of a resection guide and defining a pocket. A first elongate slot and at least one first hole are positioned within the pocket such that the first elongate slot aligns with a second elongate slot defined by the resection guide and the at least one first hole aligns with at least one second hole defined by the resection guide when the resection guide is received within the pocket of the customized resection guide locator.
    Type: Grant
    Filed: April 20, 2015
    Date of Patent: February 6, 2018
    Assignee: MicroPort Orthopedics Holdings Inc.
    Inventors: Michael Carroll, Richard Obert, Paul Stemniski
  • Patent number: 9867906
    Abstract: Cardiovascular prostheses for treating, reconstructing and replacing damaged or diseased cardiovascular tissue that are formed from acellular extracellular matrix (ECM). The cardiovascular prostheses comprise various compositions, such as ECM based compositions, and structures, such as particulate structures, mesh constructs, encasement structures, coated structures and multi-sheet laminate structures.
    Type: Grant
    Filed: December 21, 2016
    Date of Patent: January 16, 2018
    Assignee: CorMatrix Cardiovascular, Inc.
    Inventor: Robert G Matheny
  • Patent number: 9814744
    Abstract: Provided herein are methods of making a cell growth scaffold from adipose tissue, cell growth scaffolds having low lipid content and methods of using the cell growth scaffold.
    Type: Grant
    Filed: December 20, 2010
    Date of Patent: November 14, 2017
    Assignee: University of Pittsburg—Of the Commonwealth System of Higher Education
    Inventors: Stephen F. Badylak, Bryan N. Brown, John M. Freund, J. Peter Rubin
  • Patent number: 9757241
    Abstract: This disclosure is directed to a resilient interpositional arthroplasty implant for application into a joint to pad cartilage defects, cushion, and replace or restore the articular surface, which may preserve joint integrity, reduce pain and improve function. The implant may endure variable joint compressive and shear forces and cyclic loads. The implant may repair, reconstruct, and regenerate joint anatomy, and thereby improve upon joint replacement alternatives. The walls of this invention may capture, distribute and hold living cells until aggregation and hyaline cartilage regrowth occurs. The implant may be deployed into debrided joint spaces, molding and conforming to surrounding structures with sufficient stability so as to enable immediate limb use after outpatient surgery. Appendages of the implant may repair or reconstruct tendons or ligaments, and menisci by interpositional inflatable or compliant polymer arthroplasties that promote anatomic joint motion.
    Type: Grant
    Filed: August 30, 2012
    Date of Patent: September 12, 2017
    Inventor: R. Thomas Grotz
  • Patent number: 9744123
    Abstract: Tissue implants prepared for the repair of tissues, especially avascular tissues such as cartilage. One embodiment presents an electric potential capable of receiving and accumulating desirable factors or molecules from surrounding fluid when exposed to dynamic loading. In another embodiment the implant promotes tissue conduction by retarding, restricting and controlling cellular invasion through use of gradients until competent tissue forms. Further embodiments of the tissue implants may be formed into a multi-phasic device that provides deep tissue mechanical stimulus by conduction of mechanical and fluid forces experienced at the surface of the implant.
    Type: Grant
    Filed: June 30, 2009
    Date of Patent: August 29, 2017
    Assignee: KENSEY NASH CORPORATION
    Inventors: Emme M. Castiglione-Dodd, Gino Bradioa, Ali Ebrahiml, Timothy A. Ringeisen
  • Patent number: 9615834
    Abstract: Patient-matched surgical instruments, and methods for making patient-matched surgical instruments, may include patient-matched surgical instruments having an anatomy facing side with several discrete, physically separate anatomy contacting portions configured to match the anatomy of a particular patient. The anatomy contacting portions may be one or more of non-uniform in distribution, non-uniform in shape or non-uniform in surface area.
    Type: Grant
    Filed: June 10, 2011
    Date of Patent: April 11, 2017
    Assignee: Smith & Nephew, Inc.
    Inventors: Aashiish Agnihotri, Patrick Brian Conway, David L. Evans, Luke Andrew Gibson, Jennifer Allyn Griffin, Michael Dean Hughes, David Timothy Mehl, Abraham Biglari Salehi, Jeffrey Andrew Sharp, Maroun Hanna Tarsha, Andrew Justin Wald, Thomas S. Wolfe
  • Patent number: 9597430
    Abstract: Synthetic structures for soft tissue repair include a multi-layer planar fibrillar structure having layers which are intermittently secured to each other and which approximates mechanical properties comparable to those of soft tissue. In embodiments, the fibrillar structure possesses an intermittently secured edge portion secured by intermittent welds. In embodiments, the multi layer planar fibrillar structure includes a bioactive agent.
    Type: Grant
    Filed: July 31, 2009
    Date of Patent: March 21, 2017
    Assignee: Synthasome, Inc.
    Inventors: Anthony Ratcliffe, Andreas Kern, Mohammad Sotoudeh, Fatemeh Ratcliffe
  • Patent number: 9572675
    Abstract: Methods for altering the natural history of degenerative disc disease and osteoarthritis of the spine are proposed. The methods focus on the prevention, or delayed onset or progression of, subchondral defects such as bone marrow edema or bone marrow lesion, and subchondral treatment to prevent the progression of osteoarthritis or degenerative disc disease in the spine and thereby treat pain.
    Type: Grant
    Filed: June 29, 2016
    Date of Patent: February 21, 2017
    Assignee: ZIMMER KNEE CREATIONS, INC.
    Inventors: Peter F. Sharkey, Charles F. Leinberry, David L. Nichols, Marc R. Viscogliosi, Hallett Mathews
  • Patent number: 9572630
    Abstract: A planning assistance method for correcting joint elements is provided. In accordance with the method, the actual shape of at least one part of the joint element which is of interest is detected. The actual shape is compared with an intended shape, and the comparison data is used to plan the abrasion of joint element parts.
    Type: Grant
    Filed: August 17, 2009
    Date of Patent: February 21, 2017
    Assignee: Brainlab AG
    Inventor: Martin Haimerl
  • Patent number: 9539100
    Abstract: Methods of selecting and implanting prosthetic devices for use as a replacement meniscus are disclosed. The selection methods include a pre-implantation selection method and a during-implantation selection method. The pre-implantation selection method includes a direct geometrical matching process, a correlation parameters-based matching process, and a finite element-based matching process. The implant identified by the pre-implantation selection method is then confirmed to be a suitable implant in the during-implantation selection method. In some instances, the during-implantation selection method includes monitoring loads and/or pressures applied to the prosthetic device and/or the adjacent anatomy. In some instances, the loads and/or pressures are monitored by a trial prosthetic device comprising one or more sensors. Methods of implanting meniscus prosthetic devices are also disclosed.
    Type: Grant
    Filed: May 12, 2014
    Date of Patent: January 10, 2017
    Assignee: Active Implants LLC
    Inventors: Eran Linder-Ganz, Jonathan Elsner, Avraham Shterling
  • Patent number: 9386994
    Abstract: Patient-matched surgical instruments, and methods for making patient-matched surgical instruments, may include patient-matched surgical instruments having an anatomy facing side with several discrete, physically separate anatomy contacting portions configured to match the anatomy of a particular patient. The anatomy contacting portions may be one or more of non-uniform in distribution, non-uniform in shape or non-uniform in surface area.
    Type: Grant
    Filed: June 10, 2011
    Date of Patent: July 12, 2016
    Assignee: Smith & Nephew, Inc.
    Inventors: Aashiish Agnihotri, Patrick Brian Conway, David L. Evans, Luke Andrew Gibson, Jennifer Allyn Griffin, Michael Dean Hughes, David Timothy Mehl, Abraham Biglari Salehi, Jeffrey Andrew Sharp, Maroun Hanna Tarsha, Andrew Justin Wald, Thomas S. Wolfe
  • Patent number: 9381089
    Abstract: A prosthetic device for use as an artificial meniscus is disclosed. The prosthetic device restores stress distribution, stability, and function to the knee joint after removal of the damaged natural meniscus. In some embodiments, the prosthetic device includes an anti-migration feature that inhibits extreme movement within the joint while permitting free floating over a significant range. In one aspect, the anti-migration feature is an enlarged anterior structure or a posterior meniscus remnant engaging channel while in another aspect, the anti-migration feature includes a tethering member. Still further, removable radiopaque features are provided to enhance trialing of the implant prior to final implantation within the joint.
    Type: Grant
    Filed: March 14, 2014
    Date of Patent: July 5, 2016
    Assignee: Active Implants LLC
    Inventors: Eran Linder-Ganz, Lex R. Giltaij, Richard W. Treharne, Thomas B. Buford, Dvora Galli
  • Patent number: 9358114
    Abstract: Systems and methods for implant optimization using intra-operative scanning are set forth. According to one embodiment, a method comprising intraoperatively scanning a joint surface, processing the scan and creating a three-dimensional computer model, performing simulations with the three-dimensional computer model, determining an optimal implant attribute from analysis of the simulations, selecting an optimal implant, determining an ideal positioning and orientation of the selected implant relative to scanned anatomical features, rapidly creating a patient-matched guide to facilitate bone surface preparation in order to achieve ideal positioning and orientation of the selected implant, preparing the surface using the patient matched guide, and implanting the optimal implant is set forth.
    Type: Grant
    Filed: August 25, 2011
    Date of Patent: June 7, 2016
    Assignee: Smith & Nephew, Inc.
    Inventor: Michael Dean Hughes
  • Patent number: 9351842
    Abstract: Knee implant systems and methods for implantation or use in a knee joint, are disclosed. A knee implant system can include at femoral component having a femur-contacting surface and an opposing articulation surface, and proximal, distal, anterior and posterior portion. The femoral component can include a medial condyle and a lateral condyle, where each of the condyles define respective distal-most points and have substantially equal widths. The width of each of the condyles can define respective condyle midpoints, where the distal-most points can be located laterally from the midpoints. The femoral component can include a trochlear groove that can define a distal-most sulcus point located halfway between the distal-most point of the medial condyle and the distal-most point of the lateral condyle.
    Type: Grant
    Filed: March 7, 2014
    Date of Patent: May 31, 2016
    Assignee: Zimmer, Inc.
    Inventors: Dwight Todd, Alex Stoller, Aravinda Bobba, Harish Kumar
  • Patent number: 9320606
    Abstract: A prosthetic device that may be utilized as an artificial meniscus is disclosed. The prosthetic device can restore shock absorption, stability, and function to the knee after the damaged natural meniscus is removed and replaced with the prosthetic device. In some embodiments, the meniscus includes an integral fixation anchor and additional features that minimize the requirement for modification of the implant for proper fit during surgery.
    Type: Grant
    Filed: May 25, 2012
    Date of Patent: April 26, 2016
    Assignee: Active Implants LLC
    Inventor: Howard Fox
  • Patent number: 9314340
    Abstract: Provided herein are compositions and medical devices, and in particular, biodegradable scaffolds capable of repairing and replacing cartilagenous meniscuses. Also provided herein are methods of using scaffolds for treating degenerative tissue disorders. In certain embodiments, such scaffolds can promote tissue regeneration of a temporal mandibular joint (TMJ) meniscus.
    Type: Grant
    Filed: June 26, 2014
    Date of Patent: April 19, 2016
    Assignee: University of Pittsburgh—Of the Commonwealth System of Higher Education
    Inventors: Stephen F. Badylak, Bryan N. Brown, William L. Chung