Self-supporting Particle Making (e.g., Bead, Ball, Granule, Etc.) Patents (Class 65/21.1)
  • Patent number: 7059153
    Abstract: A powder of solid and spherical glass particles is easily manufactured by subjecting a mixed solution of a raw material oxide powder comprising a glass network-forming element, and an aqueous solution of a water-soluble compound comprising a glass-forming element other than the element of the raw material oxide powder to spray-thermal decomposition, wherein the spray-thermal decomposition temperature is set to be in a specific range according to the amount of the raw material oxide powder in the total of the amount of the raw material oxide powder and the oxide-converted amount of the water-soluble compound, as well as the average particle size of the glass powder to be manufactured.
    Type: Grant
    Filed: May 30, 2001
    Date of Patent: June 13, 2006
    Assignee: Murata Manufacturing Co., Ltd.
    Inventors: Koji Hattori, Shinsei Okabe, Toshiyuki Miyoshi
  • Patent number: 6993934
    Abstract: Dental glass powders, methods for producing the powders and dental compositions including the glass powders. The powders preferably have a well-controlled particle size, narrow size distribution and a spherical morphology. The method includes forming the particles by a spray pyrolysis technique. The invention also includes dental filler and restorative compositions that include the glass powders.
    Type: Grant
    Filed: September 8, 2003
    Date of Patent: February 7, 2006
    Assignee: Cabot Corporation
    Inventors: Toivo T. Kodas, Mark J. Hampden-Smith, Quint H. Powell, James H. Brewster, Daniel J. Skamser, Klaus Kunze, Paolina Atanassova, Paul Napolitano
  • Patent number: 6915664
    Abstract: The invention relates to a method of doping silica with fluorine. The method described comprises mixing a powder of silica granules with a solid fluorine compound, thermally decomposing the solid fluorine compound under an inert atmosphere, and densifying the granules to obtain dense grains of doped silica. It is preferable to use ammonium bifluoride. The invention is applicable to preparing high index silica glass, in particular for fabricating optical fiber preforms.
    Type: Grant
    Filed: May 30, 2002
    Date of Patent: July 12, 2005
    Assignee: Alcatel
    Inventors: Pierryle Jourdier, Jean-Florent Campion, Jean-Maxime Saugrain, Christelle Lavallade, Claire Wane Nguila
  • Patent number: 6849242
    Abstract: The granule consists of individual granules approximately spherical in shape, having a pore volume of 0.5 cm3, a mean diameter of pores of 50 nm or less, a specific surface area of 100 m2/g or less, and a bulk density of 0.7 g/cm3 or higher. It is produced by dispersing a fumed silica obtained by hydrolysis of a silicon compound into pure water to obtain a slurry, and drying the slurry. The granule is used for producing high purity synthetic quartz glass powder. The method further comprises: a first heat treatment under an oxygen-containing atmosphere, a second heat treatment in a temperature range of from 600 to 1100° C., and a third heat treatment in a temperature range of from 1100 to 1300° C. under an atmosphere containing hydrogen chloride; and a step of densification comprising calcining the product at a temperature not higher than 1500° C. under vacuum or in an atmosphere of gaseous hydrogen or gaseous helium.
    Type: Grant
    Filed: September 28, 2000
    Date of Patent: February 1, 2005
    Assignees: Heraeus Quarzglas GmbH & Co. KG, Shin-Etsu Quartz Products Co., Ltd.
    Inventors: Rainer Koeppler, Fritz-Ulrich Kreis, Klaus Arnold, Hiroshi Matsui, Kasumi Hoshikawa, Tsukasa Sakaguchi
  • Publication number: 20040226316
    Abstract: A glass powder fabrication method is disclosed. Fine glass powder can be fabricated without a mechanical crushing process, a phenomenon that moisture is adsorbed to a particle surface of the glass powder or hydrated compound is generated is prevented, and a transmittance of a dielectric layer used for a PDP can be increased. A glass compound is dissolved in a solvent, the dissolved glass compound is atomized to create droplets, which are then melt to be vitrified.
    Type: Application
    Filed: December 30, 2003
    Publication date: November 18, 2004
    Applicant: LG ELECTRONICS INC.
    Inventor: Won Seok Moon
  • Patent number: 6818300
    Abstract: Methods are provided for coating glass waste. A mixture including a universal resin, a curing agent, a flow modifier, and a colorant is applied to the glass waste. The glass waste is then cured. In some embodiments, the mixture is sprayed onto the glass waste. In an alternative embodiment, the mixture is mixed with the glass waste.
    Type: Grant
    Filed: December 23, 2002
    Date of Patent: November 16, 2004
    Assignee: Tri E Holding, LLC
    Inventors: Dennis Dean Loyd, Larry Lee Lough
  • Patent number: 6813902
    Abstract: A retrofit technology for air-fuel fired, vertical glass furnace for oxygen firing or boosting to provide additional heat to the process to increase furnace production capacity. The additional firing using oxygen is strategically controlled to enable enhanced radiation from oxygen flame for the spheroidizing process without negative effects on the overall process. With proper implementation, an increased production from 50% to 200%, depending on the size of the spheres, can be achieved while maintaining acceptable product quality. Processes in accordance with the present invention can be performed using one of a number of methods of oxygen boosting.
    Type: Grant
    Filed: October 19, 2001
    Date of Patent: November 9, 2004
    Assignees: American Air Liquide, Inc., Air Liquide America, L.P., L'Air Liquide S.A.
    Inventors: Eric Streicher, John Foss, Mahendra L. Joshi, Harley A. Borders
  • Publication number: 20040198580
    Abstract: Low dielectric constant dielectric ceramics for a borosilicate-based low temperature fired multi-layer substrate is disclosed which can be fired at a wide temperature range of above and below 900° C. and exhibits a low loss electrical property. By controlling the types and addition amount of the alkali earth metal oxide, the linear shrinkage behavior can be considerably controlled while maintaining the electrical property unchanged. The composition facilitates matching a linear shrinkage with a heterogeneous material having certain shrinkage characteristics.
    Type: Application
    Filed: August 7, 2003
    Publication date: October 7, 2004
    Inventors: Jae-Hwan Park, Jae-Gwan Park, Dong-Soon Shin, Young-Jin Choi
  • Publication number: 20040168473
    Abstract: The apparatus for producing glass beads of the present invention comprises a melting pot 2 for heating and melting glass, a nozzle 2A for dripping molten glass 4 in the melting pot 2, which is disposed at the bottom of the melting pot 2, and a liquid glass droplet receiver 11 filled with cooling solution 150 for cooling the liquid glass droplet 10 dripped from the nozzle 2A, which is disposed under the nozzle 2A, wherein the cooling solution 150 is made from a material that forms a bubble layer around the liquid glass droplet 10 as the cooling solution 150 is vaporized due to the heat of the liquid glass droplet 10 during a period when the liquid glass droplet 10 is cooled down to a temperature lower than the glass transfer temperature in the cooling solution 150.
    Type: Application
    Filed: November 7, 2003
    Publication date: September 2, 2004
    Inventors: Masahiro Hiraka, Shigeo Furukawa, Mitsuhiro Fujita
  • Publication number: 20040148966
    Abstract: Methods for making glasses and glass-ceramics comprising Al2O3 and SiO2. Glasses made according to the present invention can be made, formed as, or converted into glass beads, articles (e.g., plates), fibers, particles, and thin coatings. Some embodiments of glass-ceramic particles made according to the present invention can be are particularly useful as abrasive particles.
    Type: Application
    Filed: February 5, 2003
    Publication date: August 5, 2004
    Applicant: 3M Innovative Properties Company
    Inventors: Ahmet Celikkaya, Thomas J. Anderson
  • Publication number: 20040134230
    Abstract: Dental glass powders, methods for producing the powders and dental compositions including the glass powders. The powders preferably have a well-controlled particle size, narrow size distribution and a spherical morphology. The method includes forming the particles by a spray pyrolysis technique. The invention also includes dental filler and restorative compositions that include the glass powders.
    Type: Application
    Filed: September 8, 2003
    Publication date: July 15, 2004
    Inventors: Toivo T. Kodas, Mark J. Hampden-Smith, Quint H. Powell, James H. Brewster, Daniel J. Skamser, Klaus Kunze, Paolina Atanassova, Paul Napolitano
  • Patent number: 6578381
    Abstract: The oxides-enclosed fine glass particles are arranged such that two or more pieces of at least two kinds of enclosing particles, which comprise oxides, double oxides, or salts of oxyacids, or double oxides or double salts thereof, are enclosed in each of the fine glass particles. The fine particles can be easily manufactured by mixing a powder material of glass with a powder material of oxides which comprise oxides, double oxides, or salts of oxyacids, or double oxides or double salts thereof that are not made to glass; converting the thus obtained mixture of the materials into a mixture in a vapor-state by supplying the thermal plasma thereto; and quickly cooling the mixture in the vapor-state. Highly-scattered fine particles of oxides can be easily obtained from the fine particles, and thus a plurality of kinds of fine particles of oxides can be evenly and uniformly mixed in a small amount with a mother material without being unevenly scattered.
    Type: Grant
    Filed: December 20, 2001
    Date of Patent: June 17, 2003
    Assignees: Nisshin Seifun Group Inc., Nisshin Engineering Inc.
    Inventors: Keiichi Nishimura, Takashi Fujii, Kazuhiro Yubuta, Sadao Shinozaki
  • Publication number: 20030051506
    Abstract: A method for producing glass balls, wherein a glass flow is fed between two rollers which are driven synchronously but counter-rotatingly in a flow direction, from a feed tank containing a mass of molten glass. The rollers have hemispherical depressions distributed over the circumference and form spherical beads on a thin glass strip successively in the region of an imaginary contact tangent. A thickness of the glass strip is fixed by the spacing between the rollers externally of the depressions in the region of the contact tangent. Crude balls are separated from the glass strip by a separating device, once the glass strip, containing the spherical beads, is cooled. The crude balls are subjected to a cold surface finishing treatment.
    Type: Application
    Filed: July 10, 2002
    Publication date: March 20, 2003
    Inventors: Hatto Schafer, Christian Schenk, Horst Wolf, Andreas Walsdorf
  • Patent number: 6516633
    Abstract: The present invention is directed to microemulsion techniques for rapidly preparing photochromic glass nanoparticles and to the photochromic glass nanoparticles so prepared. More particularly, the method of the invention comprises the combination of two microemulsions, one containing a water-soluble silver salt and a glass precursor and the other containing a halide salt and an initiator for glass formation, which process rapidly yields silver halide particles. This invention gives nanometer-sized silver halide particles embedded in glass, thus providing photochromic glass nanoparticles without further annealing, or at most mild annealing. These nanoparticles are valuable as added components to any macro-material that one might wish to have photochromic properties. The particles would impart photochromism while not affecting the physical properties of the material.
    Type: Grant
    Filed: August 22, 2001
    Date of Patent: February 11, 2003
    Assignee: Nano-Tex, LLC
    Inventors: Lael L. Erskine, Dan B. Millward, David S. Soane
  • Publication number: 20030024268
    Abstract: A method of producing glass balls, which method can be used for all types of glass, even for glass balls having a very small diameter. If glass fibers or glass rods are plasticized at least partially at their ends by the effect of heat, if glass portions are separated from the plasticized parts of the glass fibers or glass rods, sprayed or passed through nozzles, and if glass balls are formed by subsequently cooling the separated and sprayed glass portions as a result of minimizing the surface energy, then a complex, mechanical surface-finishing treatment is not required.
    Type: Application
    Filed: June 26, 2002
    Publication date: February 6, 2003
    Inventors: Lars Christian Herzbach, Christian Schenk, Hatto Schafer
  • Patent number: 6499316
    Abstract: In a method of producing a glass gob by continuously dropping a molten glass 9 from a nozzle 2 in a dropping direction, a gas flow 20 is caused to continuously flow in the dropping direction along an outer peripheral surface of the nozzle 2 at a predetermined flow rate. The gas flow 20 applies a wind pressure to the molten glass 9 appearing from a nozzle end 2a of the nozzle 2 to drop the molten glass 9.
    Type: Grant
    Filed: October 5, 2001
    Date of Patent: December 31, 2002
    Assignee: Hoya Corporation
    Inventors: Atsushi Uezaki, Katsumi Utsugi, Junichi Watanabe
  • Patent number: 6499315
    Abstract: The present invention relates to a synthetic quartz glass, which is a material for producing an optical member having an excellent excimer laser resistance, and a production method thereof with a good productivity. That is, the synthetic quartz glass produced by vitrifying glass fine particles obtained by flame hydrolysis of an organodisilazane compound directly on a substrate having a birefringence index of 5 nm/cm or less, a refractive index difference (&Dgr;n) of 2×10−6/cm or less, and an ArF saturated absorbance of 0.05/cm or less at a pulse energy density of 100 mJ/cm2/pulse.
    Type: Grant
    Filed: September 28, 2000
    Date of Patent: December 31, 2002
    Assignees: Shin-Etsu Quartz Products Co., Ltd, Shin-Etsu Chemical Co., Ltd.
    Inventors: Hiroyuki Nishimura, Akira Fujinoki, Hisatoshi Otsuka
  • Publication number: 20020083740
    Abstract: Silica grain of desired properties and size is created in a vacuum chamber. Fine silica powder is injected in the chamber or silica powder is formed in situ by combusting precursors. A plasma is formed centrally in the chamber to soften the silica powders so that they stick together and form larger grains of desired size. The grains are collected, doped, fused and flowed into tubes or rods. A puller pulls the tube or rod through a chamber seal into a lower connected vacuum chamber. The tube or rod is converted to rods and fibers or plates and bars in the connected chamber. Fused silica in a crucible tray is subjected to ultrasound or other oscillations for outgassing. Gases are removed by closely positioned vacuum ports.
    Type: Application
    Filed: June 15, 2001
    Publication date: July 4, 2002
    Inventor: Kiril A. Pandelisev
  • Patent number: 6408648
    Abstract: The invention provides a method for efficiently producing, in a low temperature region, a thin film or micro-spherules of a single component type or a multi-component type metal oxide glass, wherein an organic metal compound is subjected to hydrolyzation in a reaction liquid consisting of water and an organic solvent, with halogen ions (F−, Cl−) as a catalyst in the presence of boron ions (B′), followed by dehydration and condensation, after which a reaction product is vitrified at a temperature of 200° C. or below, thereby obtaining the single component type or multi-component type metal oxide glass film (reaction at a pH value between 5.0 and 4.5), or micro-spherules (reaction at a pH value between 8 an 10). Transparent and homogeneous glass film or micro-spherules, which are excellent in the heat-resistance, moisture-resistance, insulating property, gas-barrier property, and ion-migration preventive property, can be obtained in a normal temperature region.
    Type: Grant
    Filed: March 12, 1997
    Date of Patent: June 25, 2002
    Inventor: Toshinori Morizane
  • Patent number: 6360562
    Abstract: Glass powders and methods for producing glass powders. The powders preferably have a small particle size, narrow size distribution and a spherical morphology. The method includes forming the particles by a spray pyrolysis technique. The invention also includes novel devices and products formed from the glass powders.
    Type: Grant
    Filed: August 27, 1998
    Date of Patent: March 26, 2002
    Assignee: Superior Micropowders LLC
    Inventors: Toivo T. Kodas, Mark J. Hampden-Smith, James Caruso, Quint H. Powell, Audunn Ludviksson
  • Patent number: 6360563
    Abstract: In a process for manufacture of dense, amorphous quartz glass granulate by production of a porous granulate from amorphous SiO2 powder and vitrification of the granulate, a porous SiO2 granulate is exposed to a fuel gas flame and is finely dispersed, heated and vitrified therein. The fuel gas flame is more flexible as concerns adjustment of the temperature than in known processes. It is in particular possible to set higher temperatures. The granulate can be exposed to very high sintering temperatures in the fuel gas flame without sintering into agglomerates. At the same time, heat resistance problems of sintering containers such as furnaces and melting pots are avoided. In addition, contamination of the SiO2 granulate by contact with the walls of sintering or vitrifying containers is eliminated. The process makes it possible to economically produce a highly pure and dense quartz glass granulate.
    Type: Grant
    Filed: August 10, 2000
    Date of Patent: March 26, 2002
    Assignee: Heraeus Quarzglas GmbH & Co. KG
    Inventors: Rolf Gerhardt, Rainer Köppler, Werner Ponto, Waltraud Werdecker
  • Patent number: 6354108
    Abstract: The object of the present invention is to provide a safe, easy-to-manage, successive, and swift method and system for preventing granulated blast-furnace slag from solidifying. Carbonated water is generated by dissolving carbon dioxide in water. Granulated blast-furnace slag which has been cooled is immersed in the generated carbonated water.
    Type: Grant
    Filed: December 16, 1999
    Date of Patent: March 12, 2002
    Inventor: Junzo Toyota
  • Patent number: 6339940
    Abstract: A process for manufacturing synthetic quartz glass involves feeding a quartz glass-forming raw material to a high-temperature gas zone within a chamber, converting the quartz glass-forming raw material into quartz soot, and forming synthetic quartz glass from the soot. A suspended soot-discharging gas which has been flow-straightened in a suspended soot discharging direction flows through the chamber in the vicinity of the high-temperature gas zone. This process keeps free suspended soot from settling onto the surface of the quartz ingot where fusion and growth take place, thereby preventing the formation of bubbles within the quartz glass under growth.
    Type: Grant
    Filed: April 20, 2000
    Date of Patent: January 22, 2002
    Assignee: Shin-Etsu Chemical Co., Ltd.
    Inventors: Motoyuki Yamada, Hisatoshi Otsuka, Koji Matsuo
  • Patent number: 6318123
    Abstract: The method for granulating liquid slag melts, in particular blast furnace slag, in which the melt (2) is ejected into a cooling chamber via a slag tundish (1) and in which fluid under pressure, in particular compressed gas, vapor or pressurized water, is injected in the direction of the slag exit (6) in order to eject said liquid slag, is characterized in that the pressure fluid jet discharges into a throttle pipe (3) which is immersed in the slag bath and whose lower edge is mounted so as to be adjustable in the height direction (4). The corresponding device comprises a lance (7) which is surrounded by a height-adjustable throttle pipe (3) whose lower edge (5) is immersed in the slag bath (2) contained in the tundish (1) and forms a throttling cross section between the slag exit (6) and the slag bath (2).
    Type: Grant
    Filed: August 1, 2000
    Date of Patent: November 20, 2001
    Assignee: “Holderbank”Financiere Glarus AG
    Inventor: Alfred Edlinger
  • Patent number: 6301935
    Abstract: New glass fibers having an average length of about 100 to 400 &mgr;m and an apparent density of about 1 to 0.2 g/cm3 are produced by spinning glass fibers, comprising spinning glass fibers into bundles, cooling with liquid to form wet bundles, directly cutting such bundles in the wet state, without previous drying, grinding said bundles to milled glass fibers in a high-efficiency mixer with the addition of a liquid, and then drying. The fibers are especially suited for filling polyurethanes by the PUR-RIM process.
    Type: Grant
    Filed: June 30, 1994
    Date of Patent: October 16, 2001
    Assignee: Bayer Aktiengesellschaft
    Inventors: Raymond Audenaert, Alban Hennen, Josef Schmoll, Heinz Goller
  • Patent number: 6296826
    Abstract: An efficient method is proposed for the utilization of heretofore useless extremely fine fluffy silica particles obtained as a flue dust in the flame-hydrolysis of vaporizable silicon compound in an oxyhydrogen flame in the manufacturing process of fused silica glass. The method comprises the steps of (a) uniformly mixing the silica particles with water, (b) drying the wet mixture under specified conditions to give dried cakes of the silica particles, (c) disintegrating the dried cakes into porous silica beads having an appropriate particle diameter, (d) semi-sintering the porous silica beads at 800 to 1300° C. and (e) vitrifying the semi-sintered silica beads at 1350 to 1550° C. into vitrified poreless silica glass particles which can be used as a base material for the production of fused silica glass articles.
    Type: Grant
    Filed: December 30, 1994
    Date of Patent: October 2, 2001
    Assignee: Shin-Etsu Quartz Products Co., Ltd.
    Inventors: Akira Fujinoki, Akihiko Sugama, Tohru Yokota
  • Patent number: 6279351
    Abstract: A method for making glass and particularly ceramic frits, comprising the steps of: introducing in a wet grinding unit, after a metering step according to chosen proportions, materials which constitute a mixture to be melted, to produce a slurry; screening and collecting said slurry in a storage tank; introducing the collected slurry in a melting furnace to make a liquid component of the slurry evaporate; and forming a melted paste of vitreous material, adapted to be converted into a ceramic frit.
    Type: Grant
    Filed: August 2, 1999
    Date of Patent: August 28, 2001
    Assignee: Sacmi Cooperativa Meccanici Imola S.c.r.l.
    Inventors: Andrea Bresciani, Pierugo Acerbi