Fining Or Homogenizing Molten Glass Patents (Class 65/134.1)
  • Patent number: 11866365
    Abstract: The present invention relates to a cover glass for a display, which is a glass plate having a first main surface and a second main surface. The cover glass contains, as represented by mol percentage based on oxides, from 50 to 75% of SiO2, from 5 to 20% of Al2O3, from 2 to 20% of Na2O, from 0 to 6% of K2O, from 0 to 15% of MgO, from 0 to 10% of a total amount (CaO+SrO+BaO) of CaO, SrO and BaO, from 0 to 5% of a total amount (ZrO2+TiO2) of ZrO2 and TiO2, from 0 to 10% of B2O3, and from 0 to 20% of Li2O. The cover glass has a ream minimum distance of 100 mm or more and 1,000 mm or less, and a ream period of 1 mm or more and 30 mm or less.
    Type: Grant
    Filed: January 8, 2021
    Date of Patent: January 9, 2024
    Assignee: AGC Inc.
    Inventors: Kazutaka Otsuka, Kyushiro Igarashi, Takeshi Shimizu, Minoru Tamada
  • Patent number: 11325855
    Abstract: The embodiments described herein relate to chemically and mechanically durable glass compositions and glass articles formed from the same. In an embodiment the glass composition may include from about 67 mol. % to about 80 mol. % SiO2; from about 3 mol. % to about 13 mol. % alkaline earth oxide; from about 2 mol. % to about 10 mol. % Al2O3; from about 2 mol. % to about 18 mol. % alkali oxide, wherein the alkali oxide comprises non-zero amounts of Na2O; from 0 mol. % to about 4 mol. % B2O3; and from about 0.01 mol. % to about 1 mol. % of a fining agent.
    Type: Grant
    Filed: December 21, 2018
    Date of Patent: May 10, 2022
    Assignee: CORNING INCORPORATED
    Inventors: Paul Stephen Danielson, Steven Edward DeMartino, Melinda Ann Drake, Robert Michael Morena, Santona Pal, Robert Anthony Schaut
  • Patent number: 11059752
    Abstract: A sintered concrete having the following mean chemical composition, as mass percentages on the basis of the oxides and for a total of 100%; ZrO2: 55 to 70%, SiO2: 25 to 40%, P2O5: 0.2 to 9.0%, Al2O3: 0.5 to 7.0%, CaO: >0.2%, CaO+MgO+B2O3+Fe2O3: 0.2 to 10.0%, MgO+B2O3+Fe2O3; ?7.5%, B2O3+MgO: ?4.5%, ZrO2+SiO2+P2O5+Al2O3+CaO+MgO+B2O3+Fe2O3: ?95.0%, and containing more than 70% of zircon, as a mass percentage on the basis of the mass of the crystalline phases.
    Type: Grant
    Filed: December 13, 2017
    Date of Patent: July 13, 2021
    Assignee: SAINT-GOBAIN CENTRE DE RECHERCHES ET D'ETUDES EUROPEEN
    Inventors: Thibault Champion, Michel Bobo
  • Patent number: 10336640
    Abstract: The present invention relates to a process for melting solid batch material, comprising the steps of introducing solid batch material into a melter, and melting the solid batch material in the melter by submerged combustion and subjecting the melt to a flow pattern which when simulated on a computer by making use of common fluid dynamic equations shows a substantially toroidal melt flow pattern in the melt, comprising a major centrally inwardly convergent flow at the melt surface, the central axis of revolution of the toroid being substantially vertical. The invention further relates to a melter assembly for carrying out the process. The toroidal melt flow pattern is achieved by suitable arrangement, angle and spacing of multiple submerged combustion burners in the floor of the melter.
    Type: Grant
    Filed: July 30, 2014
    Date of Patent: July 2, 2019
    Inventors: Gerard Demott, Bostjan Marolt, Randy Etzkorn, David Ducarme
  • Patent number: 9862631
    Abstract: The present disclosure provides an apparatus for eliminating a heterogeneous glass present in the top surface of a molten glass effectively, and a melting furnace and a glass manufacturing apparatus comprising the same. The apparatus for eliminating a heterogeneous glass according to one aspect of the present disclosure comprises a storage bath having an inlet and an outlet to receive a molten glass fed into the inlet and to discharge the received molten glass through the outlet, and an evacuating opening formed on the top of the storage bath, the evacuating opening allowing the received molten glass to overflow; a first gate being mounted close to the outlet of the storage bath to adjust an open area, thereby controlling the flow rate of the molten glass to be discharged through the outlet; and a second gate being mounted close to the inlet of the storage bath to control the height of the molten glass received in the storage bath at the section in which the evacuating opening is formed.
    Type: Grant
    Filed: September 3, 2014
    Date of Patent: January 9, 2018
    Assignee: LG CHEM, LTD.
    Inventors: Kyoung-Hoon Min, Ye-Hoon Im, Won-Jae Moon, Ji-Seob Lee
  • Patent number: 9580352
    Abstract: A substrate for p-Si TFT flat panel displays made of a glass having a high low-temperature-viscosity characteristic temperature and manufactured while avoiding erosion/wear of a melting tank during melting through direct electrical heating. The glass substrate comprises 52-78 mass % of SiO2, 3-25 mass % of Al2O3, 3-15 mass % of B2O3, 3-20 mass % of RO, wherein RO is total amount of MgO, CaO, SrO, and BaO, 0.01-0.8 mass % of R2O, wherein R2O is total amount of Li2O, Na2O, and K2O, and 0-0.3 mass % of Sb2O3, and substantially does not comprise As2O3, wherein the mass ratio CaO/RO is equal to or greater than 0.65, the mass ratio (SiO2+Al2O3)/B2O3 is in a range of 7-30, and the mass ratio (SiO2+Al2O3)/RO is equal to or greater than 5. A related method involves melting glass raw materials blended to provide the glass composition; a forming step of forming the molten glass into a flat-plate glass; and an annealing step of annealing the flat-plate glass.
    Type: Grant
    Filed: April 14, 2015
    Date of Patent: February 28, 2017
    Assignee: AvanStrate Inc.
    Inventors: Akihiro Koyama, Satoshi Ami, Manabu Ichikawa
  • Publication number: 20150110980
    Abstract: A process for cullet beneficiation by precipitation. A mass of cullet is melted to form a body of molten glass having a heavy metal con ration of greater than 100 ppm. A precipitate agent is introduced into the body of molten glass to form a heavy metal-containing precipitate phase and a liquid beneficiated glass phase within the body of molten glass. The precipitate phase may have a density greater than that of the liquid beneficiated glass phase. Thereafter, the liquid beneficiated glass phase is physically separated from the precipitate phase. The separated liquid beneficiated glass phase has a reduced concentration of heavy metals, as compared to the concentration of heavy metals in the body of molten glass.
    Type: Application
    Filed: October 18, 2013
    Publication date: April 23, 2015
    Applicant: Owens-Brockway Glass Container Inc.
    Inventors: Carol A. Click, Udaya Vempati, Edward A. Ordway
  • Patent number: 9012342
    Abstract: The invention relates to a melt composition for the production of man-made vitreous fibers and man-made vitreous fibers comprising the following oxides, by weight of composition: SiO2 39-43 weight % Al2O3 20-23 weight % TiO2 up to 1.5 weight % Fe2O3 5-9 weight %, preferably 5-8 weight % CaO 8-18 weight % MgO 5-7 weight % Na2O up to 10 weight %, preferably 2-7 weight % K2O up to 10 weight %, preferably 3-7 weight % P2O5 up to 2% MnO up to 2% R2O up to 10 weight % wherein the proportion of Fe(2+) is greater than 80% based on total Fe and is preferably at least 90%, more preferably at least 95% and most preferably at least 97% based on total Fe.
    Type: Grant
    Filed: October 12, 2012
    Date of Patent: April 21, 2015
    Assignee: Rockwool International A/S
    Inventors: Mette Solvang, Svend Grove-Rasmussen, Mathilde Rosendahl Foldschack
  • Patent number: 8997526
    Abstract: A vacuum degassing apparatus for molten glass is comprised of an uprising pipe, a vacuum degassing vessel, a downfalling pipe, an upstream side pit that supplies molten glass to the uprising pipe, and a downstream side pit that receives molten glass from the downfalling pipe. The vacuum degassing apparatus for molten glass is further comprised of a separating mechanism that separates a part of molten glass moving from the downfalling pipe to the downstream side pit, and a returning pipe that returns separated molten glass to the upstream side pit.
    Type: Grant
    Filed: April 26, 2013
    Date of Patent: April 7, 2015
    Assignee: Asahi Glass Company, Limited
    Inventors: Toru Nishikawa, Hironobu Yamamichi, Tetsuya Koyama, Yuji Endo, Hajime Itoh
  • Patent number: 8966941
    Abstract: The object of the invention is a continuous method for obtaining glass, comprising steps consisting of: charging raw materials upstream of a furnace, along which a plurality of burners is disposed, obtaining a mass of molten glass, and then leading said mass of molten glass to a zone of the furnace situated further downstream, at least one burner disposed in the region of this zone being fed with an over-stoichiometric quantity of oxidant, and then, forming a glass sheet, said glass sheet having a chemical composition that comprises the following constituents in an amount varying within the weight limits defined below: SiO2 60-75%? Al2O3 0-10% B2O3 0-5%, preferably 0? CaO 5-15% MgO 0-10% Na2O 5-20% K2O 0-10% BaO 0-5%, preferably 0, SO3 0.1-0.4%? Fe2O3 (total iron) 0 to 0.015%,?? Redox 0.1-0.3.
    Type: Grant
    Filed: September 1, 2009
    Date of Patent: March 3, 2015
    Assignee: Saint-Gobain Glass France
    Inventors: Octavio Cintora, Thomas Schuster, Byoung-Ouk Kim, Kidong Moon, Junbo Choi, Pedro Silva
  • Patent number: 8938994
    Abstract: A method for re-establishing or tending to re-establish symmetrical distribution of temperatures between right-hand and left-hand sides of a cross section of a flow of molten glass that has been routed in a feeder including at least one bend area, thermal asymmetry having been induced by flowing round a bend. The feeder includes a flow channel, formed from refractory and insulative material elements and including a horizontal sole plate and two lateral walls, and a vault capping the channel, formed of a refractory roof and lateral parts including burners. In an area of each bend, the flow channel is modified by choosing a corresponding inclined sole plate portion, the inclination being chosen so that the flow channel is deeper in an outside region of the bend than in its inside region, heights of the two lateral walls of the channel being modified accordingly.
    Type: Grant
    Filed: January 26, 2011
    Date of Patent: January 27, 2015
    Assignee: Saint-Gobain Emballage
    Inventors: Paula Goncalves Ferreira, Fabien Bouillet
  • Patent number: 8925353
    Abstract: A glass making process comprising a step of fining the molten glass in a fining vessel comprising a top wall portion not in direct contact with the molten glass, and a side wall portion in direct contact with the molten glass, wherein the top wall portion has a temperature T(top), the side wall portion has a temperature T(side), and T(top)?T(side)?10° C., and a glass fining system. The invention is particularly useful for glass fining systems comprising a metal fining vessel made of precious metals such as Pt and/or Pt—Rh alloys.
    Type: Grant
    Filed: November 4, 2008
    Date of Patent: January 6, 2015
    Assignee: Corning Incorporated
    Inventors: Raymond Eugene Fraley, Paul Richard Grzesik, Lawrence Henry Kotacska, William Brashear Mattingly, III, James Patrick Murphy
  • Patent number: 8925349
    Abstract: A rare earth ion doped silicate luminescence glass and preparation method thereof are provided. The luminescence glass is the material with the following formula: aM2O.bM?2O3.cSiO2.dRE2O3, wherein M is at least one of Na, K and Li, M? is at least one of Y, Gd, La, Sc and Lu, RE is at least one of Ce, Tm, Tb, Ho, Dy, Er, Nd, Sm, Eu and Pr. The preparation method is: grinding the raw material until mixed uniformly, calcining the raw material at 1200-1500° C. for 1-5 h, cooling to room temperature, annealing at 600-1100° C. for 0.5-24 h, cooling to room temperature again, molding then getting the product. The performance of the product is stable. The product is homogenous, and the luminescence performance is good. The light transmittance is high. The process of the preparation method is simple and with low cost.
    Type: Grant
    Filed: May 19, 2009
    Date of Patent: January 6, 2015
    Assignee: Ocean's King Lighting Science & Technology Co., Ltd.
    Inventors: Mingjie Zhou, Wenbo Ma, Zhaopu Shi, Yanbo Qiao, Qingtao Li
  • Patent number: 8919151
    Abstract: To provide a process for producing glass raw material granules which are less likely to be formed into fine powders which cause a change of the glass composition at a time of forming a glass melt or defects of glass, and which can be preferably used for producing glass. A process for producing glass raw material granules, which comprises a granulation step of adding boric acid to either one of or both of a glass raw material powder and an alkaline solution having a pH of at least 9 and mixing the glass raw material powder together with the alkaline solution. The glass raw material powder preferably contains at least 10 mass % of boric acid.
    Type: Grant
    Filed: March 13, 2013
    Date of Patent: December 30, 2014
    Assignee: Asahi Glass Company, Limited
    Inventor: Nobuhiro Shinohara
  • Patent number: 8904823
    Abstract: The present invention relates to a glass melting furnace, comprising a channel-shaped melting tank, the batch material being charged at an upstream end, the molten glass being recovered at the downstream end, said furnace being heated by means of burners, in which 80% of the combustion energy is produced by oxycombustion, oxygen being supplied continuously from a production plant located nearby or via a gas pipe from remotely located plants, characterized in that the furnace is fitted with oxygen storage means such that, should continuous supply cease, the furnace can operate at least in a temperature-maintaining mode for a maximum time of eight hours.
    Type: Grant
    Filed: July 10, 2013
    Date of Patent: December 9, 2014
    Assignee: AGC Glass Europe
    Inventors: Johan Behen, Olivier Douxchamps
  • Publication number: 20140356628
    Abstract: A glass ceramic precursor glass and a glass ceramic having low levels of rhodium and a method of controlling the amount of rhodium in such glasses and glass ceramics. The precursor glass and glass ceramic contain from about 1 ppm to about 10 ppm and, in certain embodiments, from about 1 ppm to about 6 ppm rhodium. The method of controlling of reducing rhodium dissolution from a rhodium-containing material such as, for example, an alloy into a glass melt comprises controlling and/or lowering the partial pressure of oxygen at the rhodium-containing vessel/glass interface by imposing a high humidity condition around the external (non-glass-contact) surface of the rhodium-containing material. The lower concentration of rhodium minimizes its coloring effect on the white color of the glass ceramic.
    Type: Application
    Filed: May 23, 2014
    Publication date: December 4, 2014
    Applicant: Corning Incorporated
    Inventors: Samir Biswas, Qiang Fu, David Myron Lineman, Ronald Leroy Stewart
  • Publication number: 20140260432
    Abstract: A melter apparatus includes a floor, a ceiling, and a substantially vertical wall connecting the floor and ceiling at a perimeter of the floor and ceiling, a melting zone being defined by the floor, ceiling and wall, the melting zone having a feed inlet and a molten glass outlet positioned at opposing ends of the melting zone. The melting zone includes an expanding zone beginning at the inlet and extending to an intermediate location relative to the opposing ends, and a narrowing zone extending from the intermediate location to the outlet. One or more burners, at least some of which are positioned to direct combustion products into the melting zone under a level of molten glass in the zone, are also provided.
    Type: Application
    Filed: May 28, 2014
    Publication date: September 18, 2014
    Applicant: JOHNS MANVILLE
    Inventor: Aaron Morgan Huber
  • Patent number: 8806896
    Abstract: A process for making silica-based glass includes: (a) forming a glass precursor melt that includes glass network formers and glass network modifiers, the glass precursor melt having a viscosity of not more than 30 Pa·s at 1300 C., and (b) refining the glass precursor melt. Either or both steps (a) and (b) can include stirring and/or be carried out under reduced pressure to enhance refining. The refined glass precursor melt preferably is mixed with additional materials including silica (SiO2) to form a silica-based glass melt.
    Type: Grant
    Filed: October 17, 2012
    Date of Patent: August 19, 2014
    Assignee: Owens-Brockway Glass Container Inc.
    Inventors: Daniel Russell Swiler, Terence John Clark, Carl Lucas Fayerweather
  • Patent number: 8769991
    Abstract: In a method for producing a fluorophosphate optical glass comprising melting a glass raw material to give a molten glass, and refining, homogenizing and then quickly quenching the molten glass to produce the fluorophosphate optical glass, even if the glass is flown from a refining tank that is set to a high temperature to an operation tank that is set to a low temperature, bubbles are not generated in the glass. The content of Fe in terms of Fe2O3 and the content of Cu in terms of CuO is controlled so that the total of the contents of Fe and Cu is 20 ppm or more, and the obtained fluorophosphate optical glass has such transmittance property that the internal transmittance in terms of a thickness of 10 mm becomes 98% or more at a wavelength region of at least from 400 to 500 nm.
    Type: Grant
    Filed: October 21, 2011
    Date of Patent: July 8, 2014
    Assignee: Hoya Corporation
    Inventor: Mikio Kenishi
  • Patent number: 8713970
    Abstract: In order to produce a fluorophosphate glass including P5+ at a small content on the composition thereof, the composition is adjusted so as to provide well-balanced chemical durability and thermal stability. In the production of a fluorophosphate glass in which O2?/P5+>3.7, Al3+ content is in a predetermined amount or more and p5+ content is in a predetermined amount or less, a glass raw material is prepared by using an AlF3 in which the content of Al2O3 is limited to the range from 1 to 5% by mass, and the raw material is melted to produce the fluorophosphate glass.
    Type: Grant
    Filed: October 13, 2011
    Date of Patent: May 6, 2014
    Assignee: Hoya Corporation
    Inventor: Mikio Ikenishi
  • Patent number: 8695378
    Abstract: Methods of making glass include the steps of providing a glass melt in a first melting furnace and flowing the glass melt through a connecting tube from the first melting furnace to a second melting furnace. The methods further include the steps of heating the glass melt within a first area of the connecting tube with a first heating device and heating the glass melt within a second area of the connecting tube with a second heating device. Apparatus for making glass are also provided with a first melting furnace, a second melting furnace, and a connecting tube connecting the first and second melting furnaces. Example apparatus include a first heating device configured to heat the glass melt within the first area of the connecting tube and a second heating device configured to heat the glass melt within the second area of the connecting tube.
    Type: Grant
    Filed: November 26, 2008
    Date of Patent: April 15, 2014
    Assignee: Corning Incorporated
    Inventor: Robert Richard Thomas
  • Patent number: 8689588
    Abstract: An object of the present invention is to effectively reduce mixing of bubbles into a spun glass fiber. A glass-melting device 10 for producing glass fibers includes; a first glass-melting tank 12 exposed to a reduced-pressure atmosphere; a second glass-melting tank 14 and a third glass-melting tank 16 arranged below the first glass-melting tank 12; an ascending conduit 18 that sends up molten glass resulting from melting in the second glass-melting tank 14 to deliver the molten glass to the first glass-melting tank 12; a descending conduit 20 that sends the molten glass down from the first glass-melting tank 12 to deliver the molten glass to the third glass-melting tank 16; a decompression housing 22; and a bushing 24. The glass-melting device 10 further includes heating means for separately heating the first glass-melting tank 12, the second glass-melting tank 14, the third glass-melting tank 16, the ascending conduit 18, the descending conduit 20 and the bushing 24.
    Type: Grant
    Filed: March 8, 2010
    Date of Patent: April 8, 2014
    Assignee: Nitto Boseki Co., Ltd.
    Inventors: Norio Hirayama, Masahiko Takahashi, Naohiro Miyanaga, Kentarou Ogawa
  • Patent number: 8683827
    Abstract: An oblong conduit (13) for conditioning molten glass is disclosed. The wall (23) of the conduit is composed of a precious metal, e.g., a platinum-rhodium alloy, and can be equipped with precious metal tabs (29) for supporting the upper surface (25) of the wall so as to reduce sag of that surface at such times as the conduit is at an elevated temperature and is not filled with glass. The precious metal tabs (29) can be received in channels (31) formed in a refractory support structure (27). The refractory support structure (27) can be a laminate of two layers (33,35), where one of the layers (33) has a smaller grain structure than the other layer (35), the layers being held together by an adhesive (37).
    Type: Grant
    Filed: October 19, 2012
    Date of Patent: April 1, 2014
    Assignee: Corning Incorporated
    Inventors: Gilbert De Angelis, Raymond Eugene Fraley, John Jerry Kersting
  • Patent number: 8661852
    Abstract: The present invention relates to a device and to a method for the continuous fining or homogenizing of inorganic matter, preferably low-viscosity glass melts in an apparatus. The device and method are distinguished in that the inclusion of bubbles and the occurrence of striations in the glass end product are significantly reduced or even entirely avoided when the melt contact surface of the apparatus has iridium or a high-iridium alloy as its material.
    Type: Grant
    Filed: December 4, 2006
    Date of Patent: March 4, 2014
    Assignee: Schott AG
    Inventors: Michael Leister, Volker Ohmstede, Guenter Weidmann
  • Patent number: 8661853
    Abstract: A process for producing a glass in the production of a glass molded article formed of an optical glass by melting and clarifying a glass raw material to prepare a molten glass and molding said molten glass, the process comprising preparing a glass raw material that gives an oxide glass comprising, by cationic %, 12 to 65% of B3+, 0 to 20% of Si4+, 0 to 6% of Ge4+, 15 to 50% of total of La3+, Gd3+, Y3+, Yb3+, Sc3+ and Lu3+, 4 to 54% of total of Ta5+, Zr4+, Ti4+, Nb5+, W6+ and Bi3+, 0 to 35% of Zn2+, 0 to 9% of total of Li+, Na+ and K+, and 0 to 15% of total of Mg2+, Ca2+, Sr2+ and Ba2+, a total content of said cationic components in the oxide glass being 99 to 100%, and said glass raw material comprising carbonate and sulfate.
    Type: Grant
    Filed: November 9, 2009
    Date of Patent: March 4, 2014
    Assignee: Hoya Corporation
    Inventors: Tomoaki Negishi, Yasuhiro Fujiwara
  • Patent number: 8652659
    Abstract: A glass substrate for information recording medium, said glass substrate being composed of an aluminosilicate glass containing 60-75% by mass of SiO2, 5-18% by mass of Al2O3, 3-10% by mass of Li2O, 3-15% by mass of Na2O and 0.5-8% by mass of ZrO2 relative to the entire glass components. The glass substrate for information recording medium contains neither As (arsenic) nor Sb (antimony), while containing at least one substance selected from the group consisting of SO3 (sulfurous acid), F (fluorine), Cl (chlorine), Br (bromine) and I (iodine), as a refining agent. The molar ratio of the total amount of the refining agent to the amount of Al2O3 is within the range of 0.02-0.20.
    Type: Grant
    Filed: July 3, 2009
    Date of Patent: February 18, 2014
    Assignee: Konica Minolta Opto, Inc.
    Inventor: Hideki Kawai
  • Patent number: 8640500
    Abstract: Corrosion of the inner surface of the crown of a glassmelting furnace is reduced or avoided by directing at low velocity along that surface a gaseous stream comprising water vapor, or comprising the combustion products of an oxy-fuel burner operated at a stoichiometric ratio of at least 1.0, or the combustion products of a burner operated at a stoichiometric ratio less than 1.0, or by injecting into the furnace interior a gaseous reactant which reacts with alkali species in said space.
    Type: Grant
    Filed: April 14, 2011
    Date of Patent: February 4, 2014
    Assignee: Praxair Technology, Inc.
    Inventors: Kuang-Tsai Wu, Hisashi Kobayashi
  • Patent number: 8640499
    Abstract: Corrosion of the inner surface of the crown of a glassmelting furnace is reduced or avoided by directing at low velocity along that surface a gaseous stream comprising water vapor, or comprising the combustion products of an oxy-fuel burner operated at a stoichiometric ratio of at least 1.0, or the combustion products of a burner operated at a stoichiometric ratio less than 1.0, or by injecting into the furnace interior a gaseous reactant which reacts with alkali species in said space.
    Type: Grant
    Filed: April 14, 2011
    Date of Patent: February 4, 2014
    Assignee: Praxair Technology, Inc.
    Inventors: Kuang-Tsai Wu, Hisashi Kobayashi
  • Patent number: 8640498
    Abstract: Glasses are disclosed which can be used to produce substrates for flat panel display devices, e.g., active matrix liquid crystal displays (AMLCDs). The glasses have MgO concentrations in the range from 1.0 mole percent to 3.0 mole percent and ?[RO]/[Al2O3] ratios greater than or equal to 1.00, where [Al2O3] is the mole percent of Al2O3 and ?[RO] equals the sum of the mole percents of MgO, CaO, SrO, and BaO. These compositional characteristics have been found to improve the melting properties of batch materials used to produce the glass, which, in turn, allows the glasses to be fined (refined) with more environmentally friendly fining agents, e.g., tin as opposed to arsenic and/or antimony.
    Type: Grant
    Filed: December 10, 2010
    Date of Patent: February 4, 2014
    Assignee: Corning Incorporated
    Inventor: Adam J. G. Ellison
  • Publication number: 20140029088
    Abstract: A low infrared absorbing lithium glass includes FeO in the range of 0.0005-0.015 wt %, more preferably 0.001-0.010 wt %, and a redox ratio in the range of 0.005-0.15, more preferably in the range of 0.005-010. The glass can be chemically tempered and used to provide a ballistic viewing cover for night vision goggles or scope. A method is provided to change a glass making process from making a high infrared absorbing lithium glass having FeO in the range of 0.02 to 0.04 wt % and a redox ratio in the range of 0.2 to 0.4 to the low infrared absorbing lithium glass by adding additional oxidizers to the batch materials. A second method is provided to change a glass making process from making a low infrared absorbing lithium glass to the high infrared absorbing lithium glass by adding additional reducers to the batch material. In one embodiment of the invention the oxidizer is CeO2. An embodiment of the invention covers a glass made according to the method.
    Type: Application
    Filed: February 15, 2013
    Publication date: January 30, 2014
    Applicant: PPG INDUSTRIES OHIO, INC.
    Inventor: PGG INDUSTRIES OHIO, INC.
  • Patent number: 8631668
    Abstract: Methods of creating a batch of recycled glass from mixed color glass cullet. In one embodiment, the method includes receiving at a glass plant a weight and color composition percentage of a first batch of mixed color cullet. The glass plant also receives a weight and color composition percentage of a second batch of mixed color cullet. The weight and color composition percentage of the first batch and the second batch are combined to generate a combined weight and composition percentage. The combined weight and composition are percentage are used to generate, automatically at a glass plant, a formulation to produce glass of a desired color.
    Type: Grant
    Filed: November 10, 2005
    Date of Patent: January 21, 2014
    Assignee: MPH Energy LLC
    Inventors: Sean Duffy, Warren Blasland, Rick Lehman
  • Patent number: 8616025
    Abstract: A method of manufacturing glass comprises a stirring step in which molten glass MG is stirred. The stirring step comprises a first stirring step and a second stirring step. In the first stirring step, the molten glass MG is stirred while being directed upward from below in a first stirred tank 100a. In the second stirring step, the molten glass MG stirred in the first stirring step is stirred while being directed downward from above in a second stirred tank 100b. The first stirred tank 100a has a first discharge pipe 110a capable of discharging the molten glass MG from the bottom of a first chamber 101a. The second stirred tank 100b has a second discharge pipe 110b capable of discharging the molten glass MG from the liquid level LL of the molten glass MG in a second chamber 101b.
    Type: Grant
    Filed: September 11, 2012
    Date of Patent: December 31, 2013
    Assignee: AvanStrate Inc.
    Inventors: Kohei Yamamoto, Hitoshi Gekko
  • Publication number: 20130274085
    Abstract: Crystallizable glasses, glass-ceramics, IXable glass-ceramics, and IX glass-ceramics are disclosed. The glass-ceramics exhibit ?-spodumene ss as the predominant crystalline phase. These glasses and glass-ceramics, in mole %, include: 62-75 SiO2; 10.5-17 Al2O3; 5-13 Li2O; 0-4 ZnO; 0-8 MgO; 2-5 TiO2; 0-4 B2O3; 0-5 Na2O; 0-4 K2O; 0-2 ZrO2; 0-7 P2O5; 0-0.3 Fe2O3; 0-2 MnOx; and 0.05-0.2 SnO2. Additionally, these glasses and glass-ceramics exhibit the following criteria: a. a ratio: [ Li 2 ? O + Na 2 ? O + K 2 ? O + MgO + ZnO ] [ Al 2 ? O 3 + B 2 ? O 3 ] ?between 0.7 to 1.5; b. a ratio: [ TiO 2 + SnO 2 ] [ SiO 2 + B 2 ? O 3 ] ?greater than 0.04. Furthermore, the glass-ceramics exhibit an opacity ?about 85% over the wavelength range of 400-700 nm for an about 0.
    Type: Application
    Filed: March 15, 2013
    Publication date: October 17, 2013
    Inventors: George Halsey Beall, Marie Jacqueline Monique Comte, George Owen Dale, Linda Ruth Pinckney, Charlene Marie Smith, Ronald Leroy Stewart, Steven Alvin Tietje
  • Publication number: 20130239618
    Abstract: Objective of the present invention is to provide a glass melting furnace, a process for modifying a glass melt and a process for producing glass melt, whereby composition-modified glass melt containing an additive component at a high concentration can be produced with an excellent quality. The glass melting furnace 10 of the present invention is a glass melting furnace 10 for adding an additive to a molten state glass to form composition-modified glass melt, discharging the composition-modified glass melt, and a forehearth 20, said forehearth comprising a feed portion to feed an additive, and a heating means to form a heating gas phase portion above the liquid surface of the glass melt to convert the additive from the feed portion into melted particles of additive below the feed portion.
    Type: Application
    Filed: May 2, 2013
    Publication date: September 19, 2013
    Applicant: Asahi Glass Company, Limited
    Inventors: Yutaka Ishikawa, Chikao Tanaka
  • Patent number: 8530804
    Abstract: A method and a device for the continuous production of glass and glass ceramic products from a glass melt is provided, which simplifies the changing between two kinds of glass. The device includes a melting crucible and an induction coil, which preferably extends around the melting crucible in order to heat a glass melt by means of an induction field generated by the induction coil. The wall elements, which form the side wall of the crucible, have cooling channels, through which a cooling fluid can be conducted, so that the glass melt solidifies on the side wall and forms a skull layer. The interior side of the wall elements is formed at least in part by an aluminum nitride-containing ceramic.
    Type: Grant
    Filed: July 12, 2010
    Date of Patent: September 10, 2013
    Assignee: Schott AG
    Inventors: Uwe Kolberg, Sybill Nuettgens, Thomas Kirsch, Andreas Gross, Ernst-Walter Schaefer
  • Publication number: 20130192308
    Abstract: In a method for producing and refining a glass melt in a glass melting end, a mixture is fed to the glass melting end, the mixture is transformed into the glass melt under the action of heat in the glass melting end, and fuel is combusted with air and/or oxygen being supplied above the glass melt in order to generate heat in the glass melting end. In order to improve the thermal conditions inside the glass melting end, according to the invention wood dust is introduced as fuel into the combustion space present above the glass melt in the glass melting end and is combusted there, with air and/or oxygen being supplied.
    Type: Application
    Filed: March 14, 2011
    Publication date: August 1, 2013
    Inventors: Harald Zimmermann, Louis Kienle, Markus Beutinger
  • Patent number: 8490433
    Abstract: A method of applying ultrasonic acoustic energy to a glass melt by monitoring a glass melt temperature TY and transferring ultrasonic acoustic energy from an ultrasonic transducer to the glass melt at a controller power PC and a controller frequency vC through an ultrasonic probe positioned in the glass melt is provided. According to the method, the controller power PC is controlled in response to at least (i) the monitored glass melt temperature TY and (ii) a reference glass melt temperature TR. The controller frequency vC is controlled in response to at least (i) one or more input parameters from a temperature-viscosity curve characterizing the glass melt, (ii) one or more input parameters from one or more temperature dependent impedance response models of the glass melt, and (iii) ?Z, where ?Z represents a degree to which an impedance condition ZY of the ultrasonic probe differs from a reference impedance ZR when the ultrasonic probe is positioned in the glass melt.
    Type: Grant
    Filed: February 28, 2011
    Date of Patent: July 23, 2013
    Assignee: Corning Incorporated
    Inventors: Daniel Robert Boughton, Scott Michael Jarvis, Jonghak Kim, Zhiqiang Shi
  • Publication number: 20130171052
    Abstract: The invention describes a process for removing nonmetallic impurities from metallurgical silicon. A melt is produced from metallurgical silicon and halide-containing silicon. As a result, the impurities are sublimed out and removed from the melt in the form of nonmetal halides. Compared with the known process, in which gaseous halogen is blown through an Si melt, the novel process can be carried out in a particularly simple and efficient manner.
    Type: Application
    Filed: July 29, 2009
    Publication date: July 4, 2013
    Inventors: Seyed-Javad Mohsseni-Ala, Christian Bauch, Rumen Deltschew, Thoralf Gebel, Gerd Lippold, Matthias Heuer, Fritz Kirscht, Kamel Ounadjela
  • Patent number: 8468851
    Abstract: A vacuum degassing apparatus for molten glass is comprised of an uprising pipe, a vacuum degassing vessel, a downfalling pipe, an upstream side pit that supplies molten glass to the uprising pipe, and a downstream side pit that receives molten glass from the downfalling pipe. The vacuum degassing apparatus for molten glass is further comprised of a separating mechanism that separates a part of molten glass moving from the downfalling pipe to the downstream side pit, and a returning pipe that returns separated molten glass to the upstream side pit.
    Type: Grant
    Filed: August 31, 2012
    Date of Patent: June 25, 2013
    Assignee: Asahi Glass Company, Limited
    Inventors: Toru Nishikawa, Hironobu Yamamichi, Tetsuya Koyama, Yuji Endo, Hajime Itoh
  • Publication number: 20130135714
    Abstract: To provide a near infrared cut filter glass which has few bubble defects and exhibits high climate resistance. A near infrared cut filter glass made of fluorophosphate glass, which comprises, as represented by cation percentage, 25 to 55% of P5+, 1 to 25% of Al3+, 1 to 50% of R+ (wherein R+ is a total content of Li+, Na+ and K+), 1 to 50% of R2+ (wherein R2+ is a total content of Mg2+, Ca2+, Sr2+, Ba2+ and Zn2+), 1 to 10% of Cu2+ and 0 to 3% of Sb3+, and comprises as represented by anion percentage, 35 to 95% of O2? and 5 to 65% of F?, and which has a ?-OH value of from 0.001 to 0.1 mm?1.
    Type: Application
    Filed: January 23, 2013
    Publication date: May 30, 2013
    Applicant: Asahi Glass Company, Limited
    Inventor: Asahi Glass Company, Limited
  • Publication number: 20130111955
    Abstract: A process for making silica-based glass includes: (a) forming a glass precursor melt that includes glass network formers and glass network modifiers, the glass precursor melt being at a temperature in the range of 900 C to 1700 C and having a viscosity of not more than 3 Pa·s, and (b) refining the glass precursor melt. Either or both steps (a) and (b) can include stirring and/or be carried out under reduced pressure to enhance refining. The refined glass precursor melt preferably is mixed with additional materials including silica (SiO2) to form a silica-based glass melt.
    Type: Application
    Filed: November 3, 2011
    Publication date: May 9, 2013
    Inventors: D. Wayne Leidy, Dawid Dewet-Smith, Carl L. Fayerweather, Brett E. Hixson
  • Patent number: 8424342
    Abstract: A method for melting inorganic materials, preferably glasses and glass-ceramics, in a melting unit with cooled walls is provided. The method includes selecting the temperature of at least one region of the melt is selected in such a way as to be in a range from Teff?20% to Teff+20%, where the temperature Teff is given by the temperature at which the energy consumption per unit weight of the material to be melted is at a minimum, with the throughput having been selected in such a way as to be suitably adapted to the required residence time.
    Type: Grant
    Filed: March 31, 2004
    Date of Patent: April 23, 2013
    Assignee: Schott AG
    Inventors: Werner Kiefer, Hildegard Römer, Frank-Thomas Lentes, Guido Räke, Volker Ohmstede, Karin Naumann, Michael Leister, Gerhard Nuessle, Erich Rodek, Wolfgang Schmidbauer
  • Patent number: 8413466
    Abstract: A glass for a display substrate composed of 50 to 70% SiO2, 10 to 25% Al2O3, 8.4 to 20% B2O3, 0 to 10% MgO, 6 to 15% CaO, 0 to 10% BaO, 0 to 10% SrO, 0 to 10% ZnO, 0 to 5% TiO2, 0 to 5% P2O5, 0.01 to 0.2% alkali metal, and from 0.01% to less than 0.4% ZrO2, as expressed in % by mass. The glass can have a ?-OH value of 0.20/mm or more and an area of 0.1 m2 or more. The glass is produced by mixing raw materials to provide the SiO2, Al2O3, B2O3, MgO, CaO, BaO, SrO, ZnO, TiO2, P2O5 and alkali metal contents, electrically melting the raw materials in a melting furnace constructed of a high zirconia refractory; and refining, homogenizing and forming the glass melt.
    Type: Grant
    Filed: March 19, 2012
    Date of Patent: April 9, 2013
    Assignee: Nippon Electric Glass Co., Ltd.
    Inventors: Tatsuya Takaya, Masahiro Tomamoto
  • Patent number: 8408029
    Abstract: An oblong conduit (13) for conditioning molten glass is disclosed. The wall (23) of the conduit is composed of a precious metal, e.g., a platinum-rhodium alloy, and can be equipped with precious metal tabs (29) for supporting the upper surface (25) of the wall so as to reduce sag of that surface at such times as the conduit is at an elevated temperature and is not filled with glass. The precious metal tabs (29) can be received in channels (31) formed in a refractory support structure (27). The refractory support structure (27) can be a laminate of two layers (33,35), where one of the layers (33) has a smaller grain structure than the other layer (35), the layers being held together by an adhesive (37).
    Type: Grant
    Filed: November 17, 2009
    Date of Patent: April 2, 2013
    Assignee: Corning Incorporated
    Inventors: Gilbert De Angelis, Raymond Eugene Fraley, John Jerry Kersting
  • Patent number: 8402787
    Abstract: Methods and apparatus for refining and delivering a supply of molten glass include melting a supply of glass in a melter and discharging a stream of molten glass. A refining section is provided to refine the molten glass discharged by the melter and to deliver the molten glass downstream to a glass forming apparatus. The refining section is mounted for movement into and out of contact with the stream of molten glass to connect and disconnect the glass forming apparatus with the stream of molten glass.
    Type: Grant
    Filed: October 21, 2009
    Date of Patent: March 26, 2013
    Assignee: OCV Intellectual Capital, LLC
    Inventors: Bruno A. Purnode, Steve Mighton, William W. Toth, Shivakumar Kadur, David J. Baker
  • Publication number: 20130038940
    Abstract: A soda-lime-silica glass for solar collector cover plates and solar mirrors has less than 0.010 weight percent total iron as Fe2O3, a redox ratio of less than 0.350, less than 0.0025 weight percent CeO2, and spectral properties that include a visible transmission, and a total solar infrared transmittance, of greater than 90% at a thickness of 5.5 millimeters, and reduced solarization. In one non-limiting embodiment of invention, the glass is made by heating a pool of molten soda-lime-silica with a mixture of combustion air and fuel gas having an air firing ratio of greater than 11, or an oxygen firing ratio of greater than 2.31. In another non-limiting embodiment of the invention, streams of oxygen bubbles are moved through a pool of molten glass. In both embodiments, the oxygen oxidizes ferrous iron to ferric iron to reduce the redox ratio.
    Type: Application
    Filed: October 17, 2012
    Publication date: February 14, 2013
    Applicant: PPG INDUSTRIES OHIO, INC.
    Inventor: PPG INDUSTRIES OHIO, INC.
  • Patent number: 8347654
    Abstract: A vacuum degassing apparatus for molten glass is comprised of an uprising pipe, a vacuum degassing vessel, a downfalling pipe, an upstream side pit that supplies molten glass to the uprising pipe, and a downstream side pit that receives molten glass from the downfalling pipe. The vacuum degassing apparatus for molten glass is further comprised of a separating mechanism that separates a part of molten glass moving from the downfalling pipe to the downstream side pit, and a returning pipe that returns separated molten glass to the upstream side pit.
    Type: Grant
    Filed: August 10, 2010
    Date of Patent: January 8, 2013
    Assignee: Asahi Glass Company, Limited
    Inventors: Toru Nishikawa, Hironobu Yamamichi, Tetsuya Koyama, Yuji Endo, Hajime Itoh
  • Patent number: 8283270
    Abstract: The neutral glass according to the present invention is characterized by excellent hydrolytic stability, a relatively low processing temperature and low content of boron oxide. Here, the neutral glass has the following composition, in percent by weight based on oxide content: SiO2, 70-79; B2O3, 0-<5; Al2O3, <5; ZrO2, 0.5-<5; TiO2, 0.5-6; Na2O, 1-6; K2O, 3 to 8; and Li2O, 0-0.5, wherein a total amount of SiO2 and B2O3 is less than 83 percent by weight.
    Type: Grant
    Filed: June 11, 2010
    Date of Patent: October 9, 2012
    Assignee: Schott AG
    Inventors: Joerg Hinrich Fechner, Christof Kass
  • Patent number: 8196432
    Abstract: The invention relates to a furnace for the continuous melting of a composition comprising silica, the said furnace comprising at least two tanks in series, said tanks each comprising at least one burner submerged in the melt. The invention also relates to the process for manufacturing compositions comprising silica using the furnace, the silica and the fluxing agent for the silica being introduced into the first tank. The invention makes it possible to produce glass color frits, tile frits and enamel with a high productivity, low temperatures and short transition times.
    Type: Grant
    Filed: July 30, 2003
    Date of Patent: June 12, 2012
    Assignee: Saint-Gobain Glass France
    Inventors: Remi Jacques, Pierre Jeanvoine, Biagio Palmieri
  • Patent number: 8196434
    Abstract: A molten glass delivery system is modified to match it with the overflow downdraw process. A substantial number of defects not removed by the finer are diverted to the unusable inlet and distal edges of the sheet. In one embodiment, the stirring device is relocated from the outlet to the inlet of the finer. In another embodiment, the basic shape of the finer is preferably changed from a cylindrical shape to a Double Apex (or Gull Wing) shaped cross-section, whereby the apexes of the finer contain the glass that will form the unusable inlet end of the glass sheet. The finer vent or vents are preferably located at these apexes such that any homogeneity defects caused by the vents are diverted to the unusable inlet end of the glass sheet. The finer cross-section has a high aspect ratio for increased fining efficiency as compared to a cylindrical finer.
    Type: Grant
    Filed: March 28, 2008
    Date of Patent: June 12, 2012
    Assignee: Corning Incorporated
    Inventor: Richard B. Pitbladdo