Abstract: Melters for glass forming apparatuses and glass forming apparatuses comprising the same are disclosed. According to one embodiment, a melter for melting glass batch materials includes a base portion and a rigid exoskeleton rigidly attached to the base portion and comprising a plurality of upright members interconnected with a plurality of cross members defining an exoskeleton interior volume. Connection nodes formed at intersections of the plurality of cross members with upper ends of the plurality of upright members are constrained from movement relative to the base portion in a longitudinal direction, a transverse direction, and a vertical direction. A tank assembly is positioned on the base portion in the exoskeleton interior volume and coupled to the rigid exoskeleton. In some embodiments, the melter has a dynamic resistance greater than 0.3.
Type:
Grant
Filed:
October 26, 2012
Date of Patent:
March 10, 2015
Assignee:
Corning Incorporated
Inventors:
Raymond Eugene Fraley, Shayne O Manning, Jason Sauers
Abstract: The present invention relates to a glass meting furnace comprising a channel-shaped melting tank, the batch materials being introduced at an upstream end, the molten glass being recovered at the downstream end, said furnace being heated by means of burners, in which the combustion energy is produced by oxy-fuel combustion in respect of at least 65% thereof, the burners being distributed on the walls along the length of the furnace, in which flue gas discharge is mostly localized close to the upstream end near the openings through which the batch materials are introduced, the rest of the flue gas being removed close to the downstream part so as to maintain dynamic sealing with respect to the surrounding atmosphere.
Abstract: For permitting temperature manipulation of a melt even at a conductivity below 10?1 ??1 cm?1 and thus permitting refining of the melt at temperatures about 1700° C., the invention provides a method and a device for temperature manipulation of a melt (16), in particular in a refiner unit. The melt (16) is heated at least by ohmic resistance heating with at least two electrodes (4) that are arranged in the melt (16). At least a part of the melt (16) is cooled. The device (1) for temperature manipulation, refining, purification and homogenisation of a melt (16) comprises at least one arrangement for accommodating melt material (36, 16), defining an inner chamber, and at least two electrodes (4) for ohmic resistance heating of the melt (16). The electrodes (4) project into the inner chamber of the arrangement, in particular of a vessel (2).
Type:
Grant
Filed:
January 22, 2007
Date of Patent:
October 28, 2014
Assignee:
Schott AG
Inventors:
Andreas Gross, Hildegard Roemer, Norbert Greulich-Hickmann, Guido Raeke, Guenter Weidmann, Thomas Stelle, Volker Ohmstede, Wolfgang Jost
Abstract: The invention concerns NOx-reduced firing of glass melting furnaces with preferably lateral fuel introduction at the combustion air ports thereof, wherein cross-flows of combustion air and combustible gas are suppressed by means of wall segments arranged in the combustion air port, air turbulence at the wall segment is reduced by waste gas filling of reduced-pressure regions and a primarily low-turbulence flame base is produced, which is based on the introduction of combustible gas in the form of a free jet. The wall segment and the waste gas filling jointly form a so-called flame base screen. As a secondary aspect the free jet is protected by the combustible gas jet being introduced into the core shadow of the flame base screen. The wall segment preferably simulates the idealised projection of a free gas jet, from the direction of view of the afflux flow of combustion air.
Type:
Application
Filed:
June 18, 2003
Publication date:
May 27, 2004
Inventors:
Frank Hegewald, Peter Hemmann, Helmut Heelemann
Abstract: A method of producing flat glass in which foam which appears on the surface of molten glass melted using oxy-fuel burners is dispersed by directing a diffuse, luminescent flame onto the surface of the glass carrying the foam.
Abstract: This apparatus is a furnace for heating molten material which employs oxygen-fuel burner assemblies. Preferably, the assemblies are submerged in the molten material. They are water cooled top down units with burner nozzles being off-set from the supply column. The apparatus utilizes one or more burners for each top down supply column. The supply column and attached burners can be rotated or moved in a manner to avoid the open chimney effect seen with fixed air-fuel burners of the prior art. These burners with an off-set nozzle like the letter L are rotated at high speed or oscillated to distribute the combustion in the form of gas bubbles or a gas curtain. In another embodiment, the oxy-fuel burners are not submerged. The nozzles are aimed at unmelted batch or the upper surface of the molten material for controlled splashing.
Abstract: The present invention provides lead and cadmium free glass enamel compositions. In one embodiment of the invention, glass frits include from about 0.1 percent by weight to about 15 percent by weight Nb.sub.2 O.sub.5, less than about 3 percent by weight alkali metal oxides, less than about 3 percent by weight ZnO, less than about 1 percent by weight B.sub.2 O.sub.3, and precursors from which Bi.sub.2 SiO.sub.5 can be crystallized upon firing, said precursors including Bi.sub.2 O.sub.3 and SiO.sub.2. Glass frits according to the present invention preferably further include up to about 25 percent by weight of coloring oxides, such as CeO.sub.2, Co.sub.3 O.sub.4, In.sub.2 O.sub.3, SnO, Cr.sub.2 O.sub.3, CuO, Fe.sub.2 O.sub.3, MnO.sub.2, MoO.sub.3, NiO, and V.sub.2 O.sub.5. By incorporating various amounts of coloring oxides into the compositions, the degree of crystallization and the rate at which crystallization occurs upon firing of the compositions can be controlled.
Type:
Grant
Filed:
January 12, 1999
Date of Patent:
August 22, 2000
Assignee:
Ferro Corporation
Inventors:
Srinivasan Sridharan, Robert P. Blonski, Hasan B. Emlemdi, Gordon J. Roberts, Ivan H. Joyce
Abstract: Method of making polarizing glass having integral polarizing and non-polarizing regions is disclosed. The method involves applying a protective glass/frit material capable of blocking reducing gas to the surface of the glass to form a desired pattern, exposing the glass to a reducing gas atmosphere to render unprotected glass polarizing, and removing the protective glass/frit material to reveal underlying non-polarizing regions.
Abstract: A flat glass panel 1 for a picture display device of the flat type, is formed by two glass cover plates (3, 5) with at least one glass plate (4, 4', 4", . . . ) between them, and a vitreous frit (8) between the cover plates along the outer edges of the cover plates so as to obtain a box-type glass panel in which a channel structure is present. After heating to the melting temperature of the frit (8), the panel is cooled down to a transitional temperature of the frit, while the space between the cover plates is partly exhausted during the cooling-down phase at a temperature which lies between the melting temperature and the transitional temperature of the frit. Then the temperature is kept constant at approximately the transitional temperature until the frit has become undeformable, said space (13) between the cover plates (3, 5) being fully evacuated then. Finally, cooling-down continues to room temperature, and the space (13) inside the panel is hermetically sealed off.
Type:
Grant
Filed:
April 17, 1998
Date of Patent:
February 8, 2000
Assignee:
U. S. Philips Corporation
Inventors:
Maarten H. Zonneveld, Pieter J. Q. Van Voorst Vader, Jacob Brinkert
Abstract: Flat glass provided with precision structures is required for precision applications, especially for glasses with optical properties, for example for modern flat display screen glass. A method for forming precision structures in or on flat glass includes filling a structuring surface of a forming tool with a paste-like material and pressing the forming tool on one side of the flat glass. The forming tool is heated locally shortly prior and/or during or after contact with the glass surface with the structuring surface from the outside until the structuring surface down to a depth predetermined by the height of the structures being formed reaches a temperature at which a melting and hardening of the paste-like material forming the structures occurs during contact with the flat glass. The local heating of the structuring surface is performed by laser radiation which is passed through the flat glass to the structuring surface. Alternatively an inductive or resistance heating can be performed.
Abstract: A ceramic enamel composition is described which contains a zinc-containing oxide frit, a zinc borate seed material, a pigment, and a vehicle. The zinc borate seed material is preferably crystalline in nature, and promotes crystal growth upon firing. A preferred crystalline zinc borate seed material is selected from the phases Zn.sub.3 B.sub.2 O.sub.6 and Zn(BO.sub.2).sub.2, and mixtures thereof. Upon firing and press-forming a glass substrate coated with the enamel, components of the enamel adhere to the substrate while reducing sticking of the coated region to the forming die. The ceramic enamel is particularly useful in providing a colored border around the periphery of automotive glass and is effective in improving appearance and reducing degradation of underlying adhesives by ultraviolet radiation.
Abstract: Roof of a working tank or of a glass melting furnace having a basin containing molten glass and covered by the radiation roof of highly refractory firebrick material, in which the roof is constructed with horizontal supporting elements in the form of straight arches (3) bearing the load of the roof (1) and spanning the tank at intervals, and with horizontal slabs (4) covering the open intervals between the supporting elements (3) and laid crosswise between the supporting elements (3).
Abstract: The present invention is directed to a regenerator furnace which is useful in making glass, the regenerator furnace including burner pipes, each burner pipe having a generally square or rectangular cross section, the upper part or cover of each pipe being built with monolithic elements made of refractory material and of sufficient extent for each upper element to rest at its ends on the refractory elements forming port side walls, these lateral elements themselves resting on refractory elements forming the base of the pipes.
Type:
Grant
Filed:
December 20, 1982
Date of Patent:
October 30, 1984
Assignee:
Societe Europeenne des Produits Refractaires
Abstract: The specification discloses a hood for the gathering hole of a glass furnace which minimizes the escape of hot gases through the gathering hole while open for removal of glass from the furnace to reduce air pollution and otherwise improve personnel comfort.