Tempering Patents (Class 65/114)
  • Patent number: 11313003
    Abstract: A tempering station for the partial heat treatment of a metal component, which includes an apparatus for the heat treatment of a metal component, and the use of at least one tangential nozzle in a tempering station for the partial heat treatment of a metal component. The tempering station for partial heat treatment of the metallic component comprises a processing plane disposed in the tempering station, the component being able to be disposed in said plane, and at least one nozzle which points to the processing plane and is provided and adapted for discharging a fluid stream for cooling at least a first sub-area of the component, wherein the at least one nozzle is a tangential nozzle. The tempering station and the apparatus make it possible in particular to adjust, as reliably and/or precisely as possible, a transition region between the different heat-treated sub-areas of the component, in particular to keep said region as small as possible.
    Type: Grant
    Filed: March 28, 2018
    Date of Patent: April 26, 2022
    Assignee: SCHWARTZ GMBH
    Inventors: Andreas Reinartz, Jörg Winkel, Frank Wilden
  • Patent number: 11174192
    Abstract: Methods and a glass manufacturing system are described herein that impact compaction in a glass sheet. For instance, a method is described herein for impacting compaction in a glass sheet made by a glass manufacturing system. In addition, a glass manufacturing system is described herein which manufactures a glass sheet that meets a compaction target. Plus, a method is described herein for maintaining an uniform compaction between glass sheets made by different glass manufacturing systems.
    Type: Grant
    Filed: September 25, 2015
    Date of Patent: November 16, 2021
    Assignee: Corning Incorporated
    Inventors: Bradley Frederick Bowden, Douglas Benjamin Rapp
  • Patent number: 11111169
    Abstract: A mold shuttle positioning system in a glass sheet forming system includes a mold mounted on a support frame. A shuttle frame including a pair of generally parallel elongate beams for receiving and supporting the mold support frame thereon. At least one support wheel assembly including a wheel and a shuttle guide is mounted in proximity to each of the shuttle beams to position and support each one of the beams as the shuttle frame is moved to position the mold supported thereon at one of multiple desired processing locations. At least one mold guide is mounted on the support surface of one of the beams for receiving and fixing the position of the mold support frame relative to the shuttle frame to align and prevent movement of the mold support frame with respect to the shuttle frame in any direction as the mold support frame is supported thereon.
    Type: Grant
    Filed: November 2, 2016
    Date of Patent: September 7, 2021
    Assignee: GLASSTECH, INC.
    Inventors: David B. Nitschke, Chad E. Cox, Dean M. Nitschke
  • Patent number: 10793460
    Abstract: A glass forming furnace includes a forming zone, a cleaning zone, a plurality of sealing doors, and a conveying channel. The forming zone includes a pressure device. The pressure device includes a servo motor, a push rod, and a mold pressurizing mechanism. The push rod is connected with the servo motor. The push rod includes an end notch and an embedded structure. The mold pressurizing mechanism includes an inlet notch. The inlet notch is connected with the embedded structure. Wherein, the end notch is in contact with the inlet notch. The cleaning zone includes an active brush mechanism. The sealing doors are disposed at an inlet and an outlet of the forming zone, respectively. The sealing doors each include a valve. The valve has a cross-sectional thickness that is gradually decreased from top to bottom. The conveying channel passes through the forming zone and the cleaning zone. The conveying channel is configured to convey a plurality of glass forming molds.
    Type: Grant
    Filed: September 18, 2018
    Date of Patent: October 6, 2020
    Inventors: Kun-Yuan Hu, Yuan-Feng Lin
  • Patent number: 10471503
    Abstract: Provided herein are titanium alloys that can achieve a combination of high strength and high toughness or elongation, and a method to produce the alloys. By tolerating iron, oxygen, and other incidental elements and impurities, the alloys enable the use of lower quality scrap as raw materials. The alloys are castable and can form ?-phase laths in a basketweave morphology by a commercially feasible heat treatment that does not require hot-working or rapid cooling rates. The alloys comprise, by weight, about 3.0% to about 6.0% aluminum, 0% to about 1.5% tin, about 2.0% to about 4.0% vanadium, about 0.5% to about 4.5% molybdenum, about 1.0% to about 2.5% chromium, about 0.20% to about 0.55% iron, 0% to about 0.35% oxygen, 0% to about 0.007% boron, and 0% to about 0.60% other incidental elements and impurities, the balance of weight percent comprising titanium.
    Type: Grant
    Filed: February 28, 2013
    Date of Patent: November 12, 2019
    Assignee: Questek Innovations LLC
    Inventors: James A. Wright, Jason Sebastian, Herng-Jen Jou
  • Patent number: 10364175
    Abstract: A method for producing a shaped glass article may include heating at least a portion of a mold-facing surface of the glass article to a forming temperature, shaping the glass article in a mold, and removing the multilayer coating from the glass article. The glass article may be coated with a multi-layer removable coating including an inner layer in contact with the glass article and an outer layer disposed over the inner layer. The mold may be in direct contact with the outer layer during shaping. The inner layer may include a first glass having a softening point of at least about 50° C. less than a softening point of the glass article. The outer layer may include a second glass having a softening point of at least about 50° C. greater than the softening point of the glass article.
    Type: Grant
    Filed: November 28, 2014
    Date of Patent: July 30, 2019
    Assignee: CORNING INCORPORATED
    Inventors: Yves Andre Henri Brocheton, Thierry Luc Alain Dannoux, Michel Prassas
  • Patent number: 10351471
    Abstract: Chemically tempered lithium aluminosilicate glasses and methods of tempering are provided. The method allows fast tempering at moderate temperatures, which leads to a deep zone of surface tension with a high level of surface tension.
    Type: Grant
    Filed: August 10, 2016
    Date of Patent: July 16, 2019
    Assignee: SCHOTT AG
    Inventors: Stefan Meinhardt, Rolf Weitnauer
  • Patent number: 10315949
    Abstract: Alkali aluminosilicate glasses that exhibit fast ion exchange performance and having low softening points that enable the glasses to be formed into non-planar, three-dimensional shapes. The glasses contain less than about 1 mol % of boron oxide and, in some embodiments, are substantially free of B2O3. Furthermore, these glasses have excess amounts of alkali oxides relative to both Al2O3 and P2O5, in order to improve melting behavior and ion exchange performance while still achieving sufficiently low softening points to allow for formability.
    Type: Grant
    Filed: February 10, 2016
    Date of Patent: June 11, 2019
    Assignee: CORNING INCORPORATED
    Inventors: Timothy Michael Gross, John Christopher Mauro, Yihong Mauro, Rohit Rai, Adama Tandia, Zhongzhi Tang
  • Patent number: 10294141
    Abstract: The invention relates to a glass sheet having a boron- and lithium-free glass composition comprising the following in weight percentage, expressed with respect to the total weight of glass: 65?SiO2?78% 5?Na2O?20% 0?K2O<5% 1?Al2O3?4% 0?CaO<4.5% 4?MgO?12%; as well as a (CaO/MgO) ratio which is less than 1. The invention corresponds to an easy chemically-temperable soda-silica type glass composition, which is more suited for mass production than aluminosilicate glass, and therefore is available at low cost, and with a base glass/matrix composition that is close to or very similar to compositions already used in existing mass production.
    Type: Grant
    Filed: March 31, 2015
    Date of Patent: May 21, 2019
    Assignee: AGC GLASS EUROPE
    Inventor: Thomas Lambricht
  • Patent number: 9944550
    Abstract: There is provided a tempered glass plate, wherein a thickness of the tempered glass plate is less than or equal to 2.7 mm, wherein on a surface of the tempered glass plate, a plurality of stress marks are formed, wherein a distance between closest stress marks of the plurality of stress marks is less than or equal to 20 mm, wherein the surface of the tempered glass plate includes a first virtual circle that is formed by connecting points that are separated from a center of one of the plurality of stress marks by 2.5 mm, wherein the tempered glass plate includes a non elastic-wave region that is not affected by an elastic-wave generated during fracturing, and wherein, in the non elastic-wave region, an average number of cracks that exist in the first virtual circle is greater than or equal to 3.4.
    Type: Grant
    Filed: July 19, 2016
    Date of Patent: April 17, 2018
    Assignee: ASAHI GLASS COMPANY, LIMITED
    Inventors: Kazushige Yoda, Masao Fukami, Shinya Ohta, Yasumasa Kato, Shigeru Ezaki
  • Patent number: 9841235
    Abstract: In a substrate treatment process, substrates are moved by a transporting device in a transporting direction through a substrate treatment installation having a number of chambers. The substrates are moved by transporting sections of the transporting device driven independently of one another. The transporting sections are driven such that, if substrates dwell temporarily in the transporting section, they are moved back and forth. Stresses in a substrate brought about by differing inputs of heat as a result of both process-induced and malfunction-induced dwell times of the substrate in a chamber are reduced by compensating within the chamber for a structurally brought about input of heat into the substrate, varying periodically over the length of the chamber, during temporary dwelling of the substrate in the chamber by moving the substrate back and forth over at least one period of the heat input by a change of the transporting direction.
    Type: Grant
    Filed: July 29, 2014
    Date of Patent: December 12, 2017
    Assignee: VON ARDENNE GMBH
    Inventors: Steffen Mosshammer, Thomas Meyer, Michael Brandt
  • Patent number: 9783448
    Abstract: A strengthened glass sheet product along with a process and an apparatus for strengthening a glass sheet are provided. The process comprises cooling the glass sheet by non-contact thermal conduction for sufficiently long to fix a surface compression and central tension of the sheet. The process results in thermally strengthened glass sheets having improved breakage properties.
    Type: Grant
    Filed: July 30, 2015
    Date of Patent: October 10, 2017
    Assignee: Corning Incorporated
    Inventors: Richard Orr Maschmeyer, John Christopher Thomas, Kevin Lee Wasson
  • Patent number: 9776905
    Abstract: A strengthened glass sheet product as well as process and an apparatus for producing the product. The process comprises cooling the glass sheet by non-contact thermal conduction for sufficiently long to fix a surface compression and central tension of the sheet. The process results in thermally strengthened glass sheets having improved breakage properties.
    Type: Grant
    Filed: July 30, 2015
    Date of Patent: October 3, 2017
    Assignee: Corning Incorporated
    Inventors: Richard Orr Maschmeyer, John Christopher Thomas, Kevin Lee Wasson
  • Patent number: 9624120
    Abstract: A method comprising the claimed oven, blowing units, and heaters inside a blowing chamber in an oven where convection air is blown through nozzle rows and wherein a roll space and a suction space are separated with the help of pressure from each other by extending the length and/or width of a spacer plate which measures essentially larger than the length and/or width of a spacer plate or by arranging gaps or part which constricts the flow of the convection air between the roll space and the suction space where the gaps or part has an effect on the pressure of suction channels, suction channels extension, or of the suction space so that the convection air is sucked at least mainly from the rolls space through the mentioned suction channels, suction channels extension, and the suction space.
    Type: Grant
    Filed: January 17, 2014
    Date of Patent: April 18, 2017
    Assignee: Feracitas OY
    Inventor: Risto Nikander
  • Patent number: 9625129
    Abstract: An LED tube light having a substantially uniform exterior diameter from end to end is disclosed. It has a glass light tube with narrowly curved end regions at ends for engaging with end caps, in which outer diameter of each end cap is equal to outer diameter of light tube. LED tube light also include a thermal conductive ring. The narrowly curved end region is formed by glass tempering. End caps are joined to the light tube by sleeving over the rear end regions with a hot melt adhesive disposed between the rear end region, the transition region, the insulating tubular part and the thermal conductive ring. An outer diameter of thermal conductive ring is the same as the outer diameter of the main region of the light tube. The transition region is curved, and an outer diameter of rear end region is less than that of the main region.
    Type: Grant
    Filed: April 2, 2015
    Date of Patent: April 18, 2017
    Assignee: Jiaxing Super Lighting Electric Appliance Co., Ltd.
    Inventors: Tao Jiang, Li-Qin Li
  • Patent number: 9611166
    Abstract: A glass quench apparatus according to the present disclosure includes lower and upper quench heads configured to supply upward and downward gas flows to a heated glass sheet, and each quench head has multiple quench fins for distributing gas. For each quench head, adjacent quench fins are spaced apart center to center by a distance in the range of 0.87 to 1.15 inches, and each quench fin has multiple outlet openings that each have a diameter in the range of 0.25 to 0.36 inches. Furthermore, for each quench fin, the outlet openings are configured to provide spaced apart impingement points on the glass sheet such that adjacent impingement points are spaced apart by a distance in the range of 0.82 to 1.15 inches.
    Type: Grant
    Filed: October 2, 2014
    Date of Patent: April 4, 2017
    Assignee: GLASSTECH, INC.
    Inventor: Troy R. Lewandowski
  • Patent number: 9242888
    Abstract: To provide a method for manufacturing a glass blank for magnetic disk and a method for manufacturing a glass substrate for magnetic disk, which are capable of producing a glass blank for magnetic disk having a good surface waviness by press forming, and a method for manufacturing a glass substrate for magnetic disk. A method for manufacturing a glass blank for magnetic disk, which includes a forming process of press-forming a lump of molten glass using a pair of dies, wherein in the forming process, press forming is performed using thermally equalizing means for reducing a difference in temperature in the press forming surface of the die during pressing of the molten glass.
    Type: Grant
    Filed: April 17, 2013
    Date of Patent: January 26, 2016
    Assignee: HOYA CORPORATION
    Inventors: Hideki Isono, Hidekazu Tanino, Akira Murakami, Takashi Sato, Masamune Sato
  • Patent number: 9073776
    Abstract: The present invention discloses a device for continuously processing vacuum glass member.
    Type: Grant
    Filed: July 19, 2011
    Date of Patent: July 7, 2015
    Assignee: Luoyang Landglass Technology Co., LTD
    Inventors: Yan Zhao, Yanbing Li
  • Publication number: 20150140354
    Abstract: A coated article is provided which may be heat treated (e.g., thermally tempered) in certain example instances. In certain example embodiments, the coated article includes a low-emissivity (low-E) coating having a zinc stannate based layer provided over a silver-based infrared (IR) reflecting layer, where the zinc stannate based layer is preferably located between first and second silver based IR reflecting layers. The zinc stannate based layer may be provided between and contacting (i) an upper contact layer of or including Ni and/or Cr (or Ti, or TiOx), and (ii) a layer of or including silicon nitride.
    Type: Application
    Filed: November 20, 2013
    Publication date: May 21, 2015
    Applicant: Centre Luxembourgeois de Recherches pour le Verre et la Ceramique (C.R.V.C.) SaRL
    Inventors: Pierre PALLOTTA, Jose FERREIRA, Herbert LAGE, Marcus FRANK
  • Patent number: 8938993
    Abstract: High intensity plasma-arc heat sources, such as a plasma-arc lamp, are used to irradiate glass, glass ceramics and/or ceramic materials to strengthen the glass. The same high intensity plasma-arc heat source may also be used to form a permanent pattern on the glass surface—the pattern being raised above the glass surface and integral with the glass (formed of the same material) by use of, for example, a screen-printed ink composition having been irradiated by the heat source.
    Type: Grant
    Filed: November 30, 2010
    Date of Patent: January 27, 2015
    Assignee: UT-Battelle, LLC
    Inventors: David C. Harper, Andrew A. Wereszczak, Chad E. Duty
  • Publication number: 20150017412
    Abstract: A tempered glass according to one embodiment of the present invention is a tempered glass having a compression stress layer in a surface thereof, the tempered glass including as a glass composition, in terms of mass %, 45 to 75% of SiO2, 10 to 25% of Al2O3, 0 to 10% of B2O2, 0 to 8% of MgO, 0 to 20% of SrO+BaO, and 0 to 14% of Na2O. Herein, the term “SrO+BaO” refers to the total amount of SrO and BaO.
    Type: Application
    Filed: February 19, 2013
    Publication date: January 15, 2015
    Inventors: Takashi Murata, Takako Tojyo, Masato Muguruma, Kosuke Kawamoto
  • Publication number: 20150007613
    Abstract: A glass tempering furnace and a method for heating a glass sheet. The glass sheet is heated in the glass tempering furnace by blowing heating air on the top surface of the glass sheet, and the blowing distance of the heating air from the top surface of the glass sheet is adjusted.
    Type: Application
    Filed: June 18, 2014
    Publication date: January 8, 2015
    Inventors: Petri Juhani LAMMI, Esa Ensio LAMMI, Jarno Tapio NIEMINEN, Jukka Tapani SÄÄKSI
  • Publication number: 20140366580
    Abstract: A method for cutting a tempered glass including the steps of strengthening a glass substrate to form, from a surface to the inside of the glass substrate, at least one compression stress layer and a tensile stress layer corresponding to the compression stress layer; removing a part of the glass substrate, wherein the compression stress layer is formed in the part of the glass substrate and a predetermined cutting path passes through the part of the glass substrate; and cutting the glass substrate along the predetermined cutting path.
    Type: Application
    Filed: September 3, 2014
    Publication date: December 18, 2014
    Inventors: JENG-JYE HUNG, YI-TE LEE, HEN-TA KANG, CHIH-YUAN WANG
  • Publication number: 20140345330
    Abstract: The invention relates to a method for heating glass sheets, and a glass tempering furnace. The glass sheets are heated by feeding them through a tempering furnace whereby the glass sheets are heated from above and below in the tempering furnace. The glass sheets are heated with blowing channels arranged substantially transverse in relation to the direction of travel of the glass sheets and with heating resistor rows arranged substantially transverse in relation to the direction of travel of the glass sheets. A heating resistor row has at least three separately controllable parts, and the temperature profile of the glass sheet is adjusted in the transverse direction by separately adjusting the different parts of the resistor row.
    Type: Application
    Filed: May 21, 2014
    Publication date: November 27, 2014
    Inventors: Petri Juhani LAMMI, Esa Ensio LAMMI, Jarno Tapio NIEMINEN, Jukka Tapani Sääksi
  • Patent number: 8893528
    Abstract: An apparatus for manufacturing strengthened glass containers, and more particularly the construction and operation of a cooling tube mechanism in an apparatus for thermally strengthening glass containers in a glass container manufacturing line at a location intermediate the hot end and the cold end. Glass containers formed at an I. S. machine are conveyed through a special tempering Lehr that heats them uniformly to a high temperature that is short of temperatures at which they may become deformed. Subsequently, the glass containers are rapidly thermally strengthened in a cooling station in which the outer and inner surfaces including all areas of the glass containers are simultaneously cooled to a temperature below the Strain Point of the glass used in the glass containers, with the cooling tube mechanism being used to cool the inner surfaces of the glass containers.
    Type: Grant
    Filed: May 24, 2011
    Date of Patent: November 25, 2014
    Assignee: Emhart Glass S.A.
    Inventors: Timothy A. Ringuette, Steven J. Brown, Kenneth L. Bratton
  • Patent number: 8893525
    Abstract: An apparatus for manufacturing tempered glass. A transportation unit transports a glass substrate that is intended to be tempered. An ionizer ionizes alkali oxides in the glass substrate by radiating energy onto the glass substrate. A dielectric heating unit increases the temperature of the inner portion of the glass substrate in which the alkali oxides are ionized by the ionizer.
    Type: Grant
    Filed: December 27, 2011
    Date of Patent: November 25, 2014
    Assignee: Samsung Corning Precision Materials Co., Ltd.
    Inventors: Hoikwan Lee, Seo-Yeong Cho, Yoon Young Kwon, Kyungwook Park, Kyungmin Yoon, Jongsung Lee, Jaeyoung Choi, Gennady Kizevich
  • Patent number: 8844321
    Abstract: Provided are an apparatus and a method for manufacturing a vitreous silica crucible, which enable accurate measurement of a fume generation amount, prevention of deterioration of an inner surface property, and real-time control of a raw material melting state. Provided is an apparatus for manufacturing a vitreous silica crucible 50 by supplying silica powder into a mold 10 to form a silica powder layer 11, and heating and melting the silica powder layer 11 by arc discharge. The apparatus includes the mold 10 for defining an outer shape of a vitreous silica crucible, an arc discharge unit having a plurality of carbon electrodes 13 and a power-supply unit 40, and a fume-amount measurement unit 30 for detecting an amount of fumes 80 generated in the mold 10.
    Type: Grant
    Filed: September 29, 2010
    Date of Patent: September 30, 2014
    Assignee: Japan Super Quartz Corporation
    Inventors: Eriko Suzuki, Hiroshi Kishi
  • Patent number: 8839644
    Abstract: A method of manufacturing of strengthened glass containers, and more particularly a method of thermally strengthening glass containers in a glass container manufacturing line at a location intermediate the hot end and the cold end. Glass containers formed at an I. S. machine are conveyed through a special tempering Lehr that heats them uniformly to a high temperature that is short of temperatures at which they may become deformed. Subsequently, the glass containers are subjected to a unique rapid thermal strengthening cooling process in which the outer and inner surfaces including all areas of the glass containers are simultaneously cooled to a temperature below the Strain Point of the glass used in the glass containers.
    Type: Grant
    Filed: May 24, 2011
    Date of Patent: September 23, 2014
    Assignee: Emhart Glass S.A.
    Inventors: Steven J. Brown, Timothy A. Ringuette, Kenneth L. Bratton, Steven J. Pinkerton, Matthew R. Hyre
  • Patent number: 8833107
    Abstract: An apparatus for manufacturing strengthened glass containers, and more particularly an apparatus for thermally strengthening glass containers in a glass container manufacturing line at a location intermediate the hot end and the cold end. Glass containers formed at an I. S. machine are conveyed through a special tempering Lehr that heats them uniformly to a high temperature that is short of temperatures at which they may become deformed. Subsequently, the glass containers are rapidly thermally strengthened in a cooling station in which the outer and inner surfaces including all areas of the glass containers are simultaneously cooled to a temperature below the Strain Point of the glass used in the glass containers.
    Type: Grant
    Filed: May 24, 2011
    Date of Patent: September 16, 2014
    Assignee: Emhart Glass S.A.
    Inventors: Timothy A. Ringuette, Steven J. Brown, Kenneth L. Bratton
  • Publication number: 20140220359
    Abstract: In certain example embodiments, a coated article includes a tungsten-doped zirconium based layer before heat treatment (HT). The coated article is heat treated sufficiently to cause the tungsten-doped zirconium oxide and/or nitride based layer to result in a tungsten-doped zirconium oxide based layer that is scratch resistant and/or chemically durable. The doping of the layer with tungsten has been found to improve scratch resistance.
    Type: Application
    Filed: February 6, 2013
    Publication date: August 7, 2014
    Applicant: GUARDIAN INDUSTRIES CORP.
    Inventors: Jiangping WANG, Jason BARBER
  • Publication number: 20140220360
    Abstract: In certain example embodiments, a coated article includes a copper-doped zirconium based layer before heat treatment (HT). The coated article is heat treated sufficiently to cause the copper-doped zirconium oxide and/or nitride based layer to result in a copper-doped zirconium oxide based layer that is scratch resistant and/or chemically durable. The doping of the layer with copper has been found to improve scratch resistance.
    Type: Application
    Filed: May 30, 2013
    Publication date: August 7, 2014
    Applicant: Guardian Industries Corp.
    Inventors: Jiangping WANG, Jason BARBER, Yongli XU
  • Patent number: 8769990
    Abstract: The method for tempering a glass sheet of the present invention comprises a heating step of heating the glass sheet to a temperature close to the softening point of the glass sheet, a quenching step of blowing a cooling medium to both surfaces in the thickness direction of the heated glass to cool it, and a pre-quenching step between the heating step and the quenching step and further has an internal heating substep of selectively heating the vicinity of the center portion in the thickness direction of the glass sheet at least in the quenching step, to create such a state that when the temperature at the center portion in the thickness direction of the glass sheet is close to the tempering point, the temperature at the surfaces in the thickness direction of the glass sheet is not higher than the annealing point.
    Type: Grant
    Filed: September 27, 2012
    Date of Patent: July 8, 2014
    Assignee: Asahi Glass Company, Limited
    Inventors: Isao Saito, Junji Hori, Kiyota Miyazaki, Tomohiro Suwa, Yasumasa Kato, Satoshi Yoshida, Kazushige Yoda
  • Patent number: 8726697
    Abstract: A convection heating furnace for a glass sheet, into which oven glass sheet (3) arrives along a hauling track, as on moving rolls (4), and said furnace further comprises of heating elements (12), in order to heat the air, which is blasted against glass sheet (3), a blaster and blast air channelling in order to blast said air against the glass sheet, and the blast air channelling has, elongated channels (1), into which at least a part of the blast air heating elements 12 are fitted, and each channel comprises air blasting means on its flank directed against the glass sheet (3). As air blast elements there are nozzle groups fixed on the channel (1) flank, where the nozzle group formed of sheet metal, as of two, into shape formed sheets joined together to form a casing, whereby said casing comprises one or several for blast air directed discharge channels (6), and the direction of air flow in said casing (2) is essentially in the same direction as in said discharge channels (6).
    Type: Grant
    Filed: December 13, 2007
    Date of Patent: May 20, 2014
    Assignee: Glassrobots Oy
    Inventors: Petri Lammi, Esa Lammi
  • Publication number: 20140120279
    Abstract: A strengthened glass container or vessel such as, but not limited to, vials for holding pharmaceutical products or vaccines in a hermetic and/or sterile state. The strengthened glass container undergoes a strengthening process that produces compression at the surface and tension within the container wall. The strengthening process is designed such that the tension within the wall is great enough to ensure catastrophic failure of the container, thus rendering the product unusable, should sterility be compromised by a through-wall crack. The tension is greater than a threshold central tension, above which catastrophic failure of the container is guaranteed, thus eliminating any potential for violation of pharmaceutical integrity.
    Type: Application
    Filed: February 27, 2013
    Publication date: May 1, 2014
    Applicant: Corning Incorporated
    Inventors: Steven Edward DeMartino, Robert Anthony Schaut
  • Patent number: 8656742
    Abstract: An apparatus for manufacturing strengthened glass containers, and more particularly the construction and operation of a bottom cooler in an apparatus for thermally strengthening glass containers in a glass container manufacturing line at a location intermediate the hot end and the cold end. Glass containers formed at an I.S. machine are conveyed through a special tempering Lehr that heats them uniformly to a high temperature that is short of temperatures at which they may become deformed. Subsequently, the glass containers are rapidly thermally strengthened in a cooling station in which the outer and inner surfaces including all areas of the glass containers are simultaneously cooled to a temperature below the Strain Point of the glass used in the glass containers, with the bottom coolers being used to cool the bottoms of the glass containers.
    Type: Grant
    Filed: May 24, 2011
    Date of Patent: February 25, 2014
    Assignee: Emhart Glass S.A.
    Inventors: Robert J. Lockhart, Steven J. Brown, Timothy A. Ringuette
  • Patent number: 8656741
    Abstract: An apparatus for manufacturing strengthened glass containers, and more particularly the construction and operation of a base cooling nozzle in an apparatus for thermally strengthening glass containers in a glass container manufacturing line at a location intermediate the hot end and the cold end. Glass containers formed at an I.S. machine are conveyed through a special tempering Lehr that heats them uniformly to a high temperature that is short of temperatures at which they may become deformed. Subsequently, the glass containers are rapidly thermally strengthened in a cooling station in which the outer and inner surfaces including all areas of the glass containers are simultaneously cooled to a temperature below the Strain Point of the glass used in the glass containers, with the base cooling nozzles being used to cool the bottoms of the glass containers.
    Type: Grant
    Filed: May 24, 2011
    Date of Patent: February 25, 2014
    Assignee: Emhart Glass S.A.
    Inventor: Steven J. Brown
  • Patent number: 8650911
    Abstract: Glass is heated from above and below while the glass resides on rolls (3) in a tempering furnace (1). The upper surface of the glass (4) is heated by hot air jets formed by sucking air from inside the furnace (1) and pressurizing the hot air and recycling it back to the upper surface of the glass. Air which has been taken from outside the furnace (1) and pressurized by a compressor (17) and heated is blown to the lower surface of the glass.
    Type: Grant
    Filed: June 12, 2013
    Date of Patent: February 18, 2014
    Assignee: Uniglass Engineering Oy
    Inventor: Jukka Vehmas
  • Patent number: 8650908
    Abstract: A method of manufacturing of strengthened glass containers, and more particularly a method of thermally strengthening glass containers in a glass container manufacturing line while they are on a conveyor intermediate the hot end and the cold end. Glass containers formed at an I. S. machine are conveyed through a special tempering Lehr that heats them uniformly to a high temperature that is short of temperatures at which they may become deformed. Subsequently, the glass containers while being transported on a conveyor are subjected to a unique rapid thermal strengthening cooling process in which the outer and inner surfaces including all areas of the glass containers are simultaneously cooled to a temperature below the Strain Point of the glass used in the glass containers.
    Type: Grant
    Filed: May 24, 2011
    Date of Patent: February 18, 2014
    Assignee: Emhart Glass S.A.
    Inventors: Steven J. Brown, Kenneth L. Bratton, Timothy A. Ringuette
  • Publication number: 20130327095
    Abstract: A method of making a heat treated (HT) substantially transparent coated article to be used in shower door applications, window applications, tabletop applications, or any other suitable applications. Certain embodiments relate to a method of making a coated article including heat treating a glass substrate coated with at least layer of or including carbon (e.g., diamond-like carbon (DLC)) and an overlying protective film thereon. The protective film may be of or include both (a) an oxygen blocking or barrier layer, and (b) a release layer of or including zinc oxynitride (e.g., ZnOxNz). Following and/or during heat treatment (e.g., thermal tempering, or the like) the protective film may be entirely or partially removed.
    Type: Application
    Filed: June 8, 2012
    Publication date: December 12, 2013
    Inventors: Jens-Peter MÜLLER, Vijayen S. VEERASAMY
  • Patent number: 8590873
    Abstract: A sheet restrainer is used to restrain movement of continuously traveling glass sheet and includes arms on either side of the glass sheet. A driving device coupled to the arms moves the arms from a retracted position in which the arms are withdrawn from the glass sheet to an engaged position in which the arms are near the glass sheet and in alignment with each other. Rollers are connected to the arms and contact the glass sheet in the engaged position. A damping device applies an adjustable damping force to at least one of the arms dampening movement of the arm in the engaged position thereby restraining movement of the sheet. In a method of operation, the damping devices restrain angular and/or lateral movement of the sheet by transmitting movement of the sheet against the rollers into a resistive damping force of the damping devices.
    Type: Grant
    Filed: April 8, 2009
    Date of Patent: November 26, 2013
    Assignee: Corning Incorporated
    Inventors: Naiyue Zhou, George Davis Treichler, Zepei Zhu
  • Publication number: 20130255319
    Abstract: A device for cooling sheets of glass by jets of air emitted by at least one nozzle in a form of a pipe, including a box supplying the nozzle with air, airflow ejected via an ejection orifice of the nozzle passing successively through a conical part, of which an internal section is reduced in a flow direction, and then through a cylindrical part including the ejection orifice, of which an internal section corresponds to a smallest internal section of the conical part and to an internal section of the ejection orifice. The cylindrical part of the nozzle has a length greater than 6 times the diameter of the ejection orifice. The device achieves a high level of heat exchange when the sheets of glass are cooled, which makes it possible to increase reinforcing effect on the glass and/or to reduce power of fans used to convey air through the nozzles.
    Type: Application
    Filed: November 29, 2011
    Publication date: October 3, 2013
    Applicant: SAINT-GOBAIN GLASS FRANCE
    Inventors: Renate Von Der Ohe, Sebastien Thuillier, Fouad Fahl
  • Publication number: 20130260154
    Abstract: A method of making a strengthened glass article. The method includes altering the glass structure and subsequently creating a compressive layer extending from the surface of the glass to a depth of layer. In some embodiments, the structure is altered by heat treating the glass at a temperature that is less than the annealing point of the glass, and the compressive layer is formed by ion exchange. A strengthened glass article made by the method is also provided.
    Type: Application
    Filed: December 9, 2011
    Publication date: October 3, 2013
    Applicant: CORNING INCORPORATED
    Inventors: Douglas Clippinger Allan, Adam James Ellison, John Christopher Mauro
  • Patent number: 8534096
    Abstract: A glass sheet quench station (16) and method for quenching glass sheets includes quench control valves (55, 57) that are operated to reduce unnecessary quenching air and thereby provide efficiency in the quenching.
    Type: Grant
    Filed: March 28, 2007
    Date of Patent: September 17, 2013
    Assignee: Glasstech, Inc.
    Inventor: Terry A. Bennett
  • Publication number: 20130071666
    Abstract: Provided is a method of producing a tempered glass sheet, comprising applying tempering treatment to a glass sheet by increasing the content of SiO2 in terms of mass in a surface region of a glass sheet through application of thermal treatment to the glass sheet to 1.03 or more times that in an interior region positioned at a depth of 1 ?m from a surface of the glass sheet.
    Type: Application
    Filed: August 21, 2012
    Publication date: March 21, 2013
    Inventors: Hiroshi KOMORI, Masahiro Tomamoto, Yoshinari Kato
  • Publication number: 20130047673
    Abstract: A method of tempering glass and an apparatus for tempering glass, in which a heater is used and high frequency is generated. The method includes a heating step of heating a piece of glass using a heater and a high frequency generator and a cooling step of cooling the piece of glass by quenching.
    Type: Application
    Filed: August 27, 2012
    Publication date: February 28, 2013
    Applicant: SAMSUNG CORNING PRECISION MATERIALS CO., LTD.
    Inventors: Hoikwan Lee, Kyungmin Yoon, Seo-Yeong Cho, YoonYoung Kwon, Jinsu Nam, Kyungwook Park, Jaeyoung Choi
  • Patent number: 8381547
    Abstract: An air-cooling/tempering apparatus and method, which can properly temper a glass sheet bent to have a complexly curved surface, without increasing the heating temperature of the glass sheet or increasing a wind pressure from air-blowing openings. A lower blowing member of the air-cooling/tempering apparatus includes a plurality of blade-shaped members arranged into a combtooth shape each having a front end face provided with a plurality of arranged air-blowing openings. Each blade-shaped member has a front end face with a concave curve so that a gap from the plurality of airblowing openings to the bent glass sheet becomes substantially uniform. The arrangement of air-blowing openings provided on the front end face of each blade-shaped member is turned with a predetermined angle and extends in one direction in each side portion in plan view.
    Type: Grant
    Filed: March 9, 2011
    Date of Patent: February 26, 2013
    Assignee: Asahi Glass Company, Limited
    Inventors: Masao Fukami, Shinya Ota, Yutaka Kitajima
  • Publication number: 20130019639
    Abstract: The method for tempering a glass sheet of the present invention comprises a heating step of heating the glass sheet to a temperature close to the softening point of the glass sheet, a quenching step of blowing a cooling medium to both surfaces in the thickness direction of the heated glass to cool it, and a pre-quenching step between the heating step and the quenching step and further has an internal heating substep of selectively heating the vicinity of the center portion in the thickness direction of the glass sheet at least in the quenching step, to create such a state that when the temperature at the center portion in the thickness direction of the glass sheet is close to the tempering point, the temperature at the surfaces in the thickness direction of the glass sheet is not higher than the annealing point.
    Type: Application
    Filed: September 27, 2012
    Publication date: January 24, 2013
    Applicant: Asahi Glass Company, Limited
    Inventor: Asahi Glass Company, Limited
  • Publication number: 20130019638
    Abstract: In certain example embodiments, a coated article includes respective layers including hydrogenated diamond-like carbon (DLC) and zirconium nitride before heat treatment (HT). During HT, the hydrogenated DLC acts as a fuel which upon combustion with oxygen produces carbon dioxide and/or water. The high temperature developed during this combustion heats the zirconium nitride to a temperature(s) well above the heat treating temperature, thereby causing the zirconium nitride to be transformed into a new post-HT layer including zirconium oxide that is very scratch resistant and durable.
    Type: Application
    Filed: September 20, 2012
    Publication date: January 24, 2013
    Applicant: GUARDIAN INDUSTRIES CORP.
    Inventor: Guardian Industries Corp.
  • Publication number: 20130008500
    Abstract: The present invention pertains to a physical tempered glass and a solar panel utilizing the same. The physical tempered glass of the present invention has a thickness of about 0.5 mm to about 2.8 mm, a compressive strength of about 120 MPa to about 300 MPa, a bending strength of about 120 MPa to about 300 MPa and a tensile strength of about 90 MPa to about 180 MPa. The present invention also relates to the preparation of the physical tempered glass and the solar panel.
    Type: Application
    Filed: July 5, 2012
    Publication date: January 10, 2013
    Applicant: CHANGZHOU ALMADEN CO., LTD.
    Inventors: Jinxi LIN, Jinhan LIN, Yuting LIN
  • Patent number: 8347651
    Abstract: A method is provided for separating or dividing strengthened glass articles, particularly strengthened glass sheets, into at least two pieces, one of which has a predetermined shape and/or dimension. A flaw is initiated in the glass at a depth that is greater than the depth of the strengthened surface layer of the glass, and a vent extending from the flaw is created at a vent depth that is greater than the depth of and outside the strengthened surface layer to at least partially separate the glass. In one embodiment, the vent is generated by treating the glass with a laser to heat the glass to a temperature in a range from about 50° C. below the strain point of the glass up to a temperature between the strain point and the anneal point of the glass. A glass article having at least one strengthened surface and at least one edge having an average edge strength of at least 200 MPa is also described.
    Type: Grant
    Filed: February 19, 2009
    Date of Patent: January 8, 2013
    Assignee: Corning Incorporated
    Inventors: Anatoli Anatolyevich Abramov, Sinue Gomez, Sergio Tsuda