Glass Conditioning Channel Section Utilized Patents (Class 65/135.1)
  • Patent number: 11814313
    Abstract: A process and an apparatus for refining molten glass. The apparatus includes a porous body having an inlet, an outlet, and a plurality of pores through which molten glass can flow between the inlet and the outlet. The plurality of pores are defined by walls having wall surfaces that are configured to interact with the molten glass as the molten glass flows between the inlet and the outlet to help refine the molten glass.
    Type: Grant
    Filed: March 3, 2020
    Date of Patent: November 14, 2023
    Assignee: Owens-Brockway Glass Container Inc.
    Inventor: Terence J. Clark
  • Patent number: 11643351
    Abstract: In manufacturing a glass article (GR) by causing a molten glass (GM) to flow through a transfer pipe (12) and to be transferred, the transfer pipe (12) includes: a pipe end portion (14) being an end portion in a pipe axis direction; a pipe-shaped portion (15); and a joining portion (16) configured to join the pipe end portion (14) and the pipe-shaped portion (15) to each other. The pipe end portion (14) includes a flange portion (17) and a curved portion (18) extending from an inner peripheral end (17a) of the flange portion (17) toward the pipe-shaped portion (15) side and being reduced in diameter toward the pipe-shaped portion (15) side. The pipe end portion (14) is made of a material having a smaller creep rupture strength and/or a larger creep strain rate than the pipe-shaped portion (15) at 1,500° C. and 1,000 hours.
    Type: Grant
    Filed: January 15, 2019
    Date of Patent: May 9, 2023
    Assignee: NIPPON ELECTRIC GLASS CO., LTD.
    Inventors: Hiroyuki Itazu, Kazuyuki Tenyama, Shusaku Tamamura
  • Patent number: 10633273
    Abstract: A process and an apparatus for refining molten glass. The apparatus includes a porous body having an inlet, an outlet, and a plurality of pores through which molten glass can flow between the inlet and the outlet. The plurality of pores are defined by walls having wall surfaces that are configured to interact with the molten glass as the molten glass flows between the inlet and the outlet to help refine the molten glass.
    Type: Grant
    Filed: February 22, 2017
    Date of Patent: April 28, 2020
    Assignee: Owens-Brockway Glass Container Inc.
    Inventor: Terence J. Clark
  • Patent number: 10384971
    Abstract: A glass melting plant refiner for thermal post-treatment of a glass melt containing bubbles, in particular for the production of fiberglass. To reduce the glass melt bubble content produced by submerged combustion burners, a refiner forms a glass melt tank, the glass melt flowing through the tank in a transport direction. The tank has a floor, side walls and a superstructure. A barrier, forming a raised floor part, runs essentially in the transport direction. The barrier forms, at each lateral side, a channel-shaped constriction with the side walls, a width of each constriction transverse to the transport direction being at most 0.45 times the tank width. At least one first fossil fuel heater heats the glass melt from above. At least one second electrical heating device, in each side wall and/or in the floor of the tank in the region of each constriction, extends into the glass melt.
    Type: Grant
    Filed: June 6, 2016
    Date of Patent: August 20, 2019
    Assignee: BETEILIGUNGEN SORG GMBH & CO. KG
    Inventors: Alexander Sorg, Matthias Lindig
  • Patent number: 9862638
    Abstract: Embodiments of the present invention provides fiberizable glass compositions formed from batch compositions comprising significant amounts of one or more glassy minerals, including perlite and/or pumice.
    Type: Grant
    Filed: January 3, 2017
    Date of Patent: January 9, 2018
    Inventors: Hong Li, James C. Watson
  • Patent number: 9676643
    Abstract: A method for producing bubble-free glasses is provided, in which a glass mixture that is arsenic-free, antimony-free and tin-free with the exception of any unavoidable raw material impurities and at least one sulfate compound as a refining agent are used. The glass mixture and refining agent are melted and primarily refined in a first region of a melting tank, an average melting temperature (T1) is set at T1>1580° C. and an average melt residence time (t1) is set at t1>2 hours. A secondary refinement is carried out in a second region, an average melting temperature (T2) is set at T2>1660° C. and an average melt residence time (t2) is set at t2>1 hour, and the proportion of the SO3 resulting from decomposition of the sulfate is reduced to less than 0.002 wt. %.
    Type: Grant
    Filed: August 20, 2014
    Date of Patent: June 13, 2017
    Assignee: SCHOTT AG
    Inventors: Frank-Thomas Lentes, Karin Naumann, Ulrich Schiffner, Friedrich Siebers, Christian Mueller, Klaus Schoenberger, Evelin Weiss
  • Patent number: 9611163
    Abstract: A process and an apparatus for refining molten glass. The apparatus includes a porous body having an inlet, an outlet, and a plurality of pores through which molten glass can flow between the inlet and the outlet. The plurality of pores are defined by walls having wall surfaces that are configured to interact with the molten glass as the molten glass flows between the inlet and the outlet to help refine the molten glass.
    Type: Grant
    Filed: March 5, 2014
    Date of Patent: April 4, 2017
    Assignee: Owens-Brockway Glass Container Inc.
    Inventor: Terence J Clark
  • Patent number: 9573831
    Abstract: Submerged combustion systems and methods of use to produce glass. One system includes a submerged combustion melter having a roof, a floor, a wall structure connecting the roof and floor, and an outlet, the melter producing an initial foamy molten glass. One or more non-submerged auxiliary burners are positioned in the roof and/or wall structure and configured to deliver combustion products to impact at least a portion of the bubbles with sufficient force and/or heat to burst at least some of the bubbles and form a reduced foam molten glass.
    Type: Grant
    Filed: January 27, 2015
    Date of Patent: February 21, 2017
    Assignee: Johns Manville
    Inventors: Mark William Charbonneau, Aaron Morgan Huber, Jeffrey M Shock, Harley Allen Borders
  • Patent number: 9522835
    Abstract: Furnace for melting batch materials comprising: a tank (3) covered by a crown (4); a combustion zone (5) provided with burners (6); an inlet (8) for charging it with the batch materials; a downstream outlet for the melted materials, the tank containing a melt (7) when the furnace is operating and the batch materials forming a batch blanket (G) that floats on the melt and is progressively melted; the furnace includes, near the charging inlet (8), an intense heating means (B), predominantly covering the width of the batch blanket, for melting a surface layer of the materials introduced and for increasing the emissivity of the batch blanket.
    Type: Grant
    Filed: August 6, 2010
    Date of Patent: December 20, 2016
    Assignee: FIVES STEIN
    Inventor: Wolf Stefan Kuhn
  • Patent number: 9309139
    Abstract: Methods and apparatus for producing display quality glass sheets are provided in which the batch materials for making the sheets are melted in a furnace whose glass-engaging surfaces comprise zirconia (ZrO2). By using molybdenum electrodes, instead of the conventional tin electrodes, to electrically heat the molten glass, the wear rate per unit area of the furnace's glass-engaging, zirconia-containing surfaces are reduced by more than 50%, thus reducing zirconia levels (solid+dissolved) in the finished glass by at least a similar amount. As a consequence of this reduction, rejection rates of finished glass sheets are lowered, which is of particular value in the production of glass sheets of large dimensions, as desired by display manufacturers and other users of such sheets.
    Type: Grant
    Filed: February 13, 2014
    Date of Patent: April 12, 2016
    Assignee: Corning Incorporated
    Inventors: Andrea Weiss Bookbinder, Bryce Patrick Butler, Gilbert De Angelis, David Myron Lineman, Guido Peters
  • Publication number: 20150107306
    Abstract: An apparatus for producing glass ribbon comprises a melting vessel configured to melt a batch of material into a quantity of molten glass. The apparatus includes a cooling conduit with a peripheral wall comprising platinum and defining an interior pathway configured to provide a travel path for the quantity of molten glass traveling from the first conditioning station to the second conditioning station. The peripheral wall includes an outer surface defining a plurality of elongated radial peaks spaced apart by a plurality of elongated radial valleys. The elongated radial peaks and elongated radial valleys are helically wound along an elongated axis of the cooling conduit. In further examples, methods are provided with the step of passing molten glass through the interior pathway of the cooling conduit to pass the molten glass from the first conditioning station to the second conditioning station.
    Type: Application
    Filed: October 18, 2013
    Publication date: April 23, 2015
    Applicant: Corning Incorporated
    Inventors: Martin Herbert Goller, James Patrick Murphy
  • Patent number: 8997526
    Abstract: A vacuum degassing apparatus for molten glass is comprised of an uprising pipe, a vacuum degassing vessel, a downfalling pipe, an upstream side pit that supplies molten glass to the uprising pipe, and a downstream side pit that receives molten glass from the downfalling pipe. The vacuum degassing apparatus for molten glass is further comprised of a separating mechanism that separates a part of molten glass moving from the downfalling pipe to the downstream side pit, and a returning pipe that returns separated molten glass to the upstream side pit.
    Type: Grant
    Filed: April 26, 2013
    Date of Patent: April 7, 2015
    Assignee: Asahi Glass Company, Limited
    Inventors: Toru Nishikawa, Hironobu Yamamichi, Tetsuya Koyama, Yuji Endo, Hajime Itoh
  • Patent number: 8991215
    Abstract: Methods and systems for controlling bubble size and bubble decay rate of glass foams formed during submerged combustion melting. Flowing a molten mass of foamed glass comprising molten glass and bubbles entrained therein into an apparatus downstream of a submerged combustion melter. The downstream apparatus has a floor, a roof, and a sidewall structure connecting the floor and roof. The foamed glass has glass foam of glass foam bubbles on its top surface, and the downstream apparatus defines a space for a gaseous atmosphere above and in contact with the glass foam. The downstream apparatus includes heating components to heat or maintain temperature of the foamed glass. Adjusting composition of the atmosphere above the glass foam, and/or contacting the foam with a liquid or solid composition controls bubble size of the glass foam bubbles, and/or foam decay rate.
    Type: Grant
    Filed: October 3, 2012
    Date of Patent: March 31, 2015
    Assignee: Johns Manville
    Inventors: Jeffrey M Shock, Mark William Charbonneau
  • Patent number: 8973405
    Abstract: Apparatus including a flow channel defined by a floor, roof, and sidewall structure connecting the floor and roof. One or more combustion burners is positioned in either the roof, the sidewall structure, or both, and transfer heat to a molten mass of glass containing bubbles having a bubble atmosphere flowing through the flow channel. The burners contribute to formation of a channel atmosphere above the molten glass. Apparatus includes a device, at least a portion of which is positionable under a level of the molten glass in the flow channel, configured to emit a composition into the molten glass under the level to intimately contact the composition with the molten glass and bubbles therein. The composition diffuses into the bubbles to form modified atmosphere bubbles sufficiently different from the channel atmosphere to increase diffusion of a species in the channel atmosphere into the modified atmosphere bubbles.
    Type: Grant
    Filed: October 3, 2012
    Date of Patent: March 10, 2015
    Assignee: Johns Manville
    Inventors: Mark William Charbonneau, Kevin Patrick McHugh
  • Patent number: 8938994
    Abstract: A method for re-establishing or tending to re-establish symmetrical distribution of temperatures between right-hand and left-hand sides of a cross section of a flow of molten glass that has been routed in a feeder including at least one bend area, thermal asymmetry having been induced by flowing round a bend. The feeder includes a flow channel, formed from refractory and insulative material elements and including a horizontal sole plate and two lateral walls, and a vault capping the channel, formed of a refractory roof and lateral parts including burners. In an area of each bend, the flow channel is modified by choosing a corresponding inclined sole plate portion, the inclination being chosen so that the flow channel is deeper in an outside region of the bend than in its inside region, heights of the two lateral walls of the channel being modified accordingly.
    Type: Grant
    Filed: January 26, 2011
    Date of Patent: January 27, 2015
    Assignee: Saint-Gobain Emballage
    Inventors: Paula Goncalves Ferreira, Fabien Bouillet
  • Patent number: 8869561
    Abstract: A device for the refining of a glass melt at high temperatures according to the skull pot principle is provided. The device includes a skull crucible having walls that are constructed from a plurality of pipes, a high-frequency coil for coupling electrical energy into the contents of the skull crucible, and an inlet and an outlet of the skull crucible being arranged in a melt surface region of the glass melt, wherein the inlet and the outlet are essentially arranged lying opposite one another.
    Type: Grant
    Filed: February 12, 2010
    Date of Patent: October 28, 2014
    Assignee: Schott AG
    Inventors: Erich Rodek, Wolfgang Schmid-Bauer, Hilgegard Römer, Günter Weidmann, Werner Kiefer
  • Patent number: 8806899
    Abstract: A glass melting oven for producing a glass melt in a row arrangement, having a loading opening for raw glass materials, a melting region, a refining region, a constriction, a conditioning region and an overflow into a processing unit. To remove flaws from the melt that remain visible in the end product, a method includes the steps of a) arranging a refining bench between the melting region and the beginning of the refining region; b) arranging side burners and extraction openings for flue gases between the loading opening and the refining bench; c) delimiting the constriction at both ends by end walls that leave narrow flow cross-sections above the glass melt for flue gases; and d) cooling the glass melt inside the constriction. The glass melting oven is particularly suited for producing flat glass and panels for solar elements. The oxidants for the fuels may also be preheated.
    Type: Grant
    Filed: January 22, 2010
    Date of Patent: August 19, 2014
    Assignee: Beteiligungen Sorg GmbH & Co. KG
    Inventors: Matthias Lindig, Helmut Sorg, Alexander Sorg
  • Publication number: 20140123710
    Abstract: An apparatus used in the production of glass, and a process for minimizing the inclusion of platinum group metal particulate into molten glass during glass production are provided, the apparatus comprising a first conduit formed of a platinum group metal, the first conduit comprising a top wall portion, a side wall portion, an outer surface, and a length, and a heat sink formed of a platinum group metal and affixed continuosly to the outer surface and extending longitudinally along at least part of the length of the first conduit proximate the top wall portion for the dissipation of heat therefrom, wherein the inner volume has a maximum temperature, T(max inside top wall), and the inner surface proximate the heat sink has a lower temperature, T(min inside top wall), and wherein platinum group metal particulate formed during the production process will deposit on the inner surface area of the top wall portion not in contact with the molten glass.
    Type: Application
    Filed: November 2, 2012
    Publication date: May 8, 2014
    Inventors: David Myron Lineman, Matthew Carl Morse
  • Patent number: 8707739
    Abstract: Channel apparatus for use with submerged combustion systems and methods of use to produce glass. One channel apparatus includes a flow channel defined by a floor, a roof, and a wall structure connecting the floor and roof, the flow channel divided into sections by a series of skimmers. Channel apparatus include both high and low momentum combustion burners, with one or more high momentum combustion burners positioned immediately upstream of each skimmer in either the roof or sidewall structure, or both, and one or more low momentum combustion burners positioned immediately downstream of each skimmer in either the roof, the sidewall structure, or both, and positioned to transfer heat to the molten mass of glass without substantial interference from foamed material. Certain embodiments include increased height of glass-contact refractory, in particular immediately upstream of the skimmers.
    Type: Grant
    Filed: June 11, 2012
    Date of Patent: April 29, 2014
    Assignee: Johns Manville
    Inventors: Aaron Morgan Huber, Marlon Keith Martin, John Euford Mobley
  • Patent number: 8689588
    Abstract: An object of the present invention is to effectively reduce mixing of bubbles into a spun glass fiber. A glass-melting device 10 for producing glass fibers includes; a first glass-melting tank 12 exposed to a reduced-pressure atmosphere; a second glass-melting tank 14 and a third glass-melting tank 16 arranged below the first glass-melting tank 12; an ascending conduit 18 that sends up molten glass resulting from melting in the second glass-melting tank 14 to deliver the molten glass to the first glass-melting tank 12; a descending conduit 20 that sends the molten glass down from the first glass-melting tank 12 to deliver the molten glass to the third glass-melting tank 16; a decompression housing 22; and a bushing 24. The glass-melting device 10 further includes heating means for separately heating the first glass-melting tank 12, the second glass-melting tank 14, the third glass-melting tank 16, the ascending conduit 18, the descending conduit 20 and the bushing 24.
    Type: Grant
    Filed: March 8, 2010
    Date of Patent: April 8, 2014
    Assignee: Nitto Boseki Co., Ltd.
    Inventors: Norio Hirayama, Masahiko Takahashi, Naohiro Miyanaga, Kentarou Ogawa
  • Publication number: 20140090423
    Abstract: A submerged combustion melter includes a floor, a roof, and a sidewall structure connecting the floor and roof defining an internal space. A first portion of the internal space defines a melting zone, and a second portion defines a fining zone immediately downstream of the melting zone. One or more combustion burners in either the floor, roof, the sidewall structure, or any combination of these, are configured to emit the combustion gases from a position under a level of, and positioned to transfer heat to and produce, a turbulent molten mass of glass containing bubbles in the melting zone. The fining zone is devoid of combustion burners or other apparatus or components that would increase turbulence above that in the melting zone. The melter may include a treating zone that stabilizes or destabilizes bubbles and/or foam. Processes of using the melters are a feature of the disclosure.
    Type: Application
    Filed: October 3, 2012
    Publication date: April 3, 2014
    Applicant: Johns Manville
    Inventors: Mark William Charbonneau, Kevin Patrick McHugh, Aaron Morgan Huber
  • Publication number: 20140090419
    Abstract: Apparatus including a flow channel defined by a floor, roof, and sidewall structure connecting the floor and roof. One or more combustion burners is positioned in either the roof, the sidewall structure, or both, and transfer heat to a molten mass of glass containing bubbles having a bubble atmosphere flowing through the flow channel. The burners contribute to formation of a channel atmosphere above the molten glass. Apparatus includes a device, at least a portion of which is positionable under a level of the molten glass in the flow channel, configured to emit a composition into the molten glass under the level to intimately contact the composition with the molten glass and bubbles therein. The composition diffuses into the bubbles to form modified atmosphere bubbles sufficiently different from the channel atmosphere to increase diffusion of a species in the channel atmosphere into the modified atmosphere bubbles.
    Type: Application
    Filed: October 3, 2012
    Publication date: April 3, 2014
    Applicant: JOHNS MANVILLE
    Inventors: Mark William Charbonneau, Kevin Patrick McHugh
  • Publication number: 20140090421
    Abstract: Methods and systems for controlling bubble size and bubble decay rate of glass foams formed during submerged combustion melting. Flowing a molten mass of foamed glass comprising molten glass and bubbles entrained therein into an apparatus downstream of a submerged combustion melter. The downstream apparatus has a floor, a roof, and a sidewall structure connecting the floor and roof. The foamed glass has glass foam of glass foam bubbles on its top surface, and the downstream apparatus defines a space for a gaseous atmosphere above and in contact with the glass foam. The downstream apparatus includes heating components to heat or maintain temperature of the foamed glass. Adjusting composition of the atmosphere above the glass foam, and/or contacting the foam with a liquid or solid composition controls bubble size of the glass foam bubbles, and/or foam decay rate.
    Type: Application
    Filed: October 3, 2012
    Publication date: April 3, 2014
    Applicant: JOHNS MANVILLE
    Inventors: Jeffrey M Shock, Mark William Charbonneau
  • Patent number: 8683827
    Abstract: An oblong conduit (13) for conditioning molten glass is disclosed. The wall (23) of the conduit is composed of a precious metal, e.g., a platinum-rhodium alloy, and can be equipped with precious metal tabs (29) for supporting the upper surface (25) of the wall so as to reduce sag of that surface at such times as the conduit is at an elevated temperature and is not filled with glass. The precious metal tabs (29) can be received in channels (31) formed in a refractory support structure (27). The refractory support structure (27) can be a laminate of two layers (33,35), where one of the layers (33) has a smaller grain structure than the other layer (35), the layers being held together by an adhesive (37).
    Type: Grant
    Filed: October 19, 2012
    Date of Patent: April 1, 2014
    Assignee: Corning Incorporated
    Inventors: Gilbert De Angelis, Raymond Eugene Fraley, John Jerry Kersting
  • Publication number: 20140013806
    Abstract: An apparatus for use in controlling a temperature of an oblong-shaped molten glass-carrying vessel, such as a conduit for transporting the molten glass from one location to another location, by flowing a current through the vessel. The apparatus comprises a metal flange comprising a plurality of electrically-conductive rings that include an inner ring joined to the vessel's exterior wall and an outer ring surrounding the inner ring. The inner ring, for example, may include an outer perimeter that is substantially oblong. In some embodiments the inner ring comprises a notch that aids in making current density more uniform. In some examples the width of the inner ring, excluding the notch, does not substantially vary as a function of angular position relative to the vessel.
    Type: Application
    Filed: July 11, 2012
    Publication date: January 16, 2014
    Inventors: Gilbert De Angelis, Muluwork Geremew, Juan Camilo Isaza, James patrick Murphy
  • Publication number: 20130333420
    Abstract: A precious metal structure which has an internal gas permeable membrane is described herein for a glass manufacturing vessel configured to have molten glass flow therein. The internal gas permeable membrane can be supplied with an atmosphere of gas (or gases) to control the flux of hydrogen into our out of the molten glass or otherwise improve the production of the molten glass. In this manner, the undesirable detrimental reactions that can occur at the interface of the molten glass and precious metal interface which can cause defects in the molten glass such as bubbles or solid inclusions can be stopped or at least substantially reduced.
    Type: Application
    Filed: June 15, 2012
    Publication date: December 19, 2013
    Inventors: Martin Herbert Goller, David Myron Lineman, Randy Dean Ziegenhagen
  • Publication number: 20130283861
    Abstract: A melter apparatus includes a floor, a ceiling, and a wall connecting the floor and ceiling at a perimeter of the floor and ceiling, a melting zone being defined by the floor, ceiling and wall, the melting zone having a feed inlet and a molten glass outlet positioned at opposing ends of the melting zone. Melter apparatus include an exit end having a melter exit structure for discharging turbulent molten glass formed by one or more submerged combustion burners, the melter exit structure fluidly and mechanically connecting the melter vessel to a molten glass conditioning channel. The melter exit structure includes a fluid-cooled transition channel configured to form a frozen glass layer or highly viscous glass layer, or combination thereof, on inner surfaces of the fluid-cooled transition channel and thus protect the melter exit structure from mechanical energy imparted from the melter vessel to the melter exit structure.
    Type: Application
    Filed: April 27, 2012
    Publication date: October 31, 2013
    Inventors: John Euford Mobley, Aaron Morgan Huber, Ryan Patrick Enright
  • Patent number: 8468851
    Abstract: A vacuum degassing apparatus for molten glass is comprised of an uprising pipe, a vacuum degassing vessel, a downfalling pipe, an upstream side pit that supplies molten glass to the uprising pipe, and a downstream side pit that receives molten glass from the downfalling pipe. The vacuum degassing apparatus for molten glass is further comprised of a separating mechanism that separates a part of molten glass moving from the downfalling pipe to the downstream side pit, and a returning pipe that returns separated molten glass to the upstream side pit.
    Type: Grant
    Filed: August 31, 2012
    Date of Patent: June 25, 2013
    Assignee: Asahi Glass Company, Limited
    Inventors: Toru Nishikawa, Hironobu Yamamichi, Tetsuya Koyama, Yuji Endo, Hajime Itoh
  • Publication number: 20130133372
    Abstract: This disclosure relates to methods and apparatus for controlling glass flow in, for example, a downdraw glass manufacturing process (e.g., the fusion downdraw process). The methods and apparatus are particularly well-suited for use in the manufacture of glass sheets such as the glass sheets used as substrates in display devices, e.g., liquid crystal displays (LCDs).
    Type: Application
    Filed: January 23, 2013
    Publication date: May 30, 2013
    Inventors: Olus Naili Boratav, Keith Raymond Gaylo, Kiat Chyai Kang, Bulent Kocatulum, Steven Michael Milillo, Douglas Gregg Neilson
  • Patent number: 8424342
    Abstract: A method for melting inorganic materials, preferably glasses and glass-ceramics, in a melting unit with cooled walls is provided. The method includes selecting the temperature of at least one region of the melt is selected in such a way as to be in a range from Teff?20% to Teff+20%, where the temperature Teff is given by the temperature at which the energy consumption per unit weight of the material to be melted is at a minimum, with the throughput having been selected in such a way as to be suitably adapted to the required residence time.
    Type: Grant
    Filed: March 31, 2004
    Date of Patent: April 23, 2013
    Assignee: Schott AG
    Inventors: Werner Kiefer, Hildegard Römer, Frank-Thomas Lentes, Guido Räke, Volker Ohmstede, Karin Naumann, Michael Leister, Gerhard Nuessle, Erich Rodek, Wolfgang Schmidbauer
  • Patent number: 8408029
    Abstract: An oblong conduit (13) for conditioning molten glass is disclosed. The wall (23) of the conduit is composed of a precious metal, e.g., a platinum-rhodium alloy, and can be equipped with precious metal tabs (29) for supporting the upper surface (25) of the wall so as to reduce sag of that surface at such times as the conduit is at an elevated temperature and is not filled with glass. The precious metal tabs (29) can be received in channels (31) formed in a refractory support structure (27). The refractory support structure (27) can be a laminate of two layers (33,35), where one of the layers (33) has a smaller grain structure than the other layer (35), the layers being held together by an adhesive (37).
    Type: Grant
    Filed: November 17, 2009
    Date of Patent: April 2, 2013
    Assignee: Corning Incorporated
    Inventors: Gilbert De Angelis, Raymond Eugene Fraley, John Jerry Kersting
  • Publication number: 20130031936
    Abstract: A method for re-establishing or tending to re-establish symmetrical distribution of temperatures between right-hand and left-hand sides of a cross section of a flow of molten glass that has been routed in a feeder including at least one bend area, thermal asymmetry having been induced by flowing round a bend. The feeder includes a flow channel, formed from refractory and insulative material elements and including a horizontal sole plate and two lateral walls, and a vault capping the channel, formed of a refractory roof and lateral parts including burners. In an area of each bend, the flow channel is modified by choosing a corresponding inclined sole plate portion, the inclination being chosen so that the flow channel is deeper in an outside region of the bend than in its inside region, heights of the two lateral walls of the channel being modified accordingly.
    Type: Application
    Filed: January 26, 2011
    Publication date: February 7, 2013
    Applicant: SAINT-GOBAIN EMBALLAGE
    Inventors: Paula Goncalves Ferreira, Fabien Bouillet
  • Patent number: 8347654
    Abstract: A vacuum degassing apparatus for molten glass is comprised of an uprising pipe, a vacuum degassing vessel, a downfalling pipe, an upstream side pit that supplies molten glass to the uprising pipe, and a downstream side pit that receives molten glass from the downfalling pipe. The vacuum degassing apparatus for molten glass is further comprised of a separating mechanism that separates a part of molten glass moving from the downfalling pipe to the downstream side pit, and a returning pipe that returns separated molten glass to the upstream side pit.
    Type: Grant
    Filed: August 10, 2010
    Date of Patent: January 8, 2013
    Assignee: Asahi Glass Company, Limited
    Inventors: Toru Nishikawa, Hironobu Yamamichi, Tetsuya Koyama, Yuji Endo, Hajime Itoh
  • Patent number: 8196434
    Abstract: A molten glass delivery system is modified to match it with the overflow downdraw process. A substantial number of defects not removed by the finer are diverted to the unusable inlet and distal edges of the sheet. In one embodiment, the stirring device is relocated from the outlet to the inlet of the finer. In another embodiment, the basic shape of the finer is preferably changed from a cylindrical shape to a Double Apex (or Gull Wing) shaped cross-section, whereby the apexes of the finer contain the glass that will form the unusable inlet end of the glass sheet. The finer vent or vents are preferably located at these apexes such that any homogeneity defects caused by the vents are diverted to the unusable inlet end of the glass sheet. The finer cross-section has a high aspect ratio for increased fining efficiency as compared to a cylindrical finer.
    Type: Grant
    Filed: March 28, 2008
    Date of Patent: June 12, 2012
    Assignee: Corning Incorporated
    Inventor: Richard B. Pitbladdo
  • Patent number: 8136373
    Abstract: A conduit structure for molten glass, a conduit system for molten glass, a vacuum degassing apparatus and a method for vacuum-degassing molten glass by use of the vacuum degassing apparatus, which are capable of effectively removing components eluted from a refractory brick forming a conduit for molten glass, foreign substances generated in the interface between molten glass and a platinum wall surface forming a conduit for molten glass, a bubble remaining in a surface layer of molten glass, a glass material denatured by volatilization, and the like, are provided.
    Type: Grant
    Filed: February 26, 2009
    Date of Patent: March 20, 2012
    Assignee: Asahi Glass Company, Limited
    Inventors: Michito Sasaki, Motoichi Iga, Hajime Itoh, Kazuhiko Yamada, Masahiro Saitou
  • Publication number: 20120017643
    Abstract: A glass melting oven for producing a glass melt in a row arrangement, having a loading opening for raw glass materials, a melting region, a refining region, a constriction, a conditioning region and an overflow into a processing unit. To remove flaws from the melt that remain visible in the end product, a method includes the steps of a) arranging a refining bench between the melting region and the beginning of the refining region; b) arranging side burners and extraction openings for flue gases between the loading opening and the refining bench; c) delimiting the constriction at both ends by end walls that leave narrow flow cross-sections above the glass melt for flue gases; and d) cooling the glass melt inside the constriction. The glass melting oven is particularly suited for producing flat glass and panels for solar elements. The oxidants for the fuels may also be preheated.
    Type: Application
    Filed: January 22, 2010
    Publication date: January 26, 2012
    Applicant: BETEILIGUNGEN SORG GMBH & CO. KG
    Inventors: Matthias Lindig, Helmut Sorg, Alexander Sorg
  • Patent number: 8042362
    Abstract: A plant for producing inorganic fibers from rocks includes a furnace for obtaining a melt connected to a feeder, working aperture and a warmed feeder with draw dies located below a working aperture. A transition chamber is installed on the feeder exit, the transition chamber intended for creation of a thin layer melt flow. An enclosure contains the working aperture. The transition chamber has a heater, a threshold installed at an entrance of the transition chamber and a plate rigidly fixed to an adjustable damper located over the threshold and adapted to move up and down together with the adjustable damper, with the plate surface being parallel to the bottom of the transition chamber. The plant is intended for obtaining the melt flow of a desired thickness and quality.
    Type: Grant
    Filed: October 30, 2006
    Date of Patent: October 25, 2011
    Inventors: Viktor F. Kibol, Roman V. Kibol
  • Publication number: 20110126595
    Abstract: A forehearth (1) or working-end for glass furnace of the type including one or more modules or sections (2), each one having: —an understructure (3) in which a vat (4) is defined into which the molten glass flows; —a superstructure (5) including a cooling air duct (13) and a pair of lateral fume ducts (20), communicating with the vat area (4) into which the molten glass flows, characterised in that, next to an outlet opening (17) of the duct (13), a “Venturi block” (22) is provided, into which both the cooling air from the duct (13) and the fumes from the fume ducts (20) flow, shaped in such a way that the cooling exit air causes the fumes to be extracted from the fume ducts (20). The forehearth and the fume extraction procedure enable the thermal homogeneity of the glass to be improved while reducing the use of refractory material, the formation of cracks in the superstructure and costs.
    Type: Application
    Filed: July 29, 2009
    Publication date: June 2, 2011
    Applicant: F.I.R.E. S.R.L.
    Inventor: Marco Braglia
  • Patent number: 7802451
    Abstract: Incinerator ashes, which is obtained after treating municipal solid waste, incinerator ashes or its plasma vitrified slag is made into mineral fibers. Cullet is added during manufacturing the mineral fibers for conditioning. The mineral fibers thus obtained have a good strength and could raise value of recycled product. In addition, it could reduce impact of the incinerator ashes to the environment and environmental protection is achieved.
    Type: Grant
    Filed: August 15, 2007
    Date of Patent: September 28, 2010
    Assignee: Atomic Energy Council - Institute of Nuclear Energy Research
    Inventors: Sheng-Fu Yang, Yung-Woou Lee, To-Mai Wang, Wen-Cheng Lee, Kin-Seng Sun, Ching-Liang Chen, Chin-Ching Tzeng
  • Publication number: 20100184580
    Abstract: Glass-ceramic sealant is disclosed for planar solid oxide fuel cells. The glass-ceramic sealant includes 0 to 40 mol % of silicon oxide, 0 to 15 mol % boron oxide, 0 to 10 mol % of aluminum oxide, 0 to 40 mol % of barium oxide, 0 to 15 mol % of calcium oxide, 0 to 15 mol % of lanthanum oxide and 0 to 5 mol % of zirconium dioxide. At 0° C. to 600° C., the thermal expansion coefficient of the sealant is 8 to 10 ppm/° C.
    Type: Application
    Filed: January 14, 2008
    Publication date: July 22, 2010
    Applicant: ATOMIC ENERGY COUNCIL - INSTITUTE OF NUCLEAR ENERGY RESEARCH
    Inventors: Chien-Kuo Liu, Tung-Yuan Yung, Kin-Fu Lin, Ruey-Yi Lee, Tzang-Sheng Lee
  • Patent number: 7497094
    Abstract: A charged glass raw material B is melted in a melting tank 10 by heating with a burner 31 and by heating with electrodes 12, to form molten glass G. Then, the molten glass G flows into a tank additionally provided as a noble gas dissolving tank 20 through a throat 40. The noble gas dissolving tank 20 is provided with a noble gas dissolving device 53, and the noble gas dissolving device 53 is provided with sixteen noble gas inlets 22 for introducing a helium or neon gas supplied to a hearth through heat resistant gas introduction tubes 21 into the noble gas dissolving tank 20. Bubbles of a helium gas A having a purity of 99% are blown out from the noble gas inlets 22 in volumes such that the bubbles have an average diameter of 80 mm or less in the molten glass G.
    Type: Grant
    Filed: November 28, 2003
    Date of Patent: March 3, 2009
    Assignee: Nippon Electric Glass Co., Ltd.
    Inventors: Masataka Takagi, Noriyuki Yoshida, Takamasa Akimoto, Tatuya Takaya
  • Patent number: 7490487
    Abstract: In some embodiments, the invention provides a refining chamber for glass production, made of platinum group metal materials, with improved refining effectiveness. The refining chamber according has the shape of a tube with a cross section (1), with the cross section of the tube being shaped, in at least one segment, so that in the operating position the length (10) of a horizontal line (12) which divides the surface of the cross section into essentially a lower and an upper segment of the surface, both of which have essentially the same area, is greater than twice the maximum vertical extent (30) of the lower segment of the surface. The cross section of the refining chamber can, for example, have the shape of an oval, an ellipse, a slot, a rounded triangle or a polygon, and the stiffness of the shape of the refining chamber can be increased by forming radially peripheral creases, corners, waves or folds.
    Type: Grant
    Filed: October 23, 2003
    Date of Patent: February 17, 2009
    Assignees: Umicore AG & Co. KG, Asahi Glass Company, Limited
    Inventors: Rudolf Singer, Hubertus Gölitzer
  • Patent number: 7454925
    Abstract: A method of forming a glass melt including heating a glass feed material in a first melting furnace to form a glass melt, flowing the glass melt into a second melting furnace through a refractory metal connecting tube, and further heating the glass melt in the second melting furnace. The refractory metal connecting tube is heated to prevent the molten glass from excessive cooling, and to ensure that the glass melt entering the second melting furnace is equal to or greater than the temperature of the glass melt in the second melting furnace. An apparatus for performing the method is also disclosed.
    Type: Grant
    Filed: December 29, 2005
    Date of Patent: November 25, 2008
    Assignee: Corning Incorporated
    Inventors: Gilbert DeAngelis, William Weston Johnson, John Jerry Kersting, Daniel Arthur Nolet, Robert Richard Thomas, Pascal Verdurme
  • Patent number: 7444837
    Abstract: A method and an apparatus for the rapid melting of glasses in a skull crucible is provided. The method and apparatus introduce high-frequency energy into the contents of the crucible by means of a coil arrangement surrounding the skull crucible, in order to heat the melt, and the batch is laid and the molten glass discharged in the upper region of the crucible, and undissolved constituents of the batch are retained by means of a cooled bridge which is immersed in the melt. The glass is taken off above the coil arrangement and is fed for further processing without flowing through the coil region.
    Type: Grant
    Filed: October 1, 2002
    Date of Patent: November 4, 2008
    Assignee: Schott AG
    Inventors: Hildegard Römer, Michael Leister, Uwe Kolberg, Karl Mennemann, Guido Räke, Ernest Walter Schäfer, Sybill Nüttgens, Volker Ohmstede
  • Patent number: 7373791
    Abstract: The present invention provides method of contemporaneously forming a particulate glass batch composition and reducing volatile components in an exhaust stream, comprising the steps of: (a) introducing an exhaust stream comprising one or more volatile components into a mixing chamber; (b) adding a particulate glass batch precursor composition comprising at least one reagent material that is reactive with at least one of the one or more volatile components of the exhaust stream into the mixing chamber; (c) reacting at least a portion of the particulate glass batch precursor composition with at least a portion of the one or more volatile components of the exhaust stream in the mixing chamber to form a particulate glass batch composition and reduce the amount of the one or more volatile components in the exhaust stream; (d) separating the particulate glass batch composition from the exhaust stream; and (e) venting the exhaust stream having a reduced amount of volatile components to the atmosphere.
    Type: Grant
    Filed: March 16, 2000
    Date of Patent: May 20, 2008
    Assignee: PPG Industries Ohio, Inc.
    Inventor: William H. Leehr
  • Patent number: 7231788
    Abstract: The apparatus for reduced-pressure refining of a glass melt includes a refining bank formed so that a reduced pressure is generated by a glass flow in it. The refining bank has a component, which is made from a refractory metal or refractory alloy acting as glass-contact material. The refractory metal or alloy contains molybdenum, tungsten, tantalum, and/or hafnium. The device of the present invention includes a protective gas reservoir for a protective gas and an automatically operating valve connecting the reservoir with the refining bank so that an inner side of the component that would otherwise be exposed when a pressure rise or a falling glass melt column occurs is protected from oxidation by the protective gas. A process for using the device during refining of the glass melt is also part of the invention.
    Type: Grant
    Filed: October 23, 2001
    Date of Patent: June 19, 2007
    Assignee: Schott AG
    Inventors: Frank Karetta, Joerg Witte, Klaus-Dieter Duch, Dirk Gohlke, Wolfgang Muench, Allen Jakway, Rainer Eichholz, Frank-Thomas Lentes
  • Patent number: 7134300
    Abstract: A method for controlling the foam produced when a molten material encounters reduced pressure in a vacuum chamber includes passing the molten material through an aging zone in the vacuum chamber in which the molten material is allowed to drain from between the bubbles of the foam and then collapsing the bubbles of the drained foam.
    Type: Grant
    Filed: January 4, 2005
    Date of Patent: November 14, 2006
    Assignee: Corning Incorporated
    Inventors: James C. Hayes, Rand A. Murnane, Ronald W. Palmquist, Frank Woolley
  • Patent number: 7040122
    Abstract: The invention concerns a process and a device from the production of molten glass. According to the invention, measures will be taken to lead the current of the molten glass through the tank furnace so that cutoffs of the glass current between the surface of the glass bath, on the one hand, and the outlet opening on the other hand are avoided and a an equal holding period of all melt particles in the tank furnace is achieved.
    Type: Grant
    Filed: August 19, 2002
    Date of Patent: May 9, 2006
    Assignee: Schott AG
    Inventors: Stefan Schmitt, Rule Kirchhoff, Wilfried Linz, Norbert Osterhage, Gerhard Lautenschläger, Andreas Sprenger, Klaus-Dieter Duch, Frank Karetta, Ludwig Dürsch, Rainer Eichholz
  • Patent number: 7032412
    Abstract: Methods of manufacturing glass sheets with manufacturing systems that including platinum-containing components are provided. The method includes providing a barrier coating to reduce the hydrogen permeability of the platinum-containing components which reduces the propensity for blistering of glass sheets made using the components.
    Type: Grant
    Filed: March 13, 2003
    Date of Patent: April 25, 2006
    Assignee: Corning Incorporated
    Inventors: William G. Dorfeld, David M. Lineman, Robert Morena, James P. Murphy, Randy D. Ziegenhagen
  • Patent number: 7017372
    Abstract: A molten glass supply device is provided, which can solve unavoidable problems for high viscosity characteristics in connection with the conventional molten glass supply device for high viscosity glass. Such problems include improperly high heating cost caused by excessive heat radiation in a melting furnace, reduction in the grade of products deriving from an excess amount of an erosion foreign material and reduction in the product yield. High viscosity molten glass having a property in which a temperature at which the molten glass exhibits a viscosity of 1000 poise is 1350° C. or higher is supplied to a forming device through a melting furnace, a distribution portion in communication with the outlet of the melting furnace, and a plurality of branch paths branching from the distribution portion. In the branch paths, distribution resistance providing portions that provide distribution resistance to molten glass passed through the branch paths are provided.
    Type: Grant
    Filed: February 5, 2004
    Date of Patent: March 28, 2006
    Assignee: Nippon Electric Glass Co., Ltd.
    Inventors: Masahiro Tomamoto, Shigeaki Aoki, Tatsuya Takaya