With Fiber Stretching, Drawing, Or Pulling (e.g., From Rod, Etc.) Patents (Class 65/435)
  • Patent number: 10641945
    Abstract: An optical fiber manufacturing apparatus includes a heating furnace configured to heat and melt an optical fiber preform; a pulling mechanism configured to adjust an outer diameter of a glass optical fiber by drawing out the glass optical fiber from the optical fiber preform melted through the heating by the heating furnace, and to draw the glass optical fiber that has been adjusted in outer diameter; a coating mechanism configured to apply a predetermined resin on an outer circumference of the glass optical fiber that has been adjusted in outer diameter; and a transport mechanism configured to returnably retract the coating mechanism from a passage route of the glass optical fiber.
    Type: Grant
    Filed: September 19, 2019
    Date of Patent: May 5, 2020
    Assignee: FURUKAWA ELECTRIC CO., LTD.
    Inventor: Takashi Suzuki
  • Patent number: 10611670
    Abstract: A sealing arrangement for a drawing furnace including a vertical center hole with surrounding heating elements for receiving a glass preform including a tapered portion connected to an extension rod. A sealing with an opening is arranged on top of the furnace. The arrangement includes an outer annular bushing arranged on top of the furnace and an inner annular bushing with a first and an opposing second vertical end. The inner bushing is positionable to surround at least part of the tapered portion with the first end positioned to the region of the beginning of the tapered portion and the second end includes protrusions on the outer surface. As the inner bushing is inserted in the outer bushing it is arranged to be movable within the outer bushing and the protrusions form supports for holding the second end of the inner bushing above the center hole.
    Type: Grant
    Filed: September 12, 2017
    Date of Patent: April 7, 2020
    Assignee: ROSENDAHL NEXTROM GMBH
    Inventors: Olli Raki, Joonas Ilmarinen, Urmas Jöksi, Risto Widerholm, Esa Huttunen
  • Patent number: 9567252
    Abstract: Capacity of space in a drawing furnace is decreased so as to reduce variations in pressure in the furnace and also the side of an insertion port of a glass perform is stably sealed. When drawing is started, an outer peripheral surface of the optical fiber glass preform 11 is sealed with a first seal part 17 of the seal mechanism. After a vicinity of a taper part of the optical fiber glass preform 11 starts to pass through the first seal part 17, switching to a second seal part 18 arranged above the first seal part 17 is performed, and an outer peripheral surface of a sleeve member 20 fixed so as to surround an outer periphery of the dummy rod 12 is sealed with the second seal part 18.
    Type: Grant
    Filed: February 18, 2014
    Date of Patent: February 14, 2017
    Assignee: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Iwao Okazaki, Takashi Yamazaki, Tatsuya Konishi, Katsuyuki Tsuneishi
  • Patent number: 9036972
    Abstract: An easily producible optical fiber preform which is drawn to an optical fiber having a core containing a sufficient concentration of alkali metal is provided. An optical fiber preform 10 is composed of silica-based glass and includes a core portion 20 and a cladding portion 30. The core portion 20 includes a first core portion 21 including a central axis and a second core portion 22 disposed on the perimeter of the first core portion 21. The cladding portion 30 includes a first cladding portion 31 disposed on the perimeter of the second core portion 22 and a second cladding portion 32 disposed on the perimeter of the first cladding portion 31. The core portion 20 contains an alkali metal at an average concentration of 5 atomic ppm or more. The concentration of the OH group in the perimeter portion of the first cladding portion 31 is 200 mol ppm or more.
    Type: Grant
    Filed: November 16, 2012
    Date of Patent: May 19, 2015
    Assignee: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Yoshiaki Tamura, Tetsuya Haruna, Masaaki Hirano
  • Publication number: 20150098682
    Abstract: An easily producible optical fiber preform which is drawn to an optical fiber having a core containing a sufficient concentration of alkali metal is provided. An optical fiber preform 10 is composed of silica-based glass and includes a core portion 20 and a cladding portion 30. The core portion 20 includes a first core portion 21 including a central axis and a second core portion 22 disposed on the perimeter of the first core portion 21. The cladding portion 30 includes a first cladding portion 31 disposed on the perimeter of the second core portion 22 and a second cladding portion 32 disposed on the perimeter of the first cladding portion 31. The core portion 20 contains an alkali metal at an average concentration of 5 atomic ppm or more. The concentration of the OH group in the perimeter portion of the first cladding portion 31 is 200 mol ppm or more.
    Type: Application
    Filed: December 15, 2014
    Publication date: April 9, 2015
    Inventors: Yoshiaki TAMURA, Tetsuya HARUNA, Masaaki HIRANO
  • Patent number: 8983258
    Abstract: A random array of holes is created in an optical fiber by gas generated during fiber drawing. The gas forms bubbles which are drawn into long, microscopic holes. The gas is created by a gas generating material such as silicon nitride. Silicon nitride oxidizes to produce nitrogen oxides when heated. The gas generating material can alternatively be silicon carbide or other nitrides or carbides. The random holes can provide cladding for optical confinement when located around a fiber core. The random holes can also be present in the fiber core. The fibers can be made of silica. The present random hole fibers are particularly useful as pressure sensors since they experience a large wavelength dependant increase in optical loss when pressure or force is applied.
    Type: Grant
    Filed: September 10, 2013
    Date of Patent: March 17, 2015
    Assignee: Virginia Tech Intellectual Properties, Inc.
    Inventors: Jeong I. Kim, Daniel Kominsky, Gary Pickrell, Ahmad Safaai-Jazi, Roger Stolen, Anbo Wang
  • Patent number: 8973408
    Abstract: An optical fiber production system and method are provided for producing optical fiber. An optical fiber is drawn from a preform in a furnace and passes through a treatment device under a controlled reduced pressure or partial vacuum in the range of 0.01 to 0.8 atm. The treatment device cools the bare optical fiber as it cools to a temperature range of at least 1,600° C. to 1,300° C. A non-contact fiber centering device is located near an exit of the treatment device to provide linear centering of the optical fiber as it exits the treatment device.
    Type: Grant
    Filed: April 21, 2011
    Date of Patent: March 10, 2015
    Assignee: Corning Incorporated
    Inventors: Andrey V Filippov, Robert C Moore, Bruce Warren Reding, David Andrew Tucker
  • Patent number: 8971684
    Abstract: Provided is a method of producing a preform 10P for a coupled multi-core fiber including: an arranging process P1 for arranging a plurality of core glass bodies 11R and a clad glass body 12R in such a way that the plurality of core glass bodies 11R are surrounded by the clad glass body 12R; and a collapsing process P2 for collapsing a gap between the core glass bodies 11R and the clad glass body 12R, wherein the respective core glass bodies 11R have outer regions 16 having a predetermined thickness from the periphery surfaces and made of silica glass undoped with germanium, and the clad glass body 12R is made of silica glass having a refractive index lower than a refractive index of the outer regions of the core glass bodies 11R.
    Type: Grant
    Filed: August 16, 2012
    Date of Patent: March 3, 2015
    Assignee: Fujikura Ltd.
    Inventors: Shoji Tanigawa, Katsuhiro Takenaga
  • Publication number: 20150007616
    Abstract: To manufacture glass base material with high manufacturing yield, provided is a glass base material elongating method comprising forming a tapered portion where the outer diameter of the glass base material changes continuously, holding the glass base material with chucks, heating the glass base material held by chucks with a heat source, and with a portion of the glass base material softened, increasing the distance between the chucks to elongate the glass base material. The elongation begins from a state in which a position of the heat source at a position at which the outer diameter of the glass base material is set in a range from no less than 95% to no more than 98% of an average outer diameter of the trunk portion of the glass base material.
    Type: Application
    Filed: July 1, 2014
    Publication date: January 8, 2015
    Inventor: Hideki FUJII
  • Patent number: 8904825
    Abstract: The present invention provides an apparatus and a method for fabricating a glass rod from a glass preform capable of suppressing a diameter fluctuation of the drawn glass rod even when there is a relatively large diameter reduction ratio between the glass preform and the glass rod, such as 60 to 95%. The feed speed V1 of the glass preform is set to a constant value, the diameter D of the glass preform is acquired for determining the drawing speed V2 from diameter data of the glass preform measured before being drawn at a diameter acquisition position defined with respect to a reference position of the furnace. The distance from the reference position to the diameter acquisition position is defined so as to vary depending on a diameter fluctuation of the glass preform before being drawn in a longitudinal direction thereof.
    Type: Grant
    Filed: September 7, 2011
    Date of Patent: December 9, 2014
    Assignee: Shin-Etsu Chemical Co., Ltd
    Inventor: Tetsuya Otosaka
  • Patent number: 8881552
    Abstract: The present invention provides an apparatus and a method for fabricating a glass rod from a glass preform capable of suppressing a diameter fluctuation of the drawn glass rod even when there is a relatively large diameter reduction ratio between the glass preform and the glass rod, such as 60 to 95%. The diameter (D) of the glass preform for determining the ratio from a measured diameter data is acquired from measured diameter data of the glass preform, the measured diameter data is obtained by measuring the diameter of the glass preform along the longitudinal length of the preform before drawing the glass preform, and the feed speed (V1) is determined so that the feed speed (V1) varies depending on fluctuations of the measured diameter data in the longitudinal direction.
    Type: Grant
    Filed: September 7, 2011
    Date of Patent: November 11, 2014
    Assignee: Shin-Etsu Chemical Co., Ltd.
    Inventor: Tetsuya Otosaka
  • Publication number: 20140328565
    Abstract: The present invention relates to a multimode optical fiber which can provide a smooth cut face suitable for fusion splicing between fibers. The multimode optical fiber has at least a core extending along a central axis and having an ?-power refractive index profile, and a cladding, and a residual stress distribution in the core along a radial direction from the central axis has a shape with a maximum at a position intersecting with the central axis.
    Type: Application
    Filed: May 1, 2013
    Publication date: November 6, 2014
    Applicant: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventor: Sumitomo Electric Industries, Ltd.
  • Publication number: 20140301706
    Abstract: Disclosed is an optical fiber formed from a preform that includes a clad component and a core component. The core component includes one or more precursor core materials. The precursor core materials and the clad materials are selected such that that the photoelastic constants of at least one precursor core material and the clad material are of opposite sign resulting in a final glass optical fiber of tailored Brillouin performance. The clad material may include an oxide glass having a positive photoelastic constant and the core component may include a precursor core material that has a negative photoelastic constant. During formation, the precursor core material can melt and interact with clad material that precipitates into the core to form a glass of at least one tailored Brillouin property, such as very low Brillouin gain.
    Type: Application
    Filed: April 4, 2014
    Publication date: October 9, 2014
    Applicant: Clemson University
    Inventors: John Ballato, Peter D. Dragic
  • Publication number: 20140254997
    Abstract: An easily producible optical fiber preform which is drawn to an optical fiber having a core containing a sufficient concentration of alkali metal is provided. An optical fiber preform 10 is composed of silica-based glass and includes a core portion 20 and a cladding portion 30. The core portion 20 includes a first core portion 21 including a central axis and a second core portion 22 disposed on the perimeter of the first core portion 21. The cladding portion 30 includes a first cladding portion 31 disposed on the perimeter of the second core portion 22 and a second cladding portion 32 disposed on the perimeter of the first cladding portion 31. The core portion 20 contains an alkali metal at an average concentration of 5 atomic ppm or more. The concentration of the OH group in the perimeter portion of the first cladding portion 31 is 200 mol ppm or more.
    Type: Application
    Filed: November 16, 2012
    Publication date: September 11, 2014
    Inventors: Yoshiaki Tamura, Tetsuya Haruna, Masaaki Hirano
  • Publication number: 20140226948
    Abstract: An apparatus includes a susceptor and a protective pipe. A gas containing 50% or more of argon or nitrogen is used as a gas to be supplied into the susceptor. The protective pipe has a heat insulating region (17a) enclosed with a heat insulator (18) with a length of Db (mm) at the upper section thereof and a non-heat insulating region (17b) not enclosed with any heat insulators at the lower section thereof. The temperature of the glass fiber at the outlet of the protective pipe becomes 1700° C. or less. The outer diameter of the glass fiber at the outlet of the protective pipe is within a range of the target outer diameter of the glass fiber+6 ?m or less.
    Type: Application
    Filed: January 9, 2013
    Publication date: August 14, 2014
    Inventors: Tadashi Enomoto, Iwao Okazaki, Takashi Yamazaki, Masatoshi Hayakawa, Manabu Shiozaki, Norihiro Uenoyama, Masaru Furusyou
  • Patent number: 8800324
    Abstract: A method for producing a glass fiber, through longitudinally drawing a preform in a drawing kiln, wherein cooling the glass fiber is performed in at least three time periods, wherein the glass fiber is exposed to a first time based cooling rate above a crystallization temperature range, to a second time based cooling rate that is greater than the first time based cooling rate within the crystallization temperature range, and to a third time based cooling rate which is smaller than the second time based cooling rate below the crystallization temperature range.
    Type: Grant
    Filed: May 17, 2010
    Date of Patent: August 12, 2014
    Assignee: J-Fiber GmbH
    Inventors: Wolfgang Hämmerle, Lothar Brehm, Matthias Auth
  • Publication number: 20140137604
    Abstract: An optical fiber having excellent strength that can be manufactured at low cost, as well as a method for making such optical fiber, is provided. An optical fiber 1 is a silica-based optical fiber comprising a core 11, an optical cladding 12 surrounding the core & 11, and a jacketing region 13 surrounding the optical cladding 12 and having a uniform composition throughout from the internal circumference to the outer circumference. A compressive strained layer having a residual compressive stress is provided at the outermost circumference of the jacketing region 13.
    Type: Application
    Filed: January 24, 2014
    Publication date: May 22, 2014
    Applicant: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Tetsuya NAKANISHI, Masaaki HIRANO, Tetsuya HARUNA, Maki IKECHI
  • Patent number: 8701445
    Abstract: An optical fiber manufacturing apparatus for manufacturing an optical fiber by drawing a optical fiber preform, including: a drawing furnace having therein a muffle tube into which the optical fiber preform is inserted and heating the optical fiber preform; and a first seal member which is disposed at an insert side of the drawing furnace so as to be coaxial with the drawing furnace and which seals the optical fiber preform inserted into an opening formed at the center thereof, wherein the first seal member includes a plurality of inner-circumference slits formed in the inner circumference thereof and a plurality of outer-circumference slits formed in the outer circumference thereof.
    Type: Grant
    Filed: December 4, 2009
    Date of Patent: April 22, 2014
    Assignee: Fujikura Ltd.
    Inventor: Tomohiro Nunome
  • Patent number: 8695379
    Abstract: Apparatus for applying traction to an elongate cylindrical element produced by fusion of an end portion of a preform of glass material, in which a traction device is capable of being connected to a portion of the elongate cylindrical element to provide traction of the elongate cylindrical element along an axis. A device for the rotation of the elongate cylindrical element applies a twist to the elongate cylindrical element about the axis simultaneously with the traction.
    Type: Grant
    Filed: December 21, 2000
    Date of Patent: April 15, 2014
    Assignee: Prysmian Cavi E Sistemi Energia S.R.L.
    Inventors: Marco Antonio Caiata, Franco Cocchini, Giuseppe Ferri, Andrea Mazzotti, Alessandro Rossi, Antonio Schiaffo
  • Patent number: 8661856
    Abstract: In an optical fiber manufacturing method, the cooling device and the coating device are connected in an airtight manner and by preventing a cooling gas, flowing inside the cooling device, from flowing into the coating device by a meniscus of resin inside of the coating device, a flow of the cooling gas inside the cooling device is discharged to an outside of an upper end of the cooling device as an upward stream; helium gas as the cooling gas flows into a lower portion of the cooling device and carbon dioxide gas as the cooling gas which is separated from the helium gas flows into a side lower than a position where the helium gas flows in, during the forcible cooling; and a flow rate of the helium gas and a flow rate of the carbon dioxide gas are individually controlled.
    Type: Grant
    Filed: June 15, 2011
    Date of Patent: March 4, 2014
    Assignee: Fujikura Ltd.
    Inventor: Kenji Okada
  • Patent number: 8661857
    Abstract: Provided is a method of manufacturing an optical fiber preform, comprising obtaining a base material ingot by sintering a porous glass base material at a high temperature to change the porous glass base material into glass while retaining an unsintered portion at one end thereof that is not completely changed to glass; and while relatively moving a heating means in a longitudinal direction of the base material ingot, applying a tensile force to a heated portion and beginning to extend the unsintered portion from one side to decrease a diameter of and extend the base material ingot.
    Type: Grant
    Filed: March 3, 2011
    Date of Patent: March 4, 2014
    Assignee: Shin-Etsu Chemical Co., Ltd.
    Inventor: Yoshiaki Shimizu
  • Patent number: 8640502
    Abstract: A method of processing an optical fiber includes introducing fiber that has passed a pulling mechanism to a shredding unit with an introducing unit. The introducing unit includes a movable unit including a notch configured to fit with a capstan roller included in the pulling mechanism, a sliding mechanism that attaches the movable unit slidably with respect to a main body of the introducing unit, and a restoring mechanism configured to restore the movable unit to an initial position when the movable unit has slid. The method includes shredding the fiber introduced by the introducing unit into fiber pieces, and suctioning, carrying, and collecting the fiber pieces. A method of drawing an optical fiber includes drawing the fiber while controlling a drawing speed, adjusting a diameter of the fiber to a diameter passable through a die, and arranging the die around the fiber having the diameter passable through the die.
    Type: Grant
    Filed: December 7, 2012
    Date of Patent: February 4, 2014
    Assignee: Furukawa Electric Co., Ltd.
    Inventors: Yuta Aoki, Katsuhiko Watanabe, Kiyoshi Arima, Hirokazu Sato, Yoshiharu Taga, Takashi Suzuki
  • Publication number: 20140020430
    Abstract: Provided is a glass base material elongation method for elongating a glass base material with a large diameter to manufacture a glass rod with a smaller diameter, the method comprising, when elongating a glass base material that has a transparent glass tapered portion at one end of a trunk portion and a glass tapered portion including a non-transparent glass portion at the other end of the trunk portion, prior to the elongation, fusing a hanging dummy to an end of the transparent glass tapered portion, setting the hanging dummy in communication with a feeding mechanism, inserting the glass base material into a heating furnace beginning with the other end, and performing elongation.
    Type: Application
    Filed: June 20, 2013
    Publication date: January 23, 2014
    Inventor: Tetsuya OTOSAKA
  • Patent number: 8620125
    Abstract: Light diffusing optical fibers and methods for producing light diffusing optical fibers are disclosed. In one embodiment, a light diffusing optical fiber includes a core portion formed from silica glass and comprising a plurality of helical void randomly distributed in the core portion of the optical fiber and wrapped around the long axis of the optical fiber. A pitch of the helical voids may vary along the axial length of the light diffusing optical fiber in order to achieve the desired illumination along the length of the optical fiber. A cladding may surround the core portion. Light guided by the core portion is scattered by the helical voids radially outward, through the cladding, such that the light diffusing optical fiber emits light with a predetermined intensity over an axial length of the light diffusing optical fiber, the light diffusing optical fiber having a scattering induced attenuation loss greater than about 0.2 dB/m at a wavelength of 550 nm.
    Type: Grant
    Filed: April 29, 2011
    Date of Patent: December 31, 2013
    Assignee: Corning Incorporated
    Inventors: Leslie James Button, Andrey Kobyakov, Sergey Anatolyevuch Kuchinsky, Stephan Lvovich Logunov, Aramais Zakharian
  • Publication number: 20130327097
    Abstract: A manufacturing method that enables stably making a high-quality optical fiber is provided. The manufacturing method of the present invention comprises: a softened portion falling step in which an optical fiber preform is heated in a heating furnace and a dropping part of softened portion of the preform thus heat-softened is allowed to drop; and a drawing step for drawing the preform such that the softened glass is drawn into a fiber by applying a tension with a take-up means after the softened portion falling step, whereas the preform is rotated about its axis at the softened portion falling step.
    Type: Application
    Filed: June 6, 2013
    Publication date: December 12, 2013
    Inventors: Yuji ABE, Ryutaro MIYAZAKI
  • Publication number: 20130291601
    Abstract: A glass base material elongating method of sequentially feeding rod-like glass base materials hung by a glass base material feeding mechanism into a heating furnace, and pulling a glass rod with a smaller diameter by a pulling chuck at a lower part of the heating furnace, includes: aligning, by an alignment guiding device that guides the glass rod, a guiding center of the alignment guiding device with an axis of the glass rod, the alignment guiding device guiding the glass rod between the heating furnace and the pulling chuck.
    Type: Application
    Filed: April 25, 2013
    Publication date: November 7, 2013
    Applicant: SHIN-ETSU CHEMICAL CO., LTD.
    Inventor: Tetsuya OTOSAKA
  • Publication number: 20130291603
    Abstract: An optical fiber preform, and method for fabricating, having a first core, a second core spaced from the first core and first and second regions, the first region having an outer perimeter having a first substantially straight length and the second region having an outer perimeter having a second substantially straight length facing the first straight length. One of the regions can comprise the first core and the other comprises the second core. The preform can be drawn with rotation to provide a fiber wherein a first core of the fiber is multimode at a selected wavelength of operation and a second core of the fiber is spaced from and winds around the first core and has a selected longitudinal pitch. The second core of the fiber can couple to a higher order mode of the first core and increase the attenuation thereof relative to the fundamental mode of the first core.
    Type: Application
    Filed: July 3, 2013
    Publication date: November 7, 2013
    Inventors: Douglas Guertin, Nils Jacobson, Kanishka Tankala, Adrian Carter
  • Patent number: 8573008
    Abstract: An optical fiber production system and method are provided for producing optical fiber. An optical fiber is drawn from a preform in a furnace and passes through a treatment device under a reduced pressure in the range of 0.01 to 0.80 atm. The treatment device cools the bare optical fiber as it cools to a temperature in the range of at least 1,600° C. to 1,300° C. A non-contact fiber centering device is located near an exit of the treatment device to provide centering of the optical fiber as it exits the treatment device.
    Type: Grant
    Filed: April 21, 2011
    Date of Patent: November 5, 2013
    Assignee: Corning Incorporated
    Inventors: James Henry Faler, Andrey V Filippov, Robert C Moore, Bruce Warren Reding
  • Publication number: 20130255323
    Abstract: Provided is a method for manufacturing an optical fiber. The method includes the steps of: heating and melting a silica-based optical fiber preform in a drawing furnace; drawing the melted preform into a linear shape from the drawing furnace, continuously cooling and solidifying the preform to form a bare optical fiber; coating the bare optical fiber with a resin to form an optical fiber; and continuously taking up the optical fiber while applying a tensile force, wherein, when a surface temperature of the cooled and solidified bare optical fiber reached down to 100° C. or lower, a surface of the bare optical fiber is reheated while applying a tensile force so as to remelt only a surface layer of the bare optical fiber, and the surface layer of the bare optical fiber is re-solidified, the bare optical fiber is coated with a resin, and the tensile force is released afterward.
    Type: Application
    Filed: May 28, 2013
    Publication date: October 3, 2013
    Applicant: FUJIKURA LTD.
    Inventor: Shingo MATSUSHITA
  • Patent number: 8544299
    Abstract: To improve a known method for making a quartz glass tube as a semifinished product for the manufacture of optical fibers, the tube comprising an inner fluorine-doped quartz glass layer and an outer quartz glass layer, so as to achieve inexpensive manufacture and improved dimensional stability of the quartz glass tube, it is suggested according to the invention that the quartz glass of the inner layer should be produced in a first plasma deposition process with formation of an inner layer having a wall thickness of at least 1.5 mm, with a fluorine content of at least 1.5% by wt. being set in the quartz glass, and that the quartz glass of the outer layer should be produced in a second plasma deposition process and deposited directly or indirectly on the inner layer with formation of a composite tube, and that the composite tube should be elongated into the quartz glass tube.
    Type: Grant
    Filed: January 15, 2008
    Date of Patent: October 1, 2013
    Assignee: Heraeus Quarzglas GmbH & Co. KG
    Inventors: Gerhard Schoetz, Karsten Braeuer, Jan Vydra
  • Patent number: 8528368
    Abstract: Methods for producing a coated optical fiber may include drawing an optical fiber from a draw furnace along a first pathway and redirecting the optical fiber along a second, different pathway which is non-parallel with the first pathway. The optical fiber may be coated as it travels along the second pathway.
    Type: Grant
    Filed: November 10, 2008
    Date of Patent: September 10, 2013
    Assignee: Corning Incorporated
    Inventors: James Henry Faler, Andrey V. Filippov, Bruce Warren Reding, Bradley Kent Shepard, David Andrew Tucker
  • Publication number: 20130186148
    Abstract: Provided is a glass base material elongating method of using a glass base material elongation apparatus including a heating furnace, a feeding mechanism, and a pulling mechanism to elongate the rod-shaped glass base material to form a thinner glass rod, the method comprising gripping a pulling dummy rod connected to a bottom end of the glass base material with first pulling rollers of the pulling mechanism and, together with the feeding mechanism, feeding the glass base material to the heating furnace; and before a pulling force necessary for pulling the pulling dummy rod to elongate the glass base material reaches a load force that causes slipping between the pulling dummy rod and the first pulling rollers, gripping and pulling the pulling dummy rod with second pulling rollers of the pulling mechanism in addition to the first pulling rollers.
    Type: Application
    Filed: January 17, 2013
    Publication date: July 25, 2013
    Applicant: SHIN-ETSU CHEMICAL CO., LTD.
    Inventor: SHIN-ETSU CHEMICAL CO., LTD.
  • Patent number: 8474287
    Abstract: Microstructured optical fiber for single-moded transmission of optical signals, the optical fiber including a core region and a cladding region, the cladding region including an annular void-containing region that contains non-periodically disposed voids. The optical fiber provides single mode transmission and low bend loss.
    Type: Grant
    Filed: April 5, 2012
    Date of Patent: July 2, 2013
    Assignee: Corning Incorporated
    Inventors: Scott Robertson Bickham, Dana Craig Bookbinder, Ming-Jun Li, Pushkar Tandon
  • Patent number: 8464557
    Abstract: A method of producing an optical fiber preform includes preparing a glass preform that has a hole extending in a longitudinal direction formed on one end of the glass preform in such a manner that a length of the hole is equal to or less than half of an entire length of the glass preform, synthesizing a porous glass preform by depositing glass particles on an outer circumference of the glass preform having the hole formed on the end, and sintering the porous glass preform after arranging the porous glass preform in such a manner that the end having the hole formed thereon points downward and the hole is open to the air.
    Type: Grant
    Filed: October 24, 2011
    Date of Patent: June 18, 2013
    Assignee: Furukawa Electric Co., Ltd.
    Inventors: Taeko Shibuta, Tadashi Takahashi, Takeshi Yagi
  • Publication number: 20130148934
    Abstract: Provided is an inexpensive low-loss optical fiber suitably used in an optical transmission network. An optical fiber includes a core, an optical cladding, and a jacket. The core has a relative refractive index difference between 0.2% and 0.32% and has a refractive index volume between 9%·?m2 and 18%·?m2. The jacket has a relative refractive index difference between 0.03% and 0.20%. Glass constituting the core has a fictive temperature between 1400° C. and 1560° C. Stress remaining in the core is compressive stress. A cutoff wavelength measured on a fiber having a length of 2 m is 1300 nm or more and a cutoff wavelength measured on a fiber having a length of 100 m is 1500 nm or less. An effective area at a wavelength of 1550 nm is 110 ?m2 or more. A attenuation at a wavelength of 1550 nm is 0.19 dB/km or less.
    Type: Application
    Filed: December 6, 2012
    Publication date: June 13, 2013
    Applicant: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventor: SUMITOMO ELECTRIC INDUSTRIES, LTD.
  • Patent number: 8443631
    Abstract: A method of making an optical fiber includes the steps of: providing an optical fiber preform; heating an end portion of the optical fiber preform so as to obtain a softened preform end portion; drawing the softened preform end portion to form the optical fiber; applying to the optical fiber a substantially sinusoidal spin having a spin amplitude and a spin period, the substantially sinusoidal spin being transmitted to the softened preform end portion, and determining an actual spin amplitude applied to the fiber, wherein the actual spin amplitude is the spin amplitude applied in correspondence to the softened preform end portion. The spin amplitude and spin period of the substantially sinusoidal spin are selected in such a way that a ratio of the actual spin amplitude to the spin period is in the range of approximately 0.8 to approximately 1.4 turns/m2.
    Type: Grant
    Filed: June 22, 2006
    Date of Patent: May 21, 2013
    Assignee: Prysmian S.p.A.
    Inventors: Davide Sarchi, Maddalena Ferrario
  • Publication number: 20130081429
    Abstract: Provided is a method of manufacturing an optical fiber base material by an inside mounting method, including: a step of rotating and heating a glass tube fixed at two positions and supplying a gas into a through-hole of the glass tube, wherein in the step, the glass tube is warped so that an axis between respective fixed portions of the glass tube has a shape in which a catenary curve is reversed in the vertical direction.
    Type: Application
    Filed: September 27, 2012
    Publication date: April 4, 2013
    Applicant: FUJIKURA LTD.
    Inventor: FUJIKURA LTD.
  • Publication number: 20130061637
    Abstract: An optical fiber preform that is used in a method in which a core rod that forms a core is inserted into a quartz tube that forms a cladding, and at the same time as they are fiber-drawn, the quartz tube and the core rod are formed into a single body, includes: a tapered portion that is formed by grinding an outer circumferential portion of a distal end portion of the quartz tube into a tapered shape; and a conical portion that is formed by welding a dummy tube that has substantially the same outer diameter as the outer diameter of a distal end portion of the tapered portion to the distal end portion of the tapered portion, and by applying heat to the dummy tube and stretching out the dummy tube, where the core rod is inserted inside the quartz tube.
    Type: Application
    Filed: November 6, 2012
    Publication date: March 14, 2013
    Applicant: FUJIKURA LTD.
    Inventor: Fujikura Ltd.
  • Publication number: 20130044989
    Abstract: Provided is a method of producing a preform 10P for a coupled multi-core fiber including: an arranging process P1 for arranging a plurality of core glass bodies 11R and a clad glass body 12R in such a way that the plurality of core glass bodies 11R are surrounded by the clad glass body 12R; and a collapsing process P2 for collapsing a gap between the core glass bodies 11R and the clad glass body 12R, wherein the respective core glass bodies 11R have outer regions 16 having a predetermined thickness from the periphery surfaces and made of silica glass undoped with germanium, and the clad glass body 12R is made of silica glass having a refractive index lower than a refractive index of the outer regions of the core glass bodies 11R.
    Type: Application
    Filed: August 16, 2012
    Publication date: February 21, 2013
    Applicant: FUJIKURA LTD.
    Inventors: Shoji Tanigawa, Katsuhiro Takenaga
  • Patent number: 8347656
    Abstract: An apparatus includes: an introducer to introduce a glass optical fiber that has passed a pulling mechanism pulling, to draw the glass optical fiber, one end of an optical fiber preform that has been fused by heating; a shredder including a casing connected to the introducer and a shredding mechanism to shred the glass optical fiber introduced by the introducer in the casing into glass optical-fiber pieces; a pipe connected to the casing of the shredder and to carry the glass optical-fiber pieces; and a suction unit connected to the pipe and to suction the glass optical-fiber pieces via the pipe.
    Type: Grant
    Filed: August 31, 2010
    Date of Patent: January 8, 2013
    Assignee: Furukawa Electric Co., Ltd.
    Inventors: Yuta Aoki, Katsuhiko Watanabe, Kiyoshi Arima, Hirokazu Sato, Yoshiharu Taga, Takashi Suzuki
  • Publication number: 20120321261
    Abstract: There is provided a method for producing an optical fiber having low attenuation, the optical fiber including a core that contains an alkali metal element. An optical fiber preform that includes a core part and a cladding part is drawn with a drawing apparatus to form an optical fiber, the core part having an average concentration of an alkali metal element of 5 atomic ppm or more. During the drawing, the time the temperature of glass is maintained at 1500° C. or higher is 110 minutes or less. The drawing speed is preferably 1200 m/min or more and more preferably 1500 m/min to 2300 m/min. The optical fiber preform preferably has a diameter of 70 mm to 170 mm and more preferably 90 mm to 150 mm.
    Type: Application
    Filed: June 14, 2012
    Publication date: December 20, 2012
    Applicant: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Tetsuya Haruna, Masaaki Hirano, Yoshiaki Tamura
  • Patent number: 8322164
    Abstract: In a process for producing a low polarization mode dispersion optical fiber, which comprises the steps of drawing a glass preform into an optical fiber and of spinning, during drawing, the optical fiber about an optical fiber axis, the spinning is imparted according to a bidirectional and substantially trapezoidal spin function, which includes zones (P) of substantially constant amplitude (plateau) and zones of transition (T) where inversion of the spin direction takes place, wherein the extension (p) of the zones of substantially constant amplitude is greater than the extension (t) of the zones of transition, and the number of inversions of the direction of spin in a length of fiber of 20 m is at most two.
    Type: Grant
    Filed: August 29, 2003
    Date of Patent: December 4, 2012
    Assignee: Prysmian Cavi E Sistemi Energia S.R.L.
    Inventors: Davide Sarchi, Sabrina Fogliani, Roberto Pata
  • Publication number: 20120222452
    Abstract: A method of elongating a glass base material to obtain a glass rod having a smaller diameter, using a glass base material elongating apparatus including a feeder at least for the glass base material, a heating furnace, and an elongating mechanism of the glass base material below the heating furnace, is such that a horizontal plane position measuring unit of the glass base material is provided inside or near the heating furnace, the feeder has a glass base material horizontal plane position adjusting unit, and the elongating mechanism has three or more sets of elongating rollers capable of switching between grasping and releasing for keeping the position of the glass rod in the horizontal plane to be constant, and the glass base material is elongated with the position thereof in the horizontal plane kept as targeted by controlling the glass base material horizontal plane position adjusting unit.
    Type: Application
    Filed: February 29, 2012
    Publication date: September 6, 2012
    Applicant: Shin-Etsu Chemical Co., Ltd.
    Inventor: Tetsuya OTOSAKA
  • Patent number: 8230704
    Abstract: In one embodiment, an optical fiber cooling system includes a first cooling tube oriented substantially in parallel with and spaced apart from a second cooling tube such that an optical fiber pathway is positioned between the first cooling tube and the second cooling tube. The first cooling tube includes a plurality of cooling fluid outlets positioned along an axial length of the first cooling tube which are oriented to direct a flow of cooling fluid across the optical fiber pathway towards the second cooling tube. The second cooling tube includes a plurality of cooling fluid outlets positioned along an axial length of the second cooling tube which are oriented to direct a flow of cooling fluid across the optical fiber pathway towards the first cooling tube.
    Type: Grant
    Filed: October 25, 2010
    Date of Patent: July 31, 2012
    Assignee: Corning Incorporated
    Inventors: Gary Alan Cummings, Samir Khanna, Douglas Gregg Neilson, Thomas A Pedersen, Massoud Rahiminejad, Bruce Warren Reding
  • Patent number: 8233760
    Abstract: A method for making low PMD fiber comprising the steps of: (i) making an initial fiber preform; (ii) modifying said initial fiber preform to introduce higher birefringence than that of the initial fiber preform into modified preform; and (iii) drawing an optical fiber from the modified preform and bi-directionally spinning the drawn fiber during draw.
    Type: Grant
    Filed: September 23, 2009
    Date of Patent: July 31, 2012
    Assignee: Corning Incorporated
    Inventors: Xin Chen, Timothy Leonard Hunt, Joohyun Koh, Ming-Jun Li, Daniel Aloysius Nolan
  • Patent number: 8230702
    Abstract: Disclosed is a method of heat treating quartz glass deposition tubes at between 900° C. and 1200° C. for at least 115 hours. The resulting deposition tubes are useful in forming optical preforms that can yield optical fibers having reduced added loss.
    Type: Grant
    Filed: May 23, 2011
    Date of Patent: July 31, 2012
    Assignee: Draka Comteq, B.V.
    Inventors: Guangjun Xu, Larry Zeng, Ivo Flammer, Dennis Robert Simons, Cedric Gonnet, Rob Hubertus Matheus Deckers
  • Publication number: 20120186304
    Abstract: Microstructured optical fiber for single-moded transmission of optical signals, the optical fiber including a core region and a cladding region, the cladding region including an annular void-containing region that contains non-periodically disposed voids. The optical fiber provides single mode transmission and low bend loss.
    Type: Application
    Filed: April 5, 2012
    Publication date: July 26, 2012
    Inventors: Scott Robertson Bickham, Dana Craig Bookbinder, Ming-Jun Li, Pushkar Tandon
  • Publication number: 20120121226
    Abstract: An optical fiber includes an outer periphery formed into a shape that configures the fiber to interlock with the other fibers with complementary shapes. Methods and systems for fabricating such interlocking fibers are also disclosed. In one example, a method includes drawing a first optical fiber from a preform and forming an outer periphery of the first optical fiber into a shape that configures the first optical fiber to be interlocked with a second optical fiber comprising an outer periphery formed into a shape that is complementary to the shape of the first optical fiber.
    Type: Application
    Filed: November 17, 2010
    Publication date: May 17, 2012
    Applicant: HONEYWELL INTERNATIONAL INC.
    Inventors: Scott G. Fleischman, Richard Kallay
  • Publication number: 20120087625
    Abstract: A fiber preform, including: a fiber core rod and an outer cladding layer. The ratio of the diameter of the fiber core rod to the diameter of the core layer thereof is 2.1-2.8. The fiber core rod and a small fluorine-doped quartz glass tube are melted to form a core rod assembly. The ratio of the diameter difference between the core rod assembly and the fiber core rod to the diameter of the core layer is 0.5-2.2. The relative refractive index difference of fluorine-doped quartz glass relative to purified quartz glass ?F is ?0.20% to ?0.35%. The core rod assembly is arranged with a large purified quartz glass tube, or directly deposited with a SiO2 glass cladding layer. A ratio of an effective diameter of the fiber preform to the diameter of the core rod assembly is 2.0-5.6. Methods for manufacturing the preform and a fiber are also provided.
    Type: Application
    Filed: December 15, 2011
    Publication date: April 12, 2012
    Inventors: Qingrong HAN, Chen YANG, Yongtao LIU, Jie LUO, Matai RADJJ
  • Patent number: 8141392
    Abstract: Drawing methods and drawing furnaces for drawing an optical fiber with small non-circularity by simple drawing system are provided. An optical fiber preform is received into a muffle tube and heated by a primary heater placed to surround the muffle tube. The optical fiber preform is heated such that a starting position of a meniscus portion is higher in its position than the top of the primary heater, wherein the meniscus portion is created at the bottom portion of the optical fiber preform.
    Type: Grant
    Filed: March 23, 2009
    Date of Patent: March 27, 2012
    Assignee: The Furukawa Electric Co., Ltd.
    Inventors: Nobuaki Orita, Takashi Suzuki, Yoshiyuki Sakata